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novel theoretical approach 
to the GiSAXS issue: the Green 
function formalism using 
the q‑eigenwaves propagating 
through a twofold rough‑surfaced 
medium
f. n. chukhovskii* & B. S. Roshchin

To describe the 1D and 2D patterns of the grazing-incidence small-angle X-ray scattering (GISAXS) 
from a rough fractal surface, the novel integral equations for the amplitudes of reflected and 
transmitted waves are derived. To be specific, the analytical expression for the 2D total intensity 
distribution dRtot(θ ,φ;θ0)

d�
 is obtained. The latter represents by itself a superposition of terms related 

to the GiSAXS specular dRspec(θ;θ0)
d�

 and diffuse 
dR

dif (θ ,φ;θ0)

d�
 patterns, respectively. Hereafter, θ is the 

scattering meridian angle, φ is the scattering azimuth angle; θ0 is the angle of incidence. By using the 
above analytical expressions, the 1D and 2D GISAXS patterns are numerically calculated. Some new 
experimental measurements of the specular reflectivity curves Rspec(θ0 ) related to the fused quartz and 
crystal Si(111) samples have been carried out. Based on the theoretical approach developed, a direct 
least‑squared procedure in a χ2-fit fashion has been used to determine the corresponding values of the 
root‑mean‑square roughness σ from the specular GISAXS reflectivity data.

The grazing-incidence small-angle X-ray scattering (GISAXS) is worldwide used as a versatile tool for the non-
destructive investigation of nanostructure surfaces, study of solid(liquid)-layered structures, interplanetary atom 
doping, nanoscale surfaces, optical mirrors and etc.1–5.

By using advanced technique of crystal growth, fabricating new semiconductor materials is based on the 
idea that the exciton Bohr radius plays an important role in the corresponding exciton binding energy and influ-
ences onto their electronic and optical key-properties. Should the electronic device is sized well large than the 
exciton Bohr radius, which is typically a few tens of nanometers, the electronic structure exclusively depends on 
the material  property3.

In particular, the exciton size depends on the dimensions of the structure and is rather sensitive to local thick-
ness fluctuations as well. Therefore, the field-surfaced roughness is one of the crucial structural parameters that 
strongly affects the optical and electronic properties, and is needed in a detailed analysis. As to the field-surfaced 
roughness studies of the mesoscopic lateral structures by applying the conventional GISAXS  technique3, spot sizes 
of X-ray beams are typically in the range of a few square millimeters. Due to the small incidence angles, the X-ray 
beam footprint significantly elongates with typical lengths of several millimeters. Then, the conventional GISAXS 
technique data are very reliable concerning ensemble statistics, covering over the entire mesoscopic length range.

To date, the special GISAXS technique with a nanoscale resolution has been  developed6–8  (see9 as well) to 
avoiding a parasitic scattering from the surrounding structures that bury the nanoscale target signal. To be spe-
cific, in the  work8, authors have fulfilled the GISAXS measurements for isolated and surrounded grating targets 
in Si substrates with line lengths from 50 μm down to 4 μm, and successfully interpreted the pure GISAXS data 
obtained due to the reduced target lengths.
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Handling to the standard GISAXS method, it provides quantitative information over the root-mean-square 
(r.m.s.) roughness σ and roughness correlation length ℓ . The latter are in the range from a few nanometers for 
the r.m.s. σ and some micrometers for correlation length ℓ , respectively (see, e.g.3,6).

Nevertheless, even in the case of simple mesoscopic structure predominates, no one states that the GISAXS 
theory that is going out beyond both the distorted-wave Born approximation (DWBA) and the pure perturba-
tion theory based on the parameter kσθ0 < 1 seems to be completed ( k = 2π/� , � is the X-ray wavelength, θ0 
is the grazing-incidence angle).

There are a lot of the theoretical works concerning the GISAXS issue, amid which the  works10–13 are widely 
cited. In the  work11, the static Debye–Waller factors of the reflected and transmitted GISAXS q0-waves coherently 
scattered have been derived. In the framework of the GISAXS perturbation theory for solving the integral station-
ary wave equation, authors of the  work12 have developed the Green function method proposed  in10. In the  work13, 
to solve the GISAXS issue, authors have developed the brilliant DWBA formalism widely used to treating the 
various GISAXS issues. In the  paper14 authors carefully have compared both the possibilities of the perturbation 
theory in the framework of the Green function formalism and the conventional DWBA. They have concluded 
that the conventional DWBA utilizes some simplified assumptions regarding an unperturbed wave field nearly 
a rough surface, which can be removed by using the Green function theory. Even without any calculations, one 
can see the similarity and difference of the above theoretical techniques. Their similarity and difference are the 
following. Both of them use the same set of conventional Fresnel solutions as the q-Eigenfunctions to find out 
the perturbation theory solutions of the GISAXS issue (cf.14–17). At the same time, the major difference each to 
other consists of the following. The conventional DWBA produces the perturbation theory solutions from the 
beginning, whereas the Green function formalism generates them at the stage of the rigorous asymptotic equa-
tions for reflected and transmitted wave  amplitudes14. From that, it immediately follows that the range validity 
of the perturbation theory solutions built in the Green function framework cannot be less but only be more than 
the conventional DWBA solutions.

In the  works15,16 the so-called self-consistent wave approach (SCWA) to solve the basic integral Green func-
tion wave equation has been suggested and analyzed. In particular, one has shown that the SCWA allows the 
GISAXS solutions to satisfy the optical theorem in the limit of large correlation lengths, kℓ → ∞16. The next, 
to treat the GISAXS issue based on the Green function formalism, one has suggested the q-Eigenfunction wave 
field approach when the GISAXS issue solution in search represents by itself the direct 2D Fourier transform of 
the q-Eigenwaves propagating through the twofold homogeneous  medium15–17.

