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Determination of the most 
effective design 
for the measurement 
of photosynthetic light‑response 
curves for planted Larix olgensis 
trees
Qiang Liu1,2, Weiwei Jia1* & Fengri Li 1*

A photosynthetic light‑response (PLR) curve is a mathematical description of a single biochemical 
process and has been widely applied in many eco‑physiological models. To date, many PLR 
measurement designs have been suggested, although their differences have rarely been explored, 
and the most effective design has not been determined. In this study, we measured three types of 
PLR curves (High, Middle and Low) from planted Larix olgensis trees by setting 31 photosynthetically 
active radiation (PAR) gradients. More than 530 million designs with different combinations of PAR 
gradients from 5 to 30 measured points were conducted to fit each of the three types of PLR curves. 
The influence of different PLR measurement designs on the goodness of fit of the PLR curves and 
the accuracy of the estimated photosynthetic indicators were analysed, and the optimal design was 
determined. The results showed that the measurement designs with fewer PAR gradients generally 
resulted in worse predicted accuracy for the photosynthetic indicators. However, the accuracy 
increased and remained stable when more than ten measurement points were used for the PAR 
gradients. The mean percent error (M%E) of the estimated maximum net photosynthetic rate (Pmax) 
and dark respiratory rate (Rd) for the designs with less than ten measurement points were, on average, 
16.4 times and 20.1 times greater than those for the designs with more than ten measurement 
points. For a single tree, a unique PLR curve design generally reduced the accuracy of the predicted 
photosynthetic indicators. Thus, three optimal measurement designs were provided for the three PLR 
curve types, in which the root mean square error (RMSE) values reduced by an average of 8.3% and the 
coefficient of determination  (R2) values increased by 0.3%. The optimal design for the High PLR curve 
type should shift more towards high‑intensity PAR values, which is in contrast to the optimal design 
for the Low PLR curve type, which should shift more towards low‑intensity PAR values.

The photosynthetic light-response (PLR) curve reflects the instantaneous response of the net photosynthetic 
rate (Pn) to different gradients of photosynthetically active radiation (PAR). It can provide measures of many 
photosynthetic indicators, such as the maximum Pn (Pmax), dark respiration rate (Rd), apparent quantum yield 
(AQY), light compensation point (LCP) and light saturated point (LSP), for analysing plant photosynthetic 
 activity1. In addition, it is also a basic element for modelling the  photosynthesis2–4 and primary  productivity5–7 
of vegetation and forests. In recent studies, the application of the PLR model has been expanded from a single 
leaf to larger scales by linking some leaf functional traits and environmental conditions, such as the leaf mass 
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per area (LMA), nitrogen (N)  content8–10, leaf temperature (Tleaf) and global site factor (GSF)11–13. Our previous 
study successfully established a dynamic crown PLR model for Larix olgensis trees by linking the LMA, Tleaf, 
vapour pressure deficit (VPD) and relative depth into the crown (RDINC) in the original PLR  equation13. These 
results laid the foundation for estimating the net primary production (NPP) and further exploring its allocation 
mechanisms in individual L. olgensis trees.

Although the PLR model has been widely applied, the questions that most frequently confuse research-
ers during the design of measurements are as follows: how many PAR gradients and what specific PAR values 
should be chosen to ensure the best design? Table 1 lists the many designs that have been used to measure the 
PLR curves in different studies. Although some studies used the same number of PAR gradients, the specific 
PAR values differed. However, none of these studies explained why such designs were selected. Thus, how the 
different designs will affect the goodness of fit of the PLR curves and the results of the predicted accuracy of the 
estimated photosynthetic indicators remain unclear.

The PLR curves for trees generally exhibit spatial variations, even within an individual  crown14–16. Thus, it is 
inappropriate to measure only one position to represent the photosynthetic characteristics of the whole  crown13. 
Our previous  study13,17,18 suggested that the PLR curves significantly differed in the vertical direction in the crown 
of a L. olgensis tree. More samples must be selected to analyse the PLR curves throughout tree crowns, especially 
for tall trees. However, more samples will consequently require more time on a single tree, which will limit the 
amount of data collected over a large scale. Thus, an efficient and scientific design for measuring PLR curves is 
necessary and urgent for analysing photosynthetic characteristics, especially for trees.

