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pedestrian orientation dynamics 
from high‑fidelity measurements
Joris Willems1, Alessandro Corbetta1, Vlado Menkovski2 & federico toschi3,4,5*

We investigate in real‑life conditions and with very high accuracy the dynamics of body rotation, or 
yawing, of walking pedestrians—a highly complex task due to the wide variety in shapes, postures 
and walking gestures. We propose a novel measurement method based on a deep neural architecture 
that we train on the basis of generic physical properties of the motion of pedestrians. Specifically, we 
leverage on the strong statistical correlation between individual velocity and body orientation: the 
velocity direction is typically orthogonal with respect to the shoulder line. We make the reasonable 
assumption that this approximation, although instantaneously slightly imperfect, is correct on 
average. This enables us to use velocity data as training labels for a highly‑accurate point‑estimator 
of individual orientation, that we can train with no dedicated annotation labor. We discuss the 
measurement accuracy and show the error scaling, both on synthetic and real‑life data: we show 
that our method is capable of estimating orientation with an error as low as 7.5◦ . This tool opens up 
new possibilities in the studies of human crowd dynamics where orientation is key. By analyzing the 
dynamics of body rotation in real‑life conditions, we show that the instantaneous velocity direction 
can be described by the combination of orientation and a random delay, where randomness is 
provided by an Ornstein–Uhlenbeck process centered on an average delay of 100ms . Quantifying 
these dynamics could have only been possible thanks to a tool as precise as that proposed.

The orientation of our body and shoulder-line changes continuously as we walk. When our gait is regular, these 
changes are nearly periodic and follow the swinging trend of our trajectories as we balance our weight between 
our  feet1. At times, motion direction and body orientation remain temporarily decoupled. This happens, for 
instance, when we sidestep or in proximity of turns and distractions.

Shoulder-line yawing is not just a mechanical reflection of the walking action, it rather becomes an essential 
dynamic ingredient as our motion gets geometrically constrained, e.g. by a dense crowd or by a narrow environ-
ment. In both cases, as we need to make our way to our destination, we, consciously or unconsciously, rotate our 
bodies sideways to minimize collisions or maintain comfort distances with other pedestrians or the environment. 
The capability of measuring and understanding the orientation dynamics of our body and shoulders comes 
both with societal and fundamental relevance. As a proxy for sight direction, shoulder orientation can be used 
to assess individual visual  attention2 or even to increase our capacity to identify anomalous behavior. Moreover, 
augmenting the traditional position-centered modeling of pedestrians with the orientation degree of freedom, 
strengthens the connection between human dynamics and other active matter systems, where shape and nematic 
ordering are key elements to individual and collective behaviors, particularly at high densities (e.g.,3,4).

The dynamics of shoulder-line rotation has been scarcely investigated from a quantitative viewpoint. The data 
currently available is extremely limited and has been acquired via few laboratory experiments (e.g. Refs.9–11). 
Such scarceness of accurate data hinders the capability of statistic characterizations of the rotation dynamics 
beyond the estimation of average properties, to include, e.g., fluctuations and rare events. We believe that this is 
connected with the inherent technical complexity of measuring body yawing accurately and in real-life condi-
tions. Real-life measurements campaigns, in fact, need to rely only on non-intrusive imaging data (or alike) of 
pedestrians, and cannot be supported by ad hoc wearable sensors, such as  accelerometers10. Indeed, even the 
accurate estimation of the position of an individual in real-life, a more “macroscopic” or “coarser-scale” degree 
of freedom than orientation, is a recognized technical  challenge12. Since few years, overhead depth-sensing7,8,13,14, 
as used in this work, has been successfully employed to perform accurate pedestrian localization and prolonged 
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tracking campaigns (see example in Fig. 1 and Ref.6). Overhead depth data, not only allows privacy respectful 
data acquisition, but enables also accurate position measurements even in high-density conditions (for a highly-
accurate algorithm leveraging on machine learning-based analyses see, e.g. Ref.15).

In this paper we propose a novel method to measure—in real-life conditions and with very high accuracy—
the shoulder rotation of walking pedestrians. Our measurement method is based on a deep Convolutional 
Neural  Network16 (CNN) point-estimator which operates on overhead depth images centered on individual 
pedestrians—from now on referred to as “imagelets”. Intuition suggests that pedestrians seen from an overhead 
perspective have a well-defined elongated, elliptic-like, shape. In our measurements this is true only in a small 
fraction of cases in which pedestrians walk carrying their arms alongside the body. Conversely, we found a 
majority of exceptions, impossible to address by hand-made algorithms (cf. Fig. 2). This marks an ideal use-case 
for supervised deep  learning16.