Despite of a definite progress in the GISAXS theory developing, the above theoretical  approaches15–17 have 
been not successive by volume, especially, for large values of the r.m.s. roughness σ.

To date, it becomes clear that the Green function formalism needs to be advanced in a proper way aiming to 
make the GISAXS theory output to be more transparent from both the mathematical (math) and physical view-
points. Due to the foregoing, the reformulation of the Green function formalism becomes to be of great interest.

A goal of the present study is to develop the GISAXS theory approach based on the Green function formalism 
to be modified. In other words, our aim is to highlight the modified Green function formalism differed from 
ones earlier proposed  in15–17, and in fact, to reformulate the theory fundamentals in a proper way deriving the 
novel self-consistent (non-averaged) wave field equations to determine the reflected and transmitted GISAXS 
wave field.

As it will be shown underneath, reformulation of the Green function formalism allows to shorten the interme-
diate math calculations in comparison with similar ones  in15–17, and makes the analytical formulae describing the 
specular (coherent) and non-specular (incoherent) X-ray scattering to be more transparent and understandable. 
Following  to17, we will search the wave field E(x, z) propagating through the twofold rough-surfaced medium 
in the form

where h(x) being the surface height at the 2D planar point coordinate x; the average <h(x)> is assumed to equal 
zero. δ2

(

q − q0
)

 is the 2D delta function related to the incident X-ray plane wave

Hereafter, the reflected and transmitted amplitudes, B(q) and C(q), are the inverse 2D q-Fourier transforms 
of Eigenwavefield (1), ( kz(q) = (k2 − q2)1/2).

Furthermore, to evaluate the specular (coherent) and non-specular (incoherent) GISAXS scattering, the 
Gaussian ensemble-statistics model of a randomly rough fractal  surface17–20 is assumed in terms of the r.m.s. 
roughness σ =

√

〈

h(x)2
〉

 , the averaged roughness <h(x)> is assumed to be equal to zero and the two-point 
(height-height) cumulant correlation function K2(x) =

h(x/ℓ)h

2h−1Ŵ(h+1)
K−h(x/ℓ), where K−h(x/ℓ) is the modified 

Bessel function of the second kind, x ≡ |x1 − x2| ; ℓ is the correlation length, h is the fractal-surface model index 
(FSMI).

In the further study, the power spectrum density function PSD2D

(

q
)

-function defined as 
PSD2D

(

q
)

= 4πhℓ2/
(

1+
(

qℓ
)2
)1+h

 is exploited. It is nothing else the q-Fourier transform of the two-point 
cumulant correlation function K2(x) , where q =

∣

∣q
∣

∣ , the 2D vector q is perpendicular to the unit vector n normal 
to the plane z = 0. Notice that in the case of h = 1/2, the two-point cumulant correlation function K2(x) coincides 
with the exponential function e−x/ℓ13.

(1)E(x, z) =
1

(2π)2

∫

d2q

{

(2π)2δ2
(

q − q0
)

eiq0x+ikz (q0)z + B
(

q
)

eiqx−ikz(q)z for z < h(x),

C
(

q
)

eiqx+iκz(q)z for z > h(x)

}

,

Einc(r) = eiq0·x+ikz (q0)z ‘.
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Hereafter, χ is the complex electric susceptibility; χ = Reχ + iImχ, Reχ < 0 and Imχ > 0; θcr = (− Reχ)1/2 is the 
critical angle. For instance, in the case of the incident CuKα1 radiation (the wavelength λ = 0.154 nm). Accordingly, 
for the fused quartz and Si(111) samples there are χ and θcr equal to: − 14.232·10–6 + i0.18281·10–6, 3.77253·10–3; 
and − 15.127·10–6 + i0.34955·10–6, 3.88934·10–3, respectively.

The present study is exposed as follows.
In “Theoretical fundamentals. The modified Green function formalism” section, formulary of the modified 

Green function formalism is described in details. In opposite to the conventional Green function  formalism12–17, 
the artificial plane interface at coordinate z = T, |T|> > σ, is now introduced to define the conventional Fresnel solu-
tions in terms of the q-Eigenfunction waves propagating in the direct and mirror-reversed scattering geometry. To 
derive the integral self-consistent (non-averaged) wave field equations for determining the reflected and transmitted 
wave amplitudes B(q) and C(q), the auxiliary parameter T is chosen as T < 0 and T > 0, respectively, and besides, it 
should be |T|> > σ in order to eliminate T-interfering effects due to high values of the random roughness field h(x).

In “Self-consistence Integral equations for probing the GISAXS issue” section, as a result of the modified 
Green function framework, the two separate self-consistent wave field equations have been derived for the wave 
field amplitudes B(q) and C(q) no linked each to other by using (z → ∓∞)-asymptotic of integral equation that 
governs the wave field (1) in search.

In “Zero- and first-order perturbation theory solutions of the GISAXS problem” section, in the scope of the 
averaged roughness approximation, analytical expressions for amplitude B(q) ≈ B0(q) + B1(q), which correspond 
both the specular, B0(q), and diffuse, B1(q), scattering channels from a randomly rough surface are found out. 
Concerning the specular amplitude B0(q) and non-specular amplitude B1(q), the corresponding analytical expres-
sions for static specular and non-specular scattering factors are derived.