Larix olgensis accounts for 36% of the total area of all plantations in northeastern China, which indicated that 
it is the main tree species used for afforestation. The objectives of this investigation are (1) to analyse the influence 
of different designs on the goodness of fit of PLR curves; (2) to further analyse the influence of different designs 
on the predicted accuracy for the estimated photosynthetic indicators and (3) to propose an optimal design for 
the measurement of PLR curves for planted L. olgensis trees.

Materials and methods
Site description. The experiments were conducted in 2017 at the experimental forest farm of Northeast 
Forestry University in Maoershan (45° 23′ 21″ N, 127° 37′ 56″ E). The site is characterized by a midlatitude mon-
soon climate, with warm, wet summers and cold, dry winters. The average temperature throughout the growing 

Table 1.  Summary of the different PLR designs in part of other researches.

Species Number Specific PAR gradients of PLR curves

Oryza sativa10,19
16 0, 50, 100, 150, 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600, 1,800, 1900, 1950, 2000

15 0, 25, 50, 100, 150, 200, 300, 400, 600, 800, 1,000, 1,200, 1,400, 1,600, 2000

Boswellia papyrifera20 14 0, 50, 100, 200, 300, 400, 600, 800, 1,000, 1,200, 1,400, 1,600, 1,800, 2000

Nicotiana tabacum21 13 0, 20, 50, 80, 100, 200, 400, 600, 800, 1,000, 1,200, 1,500, 1,800

Populus balsamifera × Populus trichocarpa; Populus maximowiczii × Populus bal-
samifera22 13 0, 50, 100, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,600, 2000

Boswellia papyrifera; Capsicum annuum; Koelreuteria paniculata; Zea mays; Sor-
ghum bicolor23 13 0, 50, 100, 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600, 1,800, 2000

Acer saccharum4 12 0, 100, 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600, 1,800,2000

Larix olgensis; Larix kaempferi24 13 0, 30, 80, 120, 160, 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600

Populus trichocarpa × Populus deltoids; Populus trichocarpa; Populus nigra25 12 0, 25, 50, 75, 100, 200, 300, 400, 500, 1,000, 1,500, 2000

Pinus cembra26 11 0, 50, 100, 200, 300, 400, 500, 750, 1,000, 1,500, 2000

25 Herbaceous  species8 10 0, 50, 100, 200, 300, 400, 600, 800, 1,000, 1,310

Zea mays27 10 0, 50, 100, 200, 300, 500, 700, 1,000, 1,500, 2000

Larix gmelinii28 10 0, 50, 100, 150, 400, 800, 1,200, 1,500, 2000

Ficus insipida; Castilla elastica29 9 0, 50, 100, 250, 500, 750, 1,000, 1,500, 2000

Juglans regia30 9 0, 25, 50, 100, 250, 500, 1,000, 1,500, 2000

Nothofagus cunninghamii31 9 0, 20, 50, 100, 200, 500, 1,000, 1,500, 2000

Kalmia angustifolia32 9 0, 10, 50, 100, 200, 300, 400, 600, 800

Pinus ponderosa; Ceanothus cordulatus; Arctostaphylos manzanita3 8 10, 50, 100, 200, 500, 800, 1,200, 1,800

Pseudotsuga menziesii; Tsuga heterophylla33 8 10, 50, 100, 200, 400, 800, 1,400, 2000

Populus tremuloides; Abies lasiocarpa34 8 0, 50, 100, 200, 500, 1,000, 1,500, 2000

Castanea dentate35 8 0, 50, 100, 200, 500, 800, 1,200, 1,600

Quercus douglasii36 7 50, 100, 200, 400, 600, 1,000, 1,400

Fagus crenata37 7 0, 50, 100, 200, 400, 700, 1,000

Helianthus annus38 7 10, 50, 100, 200, 500, 1,500, 2000

Quercus pngodci39 6 0, 50, 150, 300, 800, 1,800

25 Herbaceous  species9 5 75, 150, 175, 500, 700
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season at the site is 17.0 °C (with a range from − 1.3 to 39.4 °C), the average precipitation throughout the growing 
season is 944 mm. The type of soil is typic Eutroboralfs, and the total forest coverage is approximately 83.3%, 
including 14.7% plantation.