It is well known that the high performance of Deep Neural Network methods come also at the price of, often 
prohibitively, labor-intensive manual annotations of training data (frequently in the order of millions of indi-
vidual images). Depending on the context, the reliability of human annotations can furthermore be arguable, this 
is the case whenever different experts are in frequent mutual disagreement about the annotation value. Shoulder 
orientation in depth imagelets falls in such a case. Here by relying on the strong statistical correlation between 
individual velocity and body orientation, we manage to produce potentially limitless annotations. While walking 
on straight paths, our velocity direction is (on average) in very good approximation orthogonal to our shoulder 
line. On this basis, we can employ the velocity direction as a singularly slightly imperfect, but correct on aver-
age, annotation for the orientation. Notably, the zero-average residual error between the velocity direction and 
the actual orientation gets averaged out as we train our CNN point-estimator with gradient descent. This (self) 
amends for annotation errors.

We investigate the orientation measurement accuracy of our method and consider its error scaling vs. the 
size of the training set using both real-life and synthetic depth imagelets. Combining extensive training with 
the enforcement of O(2) symmetry of the estimator, we show that we can deliver an orientation estimator with 
an error as low as 7.5◦ . Our tool enables us to characterize the stochastic process that connects the instantane-
ous velocity direction to the shoulder orientation. We show that the velocity orientation can be well described 
by delaying the orientation dynamics through a stochastic process centered on, about, 100ms and with Orn-
stein–Uhlenbeck (OU) statistics.

Conceptually speaking, although our tool has been devised for depth imagelets, it can be easily extended to 
other computer vision-based pedestrian tracking approaches and, more in general, can be used for any system 
in which there is a statistical connection between (average) individual “particle” velocity and (average) shape.

Orientation measurements: problem definition
Let I  be a overhead imagelet centered on a pedestrian, see examples in Fig. 2 (for convenience we opt for image-
lets of square shape, yet this is not a constraint).

Figure 1.  We measure and investigate the dynamics of shoulder orientation for walking pedestrians in real-
life scenarios. Our measurements are based on raw data acquired via grids of overhead depth sensors, such 
as Microsoft Kinect™5. In (a, b) we report, respectively, a front and an aerial view of a data acquisition setup 
(similar to that in Ref.6). The sensors, of which the typical view cone is reported in (a), are represented in (b) 
as thick segments. In overhead depth images (c), the pixel value, here colorized in gray, represents the distance 
between each pixel and the camera plane: brighter shades are far from the sensor and, the darker the pixel color, 
the closer the pixel is to the sensor. Heads are, therefore, in darker shade than the floor. Through localization 
and tracking algorithms from Refs.7,8, we extract imagelets centered on individual pedestrians (cf. imagelets 
annotated with ground truth in Fig. 2) for which we estimate orientations via the method introduced here.
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We define the shoulder-line orientation angle, θ , as the angle between the direction normal to the shoulder-
line and a fixed reference, here the y axis (direction ey , cf. Fig. 2a,b). According to this definition, a body rotation 
of 180◦ leaves θ unchanged. Thus, we aim at a function f such that

where f (I) = θo approximates the actual orientation θ (with −π/2 ≡ π/2 , i.e. θ is an element of the real projec-
tive line P1(R) , see e.g. Ref.17). We report a list of the symbols employed in Table 1.

We model the mapping f via a deep neural network that we train in a supervised, end-to-end, fashion (see 
structure in the Supporting Information, SI). The network returns the estimate of θ as a discrete probability 
distribution, hpred , on P1(R) (quantized in B = 45 uniform bins, 4◦ wide, via soft-max activation function in the 
final layer). We retain the P1(R)-average (“circular average”) of the distribution hpred , as final output. It formulas, 
the output θo reads

we leave the details to the Supplementary information.
We train with orientation data with a “two-hot” encoding: each orientation θ is unambiguously represented 

in terms of a probability distribution non-vanishing on (up to) two adjacent angular bins (we chose “two-hot” 
in opposition to the typical one-hot training data for classification problems, in which the annotations are Dirac 
probability distributions on the ground-truth class). We will refer to this encoding, that avoids quantization 
errors, as h2(θ) (we observed no strong sensitivity on the number of bins when these were more or equal than 
10). As usual, we use a cross-entropy loss, H(·, ·).