Based on the Gaussian ensemble-statistics, the analytical expressions for the 2D non-specular intensity dis-
tribution dRdifd� (θ ,φ; θ0) and 1D diffuse scattering indicatrix (DSI) dRdifdθ (θ; θ0) are derived. The DSI dRdifdθ (θ; θ0) is  

defined as cos θ
∫

dφ
dRdif
d� (θ ,φ; θ0) . 

dRdif
d� (θ ,φ; θ0) is the 2D intensity distribution (2D scan) in the angular range 

{θ ,φ} concerning the fixed grazing-incidence angle θ0 , and θ and φ are the polar and azimuth angles of the 
reflected GISAXS beam (see the GISAXS schematic in Fig. 1).

In “Numerical run-through for providing the GISAXS patterns: results and discussion” section, keeping in 
mind the experimental GISAXS data scans, the computer simulations of the scans Rspe(θ0) , 

dRdif
d� (θ ,φ) and the 

DSI dRdifdθ (θ) are presented for various parameters {kσ , kℓ, θ0/θcr} and the FSMI h. Herein, in the case of the DSI 
dRdif
dθ (θ; θ0) the grazing incident angle θ0 is assumed to be fixed and omitted for simplicity.

In “Concluding remarks” section, some results of the specular GISAXS measurements for the fused quartz 
and crystal Si(111) samples are presented. The corresponding values of the r.m.s. roughness σ are determined 
by applying standard least-square procedure in a χ2-fashion.

Theoretical fundamentals. The modified Green function formalism
In accordance with the basic idea of the Green function formalism, the integral wave equation can be cast in the form

Figure 1.  GISAXS layout.  k0 = q0 + kzn is the incident wavevector; kR = q0 − kz n and κT = q0 + κz n are 
the wavevectors of the specularly reflected and transmitted waves. kR = q − kz(q)n and κT = q + κz(q)n are 
the wavevectors of the diffuse reflected and transmitted waves. n is the unit vector along the z-direction 
perpendicular to the flat surface z = 0. Detector D is the 2D CCD camera.
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where one chooses the electric susceptibility deviation �χ(r) as follows (cf.9,14)

The Green (a point-source) function G(r, r1) is defined as

for the twofold medium with the step-like abrupt electric susceptibility: χ(r) = χΘ(z − T). Θ(z − Τ) = 1 for z > Τ 
and Θ(z − Τ) = 0 for z < Τ, respectively; the lateral 2D vector 

(

x − x′
)

 is lying within the reference plane z = 0.
Functions y1(z, q) and y2(z, q) are the two linearly independent Eigenfunctions of the differential wave equa-

tion over the coordinate z

Noteworthy is the fact that in the Green function method the value of z-coordinate T may be arbitrary to 
some extent. In our case, we choose the value of |T| >> σ and sign of z-coordinate T being either T < 0 or T > 0 
depending on a goal-problem-setting.

Accordingly, in our case, in the direct and mirror-reversed GISAXS geometry, solutions of Eq. (5) represent by 
themselves the conventional Fresnel functions for the step-like abrupt electric susceptibility χΘ(z − T) as follows

respectively.
The reflection  R1(q),  R2(q), and transmission  T1(q),  T2(q) coefficients take the conventional Fresnel form

where the z-components kz
(

q
)

 and κz
(

q
)

 in Eqs. (6)–(7) are equal to

they relate to the same vector q parallel to the plane z = 0, κ2 = k2(1 + χ).
The free term E0(r) in the right-hand side of integral wave Eq. (2) takes the evident form

Hereafter, the following notations are introduced

As it is seen from Eqs. (2), (3), the integration range over variable z1 equal to [Θ(z1-T) − Θ(z1 − h(x))] deter-
mines the behavior of the reflected and transmitted q-Eigenwaves in search.

Self‑consistence integral equations for probing the GiSAXS issue
From Eq. (2) it immediately follows that in a limit of the z-coordinate tended to ∓∞ , the asymptotic GISAXS 
equations can be cast in the  form17

whereas the scattering amplitudes AR

(

q, q0
)

 and AT

(

q, q0
)

 are nothing else the inverse q-Fourier transforms of 
the corresponding integrals of the X-ray wave field in search (1) over z1-coordinate,  namely17:

(2)E(r) = E0(r)− k2
∫

d3r1G(r, r1)�χ(r1)E(r1),

(3)�χ(r) = χ[�(z − h(x))−�(z − T)].

(4)G(r, r1) = −i(4π)−2

∫

d2q
(

k−1
z

(

q
)

+ κ−1
z

(

q
))

exp
[

iq
(

x − x′
)]

{

y2
(

z, q
)

y1
(

z1, q
)

, z ≤ z1,
y1
(

z, q
)

y2
(

z1, q
)

, z ≥ z1

(5)d2y
/

dz2 +
[

k2(1+ χ�(z − T))− q2
]

y = 0.

(6)

y1
(

z, q
)

=

{
(

eikz(q)z + R1

(

q
)

e−ikz(q)z+2ikz(q)T
)

for z ≤ T,

T1

(

q
)

eiκz(q)z+i(kz(q)−κz(q))T for z ≥ T
,

y2
(

z, q
)

=

{

T2

(

q
)

e−ikz(q)z for z ≤ T,

e−iκz(q)(z−T) + R2

(

q
)

eiκz(q)z−i(kz(q)+κz(q))T for z ≥ T
,

(7)

R1

(

q
)

=
kz
(

q
)

− κz
(

q
)

kz
(

q
)

+ κz
(

q
) , R2

(

q
)

=
κz
(

q
)

− kz
(

q
)

kz
(

q
)

+ κz
(

q
) ,

T1

(

q
)

=
2kz

(

q
)

kz
(

q
)

+ κz
(

q
) , T2

(

q
)

=
2κz

(

q
)

kz
(

q
)

+ κz
(

q
) ,

(8)kz
(

q
)

=

√

k2 − q2, κz
(

q
)

=

√

κ2 − q2,

(9)E0(r) = exp [iq0x]y1
(

z, q0
)

.