PLR measurements. In this study, three sample plots (20 m × 30 m) were established within 18-year-old 
pure L. olgensis plantations of the same habitat. The diameter at breast height (DBH) and tree height (H) were 
measured for each tree whose DBH was greater than 5 cm in each plot, and the quadratic mean diameters (Dg) 
for three plots were calculated independently. Then, three sample trees with DBH values respectively similar 
to the Dg of the three plots were selected to represent the average state of each plot. According to previous 
 research13,17,18, the upper limit of the PLR curves was significantly different within different crown whorls in 
the vertical direction. Thus, we divided the crowns of three sample trees respectively into three equal divisions 
based on the crown depth (Fig. 1). Three types of PLR curves, which were tagged as High, Middle and Low 
(Fig. 2), were measured in each division (Upper, Middle and Lower) for a sample tree. The measurements were 
conducted using a portable photosynthesis system (LI-6400XT, LI-COR, Inc., Lincoln, Nebraska, USA) coupled 
with a standard light-emitting diode (LED) light source (Li-6400-02B) at 31 PAR levels (2,000, 1,900, 1,800, 
1,700, 1,600, 1,500, 1,400, 1,300, 1,200, 1,100, 1,000, 900, 800, 700, 600, 500, 400, 300, 200, 150, 100, 90, 80, 70, 
60, 50, 40, 30, 20, 10 and 0 μmol m−2 s−1). As needle clusters generally overlapped each other, those covered 
needles could not receive light; therefore, they only have respiration but no photosynthesis. If we do not remove 
these needles, then they will be calculated into the sample leaf area and consequently reduce the value of the PLR 
curves. Therefore, the covered needles were removed before measuring to avoid incorrect PLR curve measure-
ments. The reserved sample needles were acclimated for 20 min at a  CO2 concentration of 370 μmol m−2 s−1 and 
a PAR value of 1,400 μmol m−2 s−1. Then, the sample needles were allowed to equilibrate for a minimum of 2 min 
at each PAR gradient before the data were logged during the measurement of the PLR curves. The PLR curves 
were measured from 8:00 to 17:00 from the 25th of August to the 27th of August in 2018. The temperature (T) 
and relative humidity (RH) were approximately 28–30 ℃ and 30–40% during the measurement, which would 
not cause stomatal closure. Once the measurements of the PLR curves were performed, the sample needles were 
scanned and surveyed with Image-Pro Plus 6.0 software (Media Cybernetics, Bethesda, MD, USA) in the labo-
ratory, resulting in a projected leaf area. These methods expand upon those given in previous  publications13,17.

Model descriptions. In this study, the PLR curves were fitted with the modified Mitscherlich  equation13:

where Pmax is the maximum net photosynthetic rate (μmol m−2 s−1), AQY is the apparent quantum yield, and Rd 
is the dark respiration rate (μmol m−2 s−1).

(1)Pn = Pmax ×

(
1− e(−AQY×PAR/Pmax)

)
− Rd

Crown depth

Upper

Middle

Lower

Figure 1.  Sketch map of the crown divisions. Upper, Middle and Lower represent three equal divisions of 
crown depth in the vertical direction.
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Model assessment and validation. The assessment of the PLR curve model was based on the root mean 
square error (RMSE, Eq. 2) and the coefficient of determination  (R2, Eq. 3). The predicted accuracies of the pho-
tosynthetic indicators were evaluated by the mean error (ME, Eq. 4) and the mean percent error (M%E, Eq. 5) 
as follows:

where  yi is the observed value; 
−

y is the mean of the observed values; ŷi is the predicted value; n is the number of 
observations; and p is the number of parameters.

Determination of the optimal design for measuring the PLR curve. The 31 observed Pn values cor-
responding to 31 PAR gradients in each PLR curve were classified into 26 groups based on the number of PAR 
gradients from 5 to 30, in which 0 and 2000 were fixed points. In each group, the method of non-repetitive ran-
dom sampling were used to ensure that all the combinations were considered and all the sampling designs were 
listed in Table 2. In total, there were more than 530 million combinations of PAR gradients to be fitted by using 
the “dplyr” package in R  software40, and the whole fitting process took more than 200 h. Then, the best combi-
nation with the smallest RMSE value and largest  R2 value in each group was selected. Thereafter, the predicted 
accuracies of the estimated parameters, such as Pmax, AQY and Rd, which represent the important photosynthetic 
indicators, were evaluated by the ME and M%E. Finally, the most effective design for PLR measurement was 
determined by considering the minimum measured PAR gradients based on the premise of ensuring acceptable 
accuracy of the estimated photosynthetic indicators.