(9a)kz
(

q0
)

≡ kz , κz
(

q0
)

≡ κz, T1,2(q0) ≡ T1,2, R1,2(q0) ≡ R1,2.

(10)

ER(x, z)|z→−∞ = R1e
iq0·x−ikz z+2ikzT

+
i

2π

∫

d2q

kz
(

q
) eiq·x−ikz(q)zAR

(

q, q0
)

,

ET(x, z)|z→∞ = T1e
iq0·x+iκz z+i(kz−κz )T

+
i

2π

∫

d2q

κz
(

q
) eiq·x+iκz(q)z+i(kz(q)−κz(q))TAT

(

q, q0
)

,
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To calculate the scattering amplitude AR

(

q, q0
)

 , taking into account the specific z-coordinate behavior features 
of the X-ray wave field in search (1) and the y1

(

z1, q
)

-Eigenfunction (see the first-line Eq. (6)), the low limit of 
integral over z1-coordinate T it is convenient to be negative and value of |T|>> the r.m.s. roughness σ. To be spe-
cific, the last condition is needed to exclude T-interfering effects due to high-valued roughness field h(x) (remind 
that the T is nothing else the auxiliary parameter being called up to overcome math complexities of working 
in the framework of the standard Green function  formalism17, where parameter T seems to be equal to zero.

Then, combining the first-line Eqs. (10)–(11) and using the similar math-calculation  scheme17, one obtains 
the integral equation to determine the reflected wave amplitude B(q), namely:

It is seen that the Eq. (12) does not contain the auxiliary parameter T and provides the reflected wave ampli-
tude B(q) in the form of integral self-consistent integral relationship, not linking with the transmitted wave 
amplitude C(q) in opposite to the standard Green function  theory17, in which they form a system of the two 
integral equations linked each to other.

Similar to the above case, combining the second-line Eqs. (10), (11) and following the standard math scheme 
developed  in17, one obtains the integral relationship for the transmitted wave amplitude C(q) can be derived in 
the form

provided that the auxiliary parameters T needs to be chosen positive, T >> σ (evidently, Eq. (13) does not contain 
parameter T ).

In general, self-consistent (non-averaged) wave field Eqs. (12), (13) allow to developing the relatively simple 
procedure for solving the GISAXS issue of the q-Eigenwaves propagating through a twofold rough-surfaced 
medium. Notice that in the case of the step-like abrupt electric susceptibility χ(r) = χΘ(z), when the surface 
roughness field h(x) = 0, Eqs. (12), (13) definitely provide the conventional Fresnel solutions for the wave ampli-
tudes B(q) and C(q). It is important that both the Eqs. (12) and (13) are free out of auxiliary parameter T and 
form the theoretical background of the GISAXS theory in terms of the q-Eigenwaves propagating through the 
twofold rough-surfaced medium.

Underneath, we will apply the self-consistent Eq. (12) to build up analytical solutions for describing the 
specular (coherent) and diffuse (incoherent) GISAXS from a randomly rough-surfaced medium.

Zero- and first-order perturbation theory solutions of the GISAXS problem
To build up the theoretical foundation of the specular and non-specular GISAXS phenomenon from a randomly 
rough surface, one applies the averaged roughness field approach. Integral Eq. (12) can be identically rewritten 
as follows

Here, the averaged exponential factors W−(q, q1), W+(q, q1) are defined as.

where the symbol 〈. . .〉 denotes the general ensemble-statistics average procedure.
By using the Gaussian ensemble-statistics, the averages (15) can be analytically calculated, which are nothing 

else the exponential GISAXS factors

(11)

AR

(

q, q0
)

= −
χk2

4π

∫

d2x1e
−iq·x1

h(x)
∫

T

dz1y1
(

z1, q
)

E(x1, z1)

,AT

(

q, q0
)

= −
χk2

4π

∫

d2x1e
−iq·x1

h(x)
∫

T

dz1y2
(

z1, q
)

E(x1, z1)

(12)

1

(2π)2

∫

d2q1B(q1)

(kz(q1)− κz(q))

∫

d2xe−i(q−q1)·x+i(κz(q)−ikz(q1))h(x)

=
1

(

κz
(

q
)

+ kz
)

∫

d2xe−i(q−q0)·x+i(κz(q)+kz)h(x).

(13)

1

(2π)2

∫

d2q1C
(

q1
)

∫

d2xe−i(q−q1)·x e
i(κz(q1)−kz(q))h(x)

(κz(q1)− kz(q))

=
T1

(κz − kz)
(2π)2δ2

(

q − q0
)

,

(14)

1

(2π)2

∫

d2q1B
(

q1
)

(

kz
(

q1
)

− κz
(

q
))

∫

d2xe−i(q−q1)·x

[

W−

(

q, q1
)

+
(

ei(κz(q)−ikz(q1))h(x) −W−

(

q, q1
)

)

]

=
1

κz
(

q
)

+ kz
(

q0
)

∫

d2xe−i(q−q0)·x

[

W+

(

q, q0
)

+
(

ei(κz(q)+ikz(q0))h(x) −W+

(

q, q0
)

)

]

.

(15)W−

(

q, q1
)

=

〈

ei(κz(q)−kz(q1))h(x)
〉

, W+

(

q, q1
)

=

〈

ei(κz(q)+kz(q1))h(x)
〉

,
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Confining ourselves by terms of the zero- and first-order perturbation theory for deriving the reflected wave 
amplitude B(q), a standard procedure yields the following expressions for the reflected wave amplitude B(q)

Notice that the corresponding equation for specular wave amplitude (16) obtained is identical to the expres-
sion first derived in the  work11. Accordingly, one can utilize analytical Eqs. (16) and (17) for the zero- and first-
order perturbation theory amplitudes B0(q) and B1(q) to determine the 1 D specular and 2D diffuse GISAXS 
scans.

As a result, expression for the reflected 2D intensity distribution can be written in the  form13,17

and represents by itself the superposition of the two terms, namely:

(d� = cos θdθdφ is the elementary solid angle for the reflected beam, S2 is an area of a rough surface impinged 
on by the incident X-ray beam).

Directly following the math procedure  scheme13,17, standard calculations yield the analytical equations, which 
describe the 1D specular intensity distributions

and the diffuse 2D intensity distribution

remind that 
〈

B1
(

q
)〉

= 0.
Then, specular reflectivity Rspe(θ0) and diffuse scattering intensity (DSI) dRdif(θ)/dθ are equal  to17

The functions PSD2D

(∣

∣q − q0
∣

∣

)

 and PSD1D

(∣

∣q− q0
∣

∣

)

 and expressions for specular factor fR
(

q0
)

 and non-
specular scattering factor �R

(

q, q0
)

 , are derived as described in Sections A and B of Supplemental Material 
(cf.13,15–21).

Thus, the resulting analytical Eqs. (20)–(23) provide the GISAXS issue solution in a framework of the modi-
fied Green function formalism and in terms of the assumed Gaussian ensemble-statistics model for a randomly 
oriented fractal  surface17–20. Noteworthy is the fact that according to our calculations, the specular scattering 
factor fR(q0), Eq. (20), is identical to Nevot-Croce’s  one11. Staying in the scope of the adopted surface model and 
the first-order perturbation theory used to solving self-consistent (non-averaged) wave field Eq. (12), one can 
state that expressions (20)–(23) provide in the proper way analytical description of the GISAXS issue and allow 
to evaluate the 1D specular Rspec(θ0) and 2D non-specular dRdif (θ ,φ)d�  scans, and the 1D DSI dRdif (θ)dθ  scan as well.
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Before proceeding further, it remains to see how well the developed approach works, its validity range, and 
prospects of solution of the GIAXS issue taking into account the high-order scattering effects. Now, one thing 
is clear that consideration of the GISAXS issue in the frame of high-order perturbation theory based on Kubo’s 
cumulant average diagram technique (see, e.g.,22). By using such the technique, the self-consistent (non-averaged) 
wave field Eq. (12) can be converted to the Dyson-type and Bethe–Salpeter-type integral equations to describing 
the specular and non-specular GISAXS scattering, respectively. In this respect, by using the Kubo  technique22, 
endeavor has been undertaken in the  work23, in which the Dyson-type equation has been derived and analyzed 
in application to the specular GISAXS scattering. As was shown  in23, specular scattering factor fR(q0) becomes 
dependent on both the r.m.s. roughness σ and roughness correlation length ℓ. Clearly, application of the Kubo 
technique could enable to improving the present GISAXS theory approach clarifying at least, its validity range.

In general, real surface does not satisfy to the Gaussian ensemble-statistics and K2-correlation fractal surface 
model adopted in the present study. As was pointed out  in13–17, such the model has been applied to clarify the 
GISAXS peculiar pattern. Here, we can only state that the modified Green function formalism does work and 
could be applied in a general case of the surface model provided that the ad hoc model of a rough surface is in a 
matter. For instance, instead of the play-in model, one can utilize the surface model, in which χ(r) = 0 for z < 0 
whereas for z > 0 and χ(r) =  < χ(z) >  + δχ(r) at each point r = ( x, z) of the statistically distorted surface layer, 
where δχ(r) is the fluctuating part of χ(r), < δχ(r) >  = 0.

numerical run‑through for providing the GiSAXS patterns: results and discussion
In this section, based on formulae (20)–(23), the numerically simulated results for the 1D specular and 1D-2D 
non-specular GISAXS patterns from a randomly rough fractal surface based are presented. In particular, one 
presents the results of proper calculations for different dimensionless values of fractal surface parameters as kσ 
and kℓ and the FSMI h as well.

The numerically simulated 1D scans Rspec(θ0) versus the grazing-incidence angle θ0 in the angular range 
0 ≤ θ0 ≤ 10θcr are shown in Fig. 2 in the cases of the fused quartz and Si(111) samples. The corresponding 
parameters kσ are equal to 40.7999 (σ = 1 nm for fused quartz) and 26.9279 (σ = 0.66 nm for Si(111)). Simultane-
ously, in Fig. 2 the curves of Nevot-Croce’s exponential factors (NCEFs) are depicted. It is evidently seen that the 
curve NCEF for the fused quartz (blue curve) goes below to the curve for Si(111) (black curve) due to the about 
two-times difference in their r.m.s. σ values.

Some examples of the 2D non-specular intensity distribution dRdif (θ ,φ)d�  and 1D DSI dRdif (θ)dθ  numerically simu-
lated according to analytical formulae (21) and (23) are presented in Figs. 3a, 4a for the fused quartz and in 
Figs. 3b, 4b for Si(111), respectively.

As it follows from Eqs. (21), (23), they contain the non-specular scattering factor �R

(

q, q0
)

 , the explicit 
expression of which is done in Section B of Supplemental Material (cf.15–18). It represents by itself the superposi-
tion of the exponential factors, which contain the r.m.s. roughness σ to be squared. Dependence of the 1D dRdif (θ)dθ

—and 2D dRdif (θ ,φ)d� -scans on the correlation length ℓ and the FSMI parameter h are due to the PSD1D(|q-q0|)- and 
PSD2D(|q-q0|)-functions, the corresponding expressions of which are given in Section A of Supplemental Mate-
rial (cf.17).