Results
Performance of different PLR measurement designs. The goodness of fit (RMSE and  R2) of all the 
designs with different combinations of PAR gradients in each group were calculated, and the corresponding 
values for the best combination are shown in Fig. 3. The results showed that the RMSE values in the Low and 
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√∑n
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(
yi − ŷi

)2
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Figure 2.  Summary of the photosynthetic light response (PLR) curves of Larix olgensis trees. High, Middle and 
Low represent three typical PLR curves that were measured in the Upper, Middle and Lower positions within 
the crown, respectively.
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Middle PLR curve types were, on average, 75.4% and 70.7% smaller than those in the High PLR curve type; the 
 R2 values in the Middle PLR curve type were greater than those in the High and Low PLR curve types, although 
they were, on average, 0.012 and 0.028 greater. The performance of the fitting results became stable when the 
number of PAR gradients was more than 5.

Influence of the different PLR measurement designs on the estimated photosynthetic indica‑
tors. Figure 4 shows the influence of the different PLR measurement designs on the estimated photosynthetic 

Table 2.  Summary of the sampling designs.

Number of method points of PAR Number of combinations Number of method points of PAR Number of combinations

5 C
3
29

= 3654 18 C
16
29

= 67863915

6 C
4
29

= 23751 19 C
17
29

= 51895935

7 C
5
29

= 118755 20 C
18
29

= 34597290

8 C
6
29

= 475020 21 C
19
29

= 20030010

9 C
7
29

= 1560780 22 C
20
29

= 10015005

10 C
8
29

= 4292145 23 C
21
29

= 4292145

11 C
9
29

= 10015005 24 C
22
29

= 1560780
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10
29
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23
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13 C
11
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= 34597290 26 C
24
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= 118755

14 C
12
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= 51895935 27 C
25
29
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13
29

= 67863915 28 C
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= 29
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0

0.5

1

1.5

0 10 20 30

ES
M

R

High Middle Low

0.95

0.96

0.97

0.98

0.99

1

0 10 20 30

R
2

Number of PAR gradients

Figure 3.  Root mean square error (RMSE) and the coefficient of determination  (R2) of different designs for 
measuring the three types of photosynthetic light response (PLR) curves. High, Middle and Low represent three 
typical PLR curves that were measured in the Upper, Middle and Lower positions within the crown, respectively. 
PAR represents photosynthetically active radiation.
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indicators (AQY, Rd and Pmax). The M%E values for estimating AQY in all three types of PLR curves were small 
and fluctuated between 4 and − 4% (Fig. 4a–c). The estimated AQY of the High PLR curve type was overesti-
mated on average (Fig. 4a), but the estimated AQY of the Low PLR curve type was underestimated on average 
(Fig. 4c). The absolute M%E values of the estimated AQY for the designs with less than ten measured points 
were, on average, 9.5 times greater than the values for those with more than ten measured points. The M%E 
values for estimating Rd were lowest when the number of PAR gradients was set to five regardless of the High, 
Middle or Low PLR curve types (− 18%, − 26% and − 25%, Fig. 4d–f); then, the M%E values remained between 
10 and − 10% in all types of PLR curves when the number of measured points for the PAR gradients was more 
than 10. The estimated Rd values were overestimated in all three types of PLR curves (Fig. 4d–f) when the num-
ber of measured points for the PAR gradients was less than 10. However, the estimated Rd exhibited a similar 
regulation as the AQY, which was overestimated for the High PLR curve type (Fig. 4d) and underestimated for 
the Low PLR curve type (Fig. 4f) when the number of measured points of the PAR gradients was more than 10. 
The absolute M%E values of the estimated Rd for the designs with less than ten measured points were, on aver-
age, 6.7 times greater than the values for the designs with more than ten measured points. The M%E values for 
estimating Pmax were lower when less than ten measured points were used for the PAR gradients, indicating that 
the Pmax values were overestimated on average. Then, these values remained between 1 and − 1% for all types of 
PLR curves until more than ten measured points for the PAR gradients were used. The absolute M%E values of 
the estimated Pmax values for the designs with fewer than ten measured points were, on average, 4.8 times greater 
than the values for the designs with more than ten measured points.

Determination of the optimal measuring design of the PLR curve. 10 PAR gradients achieved 
good performance for the PLR fitting and parameter estimations (Fig. 4) according to the above results. Thus, 
we determined the optimal measurement design by contrasting the performance of all combinations of the 10 
PAR gradients in the three types of PLR curves (Table 3). In addition, we also evaluate the performance between 
our new measurement design and the other designs for the same Larch  species24,28 based on the goodness of fit 
(Table 3). The results showed that the optimal designs for measuring the three types of PLR curves were differ-
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Figure 4.  Mean percent error (M%E) of the estimated photosynthetic indicators by different designs for 
measuring the three types of photosynthetic light response (PLR) curves (High, Middle and Low represent 
three typical PLR curves that were measured in the Upper, Middle and Lower positions within the crown, 
respectively): (a–c) M%E of the apparent quantum yield (AQY); (d–f) M%E of the dark respiration rate (Rd); 
and (g–i) M%E of the maximum net photosynthetic rate (Pmax). PAR represents photosynthetically active 
radiation.
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ent. For the High PLR curve type, the PAR gradients shifted more towards high PAR values, but for the Low PLR 
curve type, the PAR gradients shifted more towards low PAR values. Our new designs performed better than the 
other designs in all three types of PLR curves, with increased  R2 values and decreased RMSE values. The perfor-
mances of the estimated photosynthetic indicators were compared between our new design and the two other 
designs for the three types of PLR curves (Fig. 5). Significant difference of the accuracy for parameter estimations 
between our new design and the two other designs was appeared (Table 4). The results showed that the AQY and 
Pmax values were generally overestimated in all three types of PLR curves by our new design (Fig. 5a,c,d,f). The 
Rd values were also overestimated in the Low PLR curve type but underestimated in the High and Middle PLR 
curve types (Fig. 5b,e). The AQY and Rd values from the TI design were obviously overestimated (Fig. 5a,b,d,e), 
and the Pmax values were obviously underestimated in the High and Middle PLR curve types but overestimated 
in the Low PLR curve type (Fig. 5c,f). In addition, the estimated AQY, Rd and Pmax values also exhibited greater 
differences when using the TII design than those exhibited when using our new design. In summary, our new 
design provided better estimations for AQY, Rd and Pmax values in all three types of PLR curves.

Discussion
The PLR curve is an important semiempirical model for describing the response of the Pn to PAR, and it has been 
frequently applied as an effective tool for identifying a series of photosynthetic  indicators1 and a basic element 
for modelling  photosynthesis2–4 and calculating the  NPP5–7. To date, there have been many different designs for 
measuring PLR curves in different species or even in the same species (Table 1). However, it remains unclear 
why such designs are used and which design is the most accurate and effective. During the measurement of the 
PLR curve, each additional PAR gradient will increase the measurement time by at least three minutes, which 
indicates that the measurement time for a PLR curve can be reduced by at least 33 min if the number of PAR 
gradient measurements are reduced from 16 to 5 for only one sample leaf. This result is of great significance for 
the formulation of photosynthetic measurement schemes for trees because the PLR curves for trees generally 
exhibit significant vertical variations throughout a  crown13–16 (Fig. 2), which indicates that more samples must 
be selected from different crown positions when modelling the PLR curve of a crown. Thus, an effective design 
with fewer PAR gradients that can shorten the measurement time for a single sample leaf will directly affect the 
size of a dataset.

The special PAR gradients that are frequently chosen in most designs are 0 μmol m−2 s−1 and 2000 μmol m−2 s−1 
(Table 1) because the Rd is a specific Pn value when PAR is 0 μmol m−2 s−1 and the peak of PAR on a sunny day 
is approximately 2000 μmol m−2 s−1. In previous studies, the number of PAR gradients for PLR curve measure-
ment was at least 5, although most of these gradients included more than seven points and the greatest number 
of PAR gradients was  1713,18 (Table 1). However, few studies have explored the difference between different PLR 
measurement designs. In this study, we analysed the performance of all PLR curve measurement designs with 
the number of PAR gradients ranging from 5 to 31. The results showed that the fitting results remained relatively 
stable when more than 5 PAR gradients were used (Fig. 3). The accuracies of the estimated photosynthetic indi-
cators (AQY, Rd and Pmax) were worse when there were fewer PAR gradients. However, the accuracy increased 
when the number of PAR gradients was set to more than 10 (Fig. 4), indicating that 10 PAR gradients may be 
the most effective design as the measurement of 10 PAR gradients requires relatively little time while ensuring 
acceptable accuracy for the estimation photosynthetic indicators. The accuracies of the estimated AQY, Rd and 
Pmax values were more stable for the Middle PLR curve type than those for the High and Low PLR curve types, 
and the accuracies were more stable for the Middle PLR curve type than for the High and Low PLR curve types 
when more than 10 PAR gradients were measured (Fig. 4). This finding suggests that different designs for PLR 
curve measurement will have a weak influence on the photosynthetic indicators for the Middle PLR curve type, 
which indicates that measuring the Middle PLR curve type is more stable if the aim is to compare the photosyn-
thetic characteristics among different trees.