Simulated scans displaced in Figs. 3, 4 have been calculated for the CuKα1 X-ray radiation. The corresponding 
wavelength and correlation length ℓ are assumed to be 0.154 nm and 0.2451 μm. The grazing-incidence angle 
θ0 is chosen to be 2θcr. The r.m.s. roughness σ is assumed to be 1 nm (fused quartz in Figs. 3a, 4a) and 0.66 nm 
(Si(111) in Figs. 3b, 4b), respectively; the FSMI h = 1/2 (Fig. 3) and h = {1/3, 1/2, 2/3} (Fig. 4). In general, for the 
fused quartz and Si(111), the calculated 2D dRdif (θ ,φ)d�  - and 1D DSI dRdif (θ)dθ -scans for the fused quartz and Si(111) 

Figure 2.  Simulated 1D specular scans Rspec versus the normalized grazing-incidence angle θ0
/

θcr
 . The 

dimensionless r.m.s. roughness kσ: 40.7999 (fused quartz—blue color), 26.9279 (Si(111)—black color). CuKα1-
radiation, λ = 0.154 nm.
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Figure 3.  Simulated 3D- and 2D-plots of the normalized non-specular scan 
dRdif (θ ,φ)

d�

/

dRdif (θ0,φ=0)

d�
 . The grazing-

incidence angle θ0 = 2θcr. The correlation length ℓ = 0.2451 μm. The scattering polar θ and azimuth φ angles are 
measured in units of the critical angle θcr and φ0 = (kℓ)−1 . The FSMI h = 1/2. The dimensionless r.m.s. roughness 
kσ: 40.7999, the fused quartz (a); 26.9279, Si(111) (b).

Figure 4.  Simulated 1D DSI dRdθ (θ)-scans. The grazing-incident angle θ0 = 2θcr. The FSMI h = {1/3, 1/2, 2/3}. 
The correlation length ℓ = 0.2451 μm. The dimensionless r.m.s. roughness kσ: = 40.7999, the fused quartz (a); 
26.9279, Si(111) (b).
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are topologically similar. At the same time, they differ in their maximum values by about half. Physically, it can 
be explained that for the fused quartz, Figs. 3a, 4a, the diffuse GISAXS is about two-times stronger than it is for 
Si(111), Figs. 3b, 4b, due to the two-times difference in values of the corresponding r.m.s. roughness σ.

Following  to17, in parallel to the grazing-incidence angle θ0 = 2θcr, the corresponding 2D dRdif (θ ,φ)d� —and 1D 
dRdif (θ)

dθ -scans have been evaluated for the grazing-incidence angle θ0 = 3θcr.
Direct comparison of the scans calculated for θ0 = 2θcr and θ0 = 3θcr respectively, support conclusion earlier 

 made17 that the 2D dRdif (θ ,φ)d�  - and 1D dRdif (θ)dθ -scans reveal Yoneda’s scattering  peak24 at the scattering angle θ = θcr
23 

and support statement that Yoneda’s scattering peak decreases (increases) in respect to the mirror scattering peak 
at θ = θ0, θ0 > θcr, with decreasing (increasing) the grazing-incidence angle θ0.

Further, we will define the exponential Nevot-Croce’s function as NCF(q0) ≡ − 2ln|fR(q0)| and the DSF(q, 
q0)-function as a logarithm of the PSD1D(|q-q0|)-function extracted from Eqs. (20), (23) (cf. equation (A. 5) for 
the PSD1D(|q-q0|)-function), namely:

Notice that the above functions NCF(q0) and DSF(q − q0) depend on the model parameters {σ, ℓ, h} that alto-
gether characterize the Mandelbrot’s rough fractal surface. Extracting functions (24), (25) from the experimental 
GISAXS data provides the retrieval of these Mandelbrot’s parameters by using the standard least-squared proce-
dure in a χ2-fit  fashion25. As was pointed out  in17, the best way for that is to use the asymptotical 1D Rspec(q0)- and 
1D DSI(q,  q0)-curves for the scattering angles θ to be much more than the mirror scattering angle θ0, θ0 > θcr.

Hereafter, having aim to demonstrate how it works, retrieval of the r.m.s. parameter σ from the 1D experi-
mental Rspec(q0) data for the fused quartz and Si(111) samples that are displayed in Fig. 5.

Both the sample surfaces have been finished by mechanical polishing with iron oxide powders, and then, 
have been cleaned with ethanol just before the experimental measurements. The extracted NCF-functions versus 
the variable 4(θ0/ θcr)2 are displayed for interval of the grazing-incidence angles 5 θcr ≤ θ0 ≤ 12.5 θcr in the insert 
in Fig. 5.

At last, by using a direct least -squared procedure in a χ2-fit  fashion25, the values of the r.m.s. rough-
ness σ have been obtained. Accordingly, they are equal to: 0.702753 ± 0.357332 × 10–3 nm (fused quartz) and 
0.471035 ± 0.652408 × 10–3 nm (Si(111)) samples.

concluding remarks
In conclusion, we can state that the current theoretical approach in the framework of the modified Green function 
formalism provides a plausible treatment of the GISAXS issue beyond the scope of the conventional  DWBA13 
and preceding author’s  theory17. Unlike the GISAXS theory earlier developed  in17, the modified Green function 
formalism provides novel self-consistent (non-averaged) wave field Eqs. (12) and (13) for the reflected and trans-
mitted q-Eigenwave amplitudes B(q) and C(q), respectively. Based on the Gaussian ensemble-statistics averaging 
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Figure 5.  Experimental 1D Rspec(θ0)-curves versus the grazing-incidence angle θ0, and functions 
NCF(θ0) = − ln