Three optimal measurement designs were suggested for the three types of PLR curves (Table 3) because 
these designs performed better than the other  designs24,28, especially in terms of the accuracy of the estimated 

Table 3.  Comparison between the new optimal measurement designs and other measurement designs of three 
types of PLR curves. New is our optimal measurement design for the PLR curve; and TI and TII are another 
two designs in different papers for the same larch species (Table 1).

Type Designs Sampling of PAR (μmol m−2 s−1)

Parameters

RMSE R2 Chi-squared value

High

New 0, 40, 80, 90, 150, 900, 1,000, 1,200, 1,700, 2000 1.2785 09,844 0.1199

TI24 0, 30, 80, 120, 160, 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600 1.3069 0.9837 0.1405

TII28 0, 50, 100, 150, 400, 800, 1,200, 1,500, 2000 1.2823 0.9843 0.1274

Middle

New 0, 80, 90, 100, 300, 600, 700, 1,000, 1,600, 2000 0.3744 0.9960 0.0390

TI24 0, 30, 80, 120, 160, 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600 0.4087 0.9953 0.0748

TII28 0, 50, 100, 150, 400, 800, 1,200, 1,500, 2000 0.3976 0.9955 0.0676

Low

New 0, 30, 50, 60, 70, 80, 300, 400, 1,500, 2000 0.3149 0.9680 0.1815

TI24 0, 30, 80, 120, 160, 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600 0.3206 0.9668 0.1923

TII28 0, 50, 100, 150, 400, 800, 1,200, 1,500, 2000 0.3222 0.9665 0.1807
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photosynthetic indicators (AQY, Rd and Pmax, Fig. 5). In addition, we found that the optimal design for the High 
PLR curve type shifted more towards the high-intensity PAR, which was in contrast to the optimal design for 
the Low PLR curve type, which shifted more towards the low-intensity PAR.

Conclusions
PLR curves for a single tree crown generally exhibit obviously vertical variations; thus, the use of a unique meas-
urement design to fit all the PLR curves in a whorl crown does not provide accurate results. The measurement 
design for the High PLR curve type should shift more towards the high intensity of PAR; however, that for the 
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Figure 5.  Comparison of the performance of the estimated photosynthetic indicators between our new design 
and the two other designs for the three types of photosynthetic light response (PLR) curves (High, Middle and 
Low represent three typical PLR curves that were measured in the Upper, Middle and Lower positions within 
the crown, respectively): (a–c) mean error (ME) values of the apparent quantum yield (AQY), dark respiration 
rate (Rd) and maximum net photosynthetic rate (Pmax); and (d–f) mean percent error (M%E) values of AQY, Rd 
and Pmax.

Table 4.  ANOVA results for the accuracy of parameter estimations between the new optimal measurement 
designs and other measurement designs of three types of PLR curves. New is our optimal measurement 
design for the PLR curve; and TI and TII are another two designs in different papers for the same larch species 
(Table 1). Different superscripts mean significant difference.

ME M%E

Pmax AQY Rd Pmax AQY Rd

New − 0.008 + 0.012b − 0.0002 + 0.0003b 0.016 + 0.052b − 0.165 + 0.272b − 0.790 + 1.292b − 0.002 + 5.70b

TI − 0.115 + 0.129a − 0.0031 + 0.0002a − 0.133 + 0.031a 0.442 + 2.055c − 8.255 + 2.515a − 16.498 + 14.367a

TII 0.213 + 0.331c − 0.0033 + 0.0013a − 0.172 + 0.045a − 1.758 + 2.237a − 9.533 + 6.678a − 22.584 + 21.372a
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Low PLR curve type should shift more towards the low intensity of PAR. The accuracies of the estimated AQY, 
Rd and Pmax values for the Middle PLR curve type were more stable than those for the High and Low PLR curve 
types.

Data availability

All data generated or analysed during this study can be found at: https ://datad ryad.org/stash /share /TZhg9 SvYVY 
XDC1n HVNBz T4v5l f57xi sydjL ZWk1q a-s.
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