[

Rspec(θ0)/RFre(θ0)
]

 versus the grazing-incidence angle squared 4(θ0/θcr)2. Functions NCF: the 
fused quartz (red color) and Si(111) (green) are given in the insert. The r.m.s. roughness σ, which match the 
experimental curves − ln

[

Rspec(θ0)/RFre(θ0)
]

 are equal to: 0.702753 ± 0.357332 × 10–3 nm (the fused quartz) and 
0.471035 ± 0.652408 × 10–3 nm (Si(111)).
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procedure of random roughness field h(x), the integral Eq. (12) for the reflected wave amplitude B(q) has been 
exploited to search the zero- and first-order perturbation theory solutions of the GISAXS issue. These solutions 
are obtained in the analytical form of expressions (20)–(23) for determining the 1D specular (coherent) and 2D 
non-specular (incoherent) intensity distributions in the case of the GISAXS by a twofold rough-surfaced medium. 
To develop the current GISAXS approach, we have advanced the Green function formalism and, besides, some 
key assumptions have been assumed. Namely, the Gaussian ensemble-statistics and Mandelbrot’s fractal surface 
model have been exploited. Appropriately, the specular fR(q0) and non-specular �R

(

q, q0
)

 scattering have been 
derived. The specular scattering factor fR(q0) identically coincides with the corresponding expression earlier 
obtained  in11, whereas in the case of the non-specular GISAXS, new expressions (20)–(23) for describing the 1D 
and 2D GISAXS intensity distributions have been derived in terms of the PSD2D(|q − q0|)- and PSD1D(|q − q0|)-
functions, respectively.

At last, based on formulae (24), (25), the inverse issue of retrieving parameters {σ, ℓ, h} of Mandelbrot’s 
rough surface model from the experimental GISAXS data has been shortly discussed. Accordingly, applying a 
direct fit-procedure in a χ2-sense25 and using the theoretical representation of function NCF (24) in the case of 
the experimental specular GISAXS data collected for the fused quartz and Si(111) samples, retrieving the r.m.s. 
roughness parameter σ has been successfully realized (see Fig. 5).

Data availability
The raw data required to reproduce these findings are available upon request.

Received: 11 February 2020; Accepted: 5 June 2020

References
 1. Voss, R. F. In Scaling Phenomena in Distorted Systems, Ch. 1 (eds Pynn, R. & Skjeltorp, A.) (Springer, New York , 1985). https ://

doi.org/10.1007/978-1-4757-1402-9.
 2. Schmidbauer, M. et al. Shape-mediated anisotropic strain in self-assembled InP/In0.48Ga0.52P quantum dots. Phys. Rev. B 65, 125320. 

https ://doi.org/10.1103/PhysR evB.65.12532 0 (2002).
 3. Schmidbauer, M. X-Ray Diffuse Scattering from Self-Organized Mesoscopic Semiconductor Structures (Springer, Berlin, 2004). https 

://doi.org/10.1007/B1360 8
 4. Pietsch, U., Holy, V. & Baumbach, T. High-Resolution X-ray Scattering—From Thin Films to Lateral Nanostructures (Springer, Berlin, 

2004). https ://doi.org/10.1007/978-1-4757-4050-9
 5. Renaud, G., Lazzari, R. & Lerroy, F. Probing surface and interface morphology with grazing incidence small angle X-ray scattering. 

Surf. Sci. Rep. 64, 255–380. https ://doi.org/10.1016/j.surfr ep.2009.07.002 (2009).
 6. Schmidbauer, M. et al. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence 

X-ray diffraction. Synchrotron Radiac. 15, 549–557. https ://doi.org/10.1107/S0909 04950 80238 56 (2008).
 7. Roth, S. V. et al. Mapping the morphological changes of depositedgold nanoparticles across an imprinted groove. J. Appl. Cryst. 

48, 1827–1833. https ://doi.org/10.1107/S1600 57671 50179 87 (2015).
 8. Pflüger, M., Soltwisch, V., Probst, J., Scholze, F. & Krumrey, M. Grazing-incidence small-angle X-ray scattering (GISAXS) on small 

periodic targets using large beams. Erratum. IUCrJ 4, 431–438. https ://doi.org/10.1107/S2052 25251 80084 97 (2017).
 9. Muller-Buschbaum, P. Large-scale and local-scale structures in polymer blend films: a grazing-incidence ultra-small-angle X-ray 

scattering and sub-microbeam grazing incidence small-angle X-ray scattering investigation. J. Appl. Cryst. 40, s341–s345. https ://
doi.org/10.1107/S0021 88980 60483 69 (2007).

 10. Andronov, A. A. & Leontovich, M. A. Zur Theorie der molekularen Lichtzerstreuung an Flüssigkeitsoberflächen. Z. Phys. B 38, 
485–495 (1926).

 11. Nevot, L. & Croce, P. Caractérisation des surfaces par réflexion rasante de rayons X. Application à l’étude du polissage de quelques 
verres silicates. Rev. Phys. Appl. 15, 761–779. https ://doi.org/10.1051/rphys ap:01980 00150 30761 00 (1980).

 12. Vinogradov, A. V., Zorev, N. N., Kozhevnikov, I. V. & Yakushkin, I. G. Phenomenon of total external reflection of X-rays. Sov. Phys. 
JETP 62, 1225–1233 (1985).

 13. Sinha, S. K., Sirota, E. B., Garoff, S. & Stanley, H. B. X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297–2311. 
https ://doi.org/10.1103/PhysR evB.38.2297 (1988).

 14. Kozhevnikov, I. V. & Pyatakin, M. V. Use of DWBA and perturbation theory in X-ray control of the surface roughness. J. X-ray 
Sci. Technol. 8, 253–275 (2000).

 15. Chukhovskii, F. N. Grazing-incidence small-angle X-ray scattering from a random rough surface: a self-consistent wavefunction 
approximation. Acta Cryst. A67, 200–209. https ://doi.org/10.1107/S0108 76731 10033 57 (2011).

 16. Chukhovskii, F. N. On the optical theorem applicability using a self-consistent wave approximation model for the grazing-incidence 
small-angle X-ray scattering from rough surfaces. Acta Cryst. A68, 505–512. https ://doi.org/10.1107/S0108 76731 20174 48 (2012).

 17. Chukhovskii, F. N. & Roshchin, B. S. Grazing-incidence small-angle X-ray scattering in a twofold rough-interface medium: a new 
theoretical approach using the q-eigenwave formalism. Acta Cryst. A71, 612–627. https ://doi.org/10.1107/S2053 27331 50166 66 
(2015).

 18. Kato, N. Statistical dynamical theory of crystal diffraction. II. Intensity distribution and integrated intensity in the Laue cases. Acta 
Cryst. A36, 770–778. https ://doi.org/10.1107/S0567 73948 00015 56 (1980).

 19. Mandelbrot, B. B. The Fractal Geometry of Nature (Freeman, New York, 1982). https ://doi.org/10.1002/esp.32900 80415 
 20. Church, E. L. & Takacs, P. Z. Optimal estimation of finish parameters. Proc. SPIE 1530, 71–85. https ://doi.org/10.1117/12.50498  

(1991).
 21. Erdély, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. Tables of Integral Transforms, Vol. 3 (McGraw-Hill, New York, 1954). 

https ://doi.org/10.1002/zamm.19540 34122 0
 22. Polyakov, A. M., Chukhovskii, F. N. & Piskunov, D. I. Dynamic scattering of x rays in distorted crystals: statistical theory. Sov. Zh. 

Eksp. Teor. Fiz. 99, 589–609 (1991).
 23. Salikhov, S. V., Chukhovskii, F. N. & Polyakov, A. M. On the theory X-ray coherent reflection from a rough surface. J. Surf. Investig. 

5, 887–897. https ://doi.org/10.1134/S1027 45101 10901 4X (2011).
 24. Yoneda, Y. Anomalous surface reflection of X-rays. Phys. Rev. 131, 2010–2013. https ://doi.org/10.1103/PhysR ev.131.2010 (1963).
 25. More, J. J. The Levenberg–Marquardt Algorithm, Implementation and Theory. In Springer Lecture Notes in Mathematics (ed. 

Watson, G. A.) 105–105 (Springer, Berlin, 1978). https ://doi.org/10.1007/BFb00 67700 .

https://doi.org/10.1007/978-1-4757-1402-9
https://doi.org/10.1007/978-1-4757-1402-9
https://doi.org/10.1103/PhysRevB.65.125320
https://doi.org/10.1007/B13608
https://doi.org/10.1007/B13608
https://doi.org/10.1007/978-1-4757-4050-9
https://doi.org/10.1016/j.surfrep.2009.07.002
https://doi.org/10.1107/S0909049508023856
https://doi.org/10.1107/S1600576715017987
https://doi.org/10.1107/S2052252518008497
https://doi.org/10.1107/S0021889806048369
https://doi.org/10.1107/S0021889806048369
https://doi.org/10.1051/rphysap:01980001503076100
https://doi.org/10.1103/PhysRevB.38.2297
https://doi.org/10.1107/S0108767311003357
https://doi.org/10.1107/S0108767312017448
https://doi.org/10.1107/S2053273315016666
https://doi.org/10.1107/S0567739480001556
https://doi.org/10.1002/esp.3290080415
https://doi.org/10.1117/12.50498
https://doi.org/10.1002/zamm.19540341220
https://doi.org/10.1134/S102745101109014X
https://doi.org/10.1103/PhysRev.131.2010
https://doi.org/10.1007/BFb0067700


11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11547  | https://doi.org/10.1038/s41598-020-68326-2

www.nature.com/scientificreports/

Acknowledgements
Prof. Dr. V.E. Asadchikov is gratefully acknowledged. This work was supported by the Ministry of Science and 
Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS in part of developing 
methods of surface structure analysis using the GISAXS and in part within the RFBR Project no. 19-04-00242. 
The project title is “Interface structures at the surface of phospholipid membranes in the presence of polypep-
tides—studied by methods of bioelectrochemistry, X-ray reflectometry and molecular dynamics simulation”.

Author contributions
F.N.C. developed the GISAXS theory, analyzed the experimental data, performed the specular and non-specular 
GISAXS simulations, and wrote the revised version of the manuscript. B.S.R. performed the GISAXS experi-
ments, analyzed the experimental data, contributed to strategies for smoothing GISAXS data, wrote the experi-
mental methods section, performed the χ2-sense fitting simulations, wrote the experimental methods section, 
provided overall guidance.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-68326 -2.

Correspondence and requests for materials should be addressed to F.N.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-68326-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Novel theoretical approach to the GISAXS issue: the Green function formalism using the q-Eigenwaves propagating through a twofold rough-surfaced medium
	Anchor 2
	Anchor 3
	Theoretical fundamentals. The modified Green function formalism
	Self-consistence Integral equations for probing the GISAXS issue
	Zero- and first-order perturbation theory solutions of the GISAXS problem
	Numerical run-through for providing the GISAXS patterns: results and discussion
	Concluding remarks
	References
	Acknowledgements