We employ pedestrian velocity information to tackle the need for huge amounts of accurately annotated data 
to train the free parameters of the deep neural network (usually in the millions, ≈ 1.3 M in our case).

Let θv(t) ∈ P
1(R) be the angle between the walking velocity and a reference at time t > 0 , i.e.

where v(t) is the instantaneous velocity, and ∠(·, ·) denotes the angle comprised the directions in its argument 
(with π-periodicity). When we walk, either for the periodic sway or when we make turns, our shoulder line is 
most-frequently, and in very good approximation, orthogonal with respect to the walking velocity, i.e.

Therefore, velocities provide a meaningful “proxy” annotation for orientation. We used the “approximately equal” 
sign in Eq. (4) because we can have frequent, yet small, disagreements between velocity and orientation. These 
can be due to small loss of alignment between the two (e.g. because something attracted our attention) or they 
can be due to inaccuracies, e.g., in the velocity measurements. It is also possible, yet less likely, that velocity and 
orientation remain misaligned for longer time intervals. This holds, e.g., for people walking sideways. We retain 
these as rare occasions, which we expect to occur symmetrically for both left and right sides, with no relevant 

(1)

(2)θo = Eθ ′∼hpred,P
1(R)[θ

′],

(3)θv(t) = ∠(v(t), ey),

(4)θ ≈ θv .

(a)

(c)

θ = 34◦

x

y

θ

Figure 2.  (a, c) Pedestrian trajectories (purple) superimposed to depth snapshots (gray). Orientation estimates 
and local velocities (directions of motion) are reported, respectively, in red and yellow. We estimate shoulder 
orientation on a snapshot-by-snapshot basis, considering depth “imagelets” centered on a pedestrian. The 
sub-panel (b) reports an example of such an imagelet with the x − y coordinate system considered. We employ 
instantaneous direction of motion θv extracted from preexisting trajectory data as training labels for a neural 
network. This yields a reliable estimator for the orientation θ , accurate even in cases challenging for humans, 
like in (c). Due to clothing, arms and body posture, presence of bag-packs or errors in depth reconstruction, the 
overhead pedestrian shape might appear substantially different from an ellipse elongated in the direction of the 
shoulders.
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weight in our training dataset. This hypothesis reasonably holds on unidirectional pedestrian flows happening 
on rectilinear corridors, but might be invalid in case, e.g., of curved paths. Formally, for a walking person, we 
model the relation in Eq. (4) as

with ǫ being a small, symmetric, and zero-centered residual.
We train our neural network using the labels h2(θv) as a proxy for h2(θ) . The training process aims at the 

minimization of the (average) loss Eθv [H(hpred , h2(θv))] . As such, the output hpred converges to the distribution 
of annotations of similar imagelets, whose average is the correct point-estimation of the orientation:

We refer to the Supplementary information for a formal proof with simplifying assumptions and a simulation-
based proof in the general case.

Finally, once a pedestrian with shoulder orientation θ rigidly rotates around the vertical axis by an angle α , 
their orientation becomes θ + α . Similarly, “mirroring” a pedestrian around the ey direction, their orientation 
changes sign.

The map f must satisfy such symmetry with respect to imagelets rotations and mirroring. In other words, f 
must be co-variant18 with respect to the group, O(2), of the orthogonal transformations of the plane. In formulas, 
this reads

for all transformations φ = �Rα ∈ O(2) , that concatenate a rotation of α , Rα , and, possibly, a reflection (i.e. 
� ∈ {Id, J} , respectively the identity, Id , and the reflection, J, from which the sign change given by the determinant 
of the transformation: det(φ) = det(�) = ±1).

Symmetries in neural networks are often injected at training time, by augmenting the training set by all the 
symmetry group orbits. Similarly, we include multiple copies of the same imagelets with multiple random rota-
tions with and without flipping. This also ensures that the training set spans P1(R) uniformly. Yet, this does not 
yield a strictly O(2)-symmetric estimator Eq. (7). We further enforce this symmetry by constructing a new map, 
f̃  , as the O(2)-group average of f, which is thus strictly respecting Eq. (7). In formulas it holds

(5)θ = θv + ǫ,

(6)θo ≈ Eθ ′∼θv+ǫ,P1(R)[θ
′] = E[θ − ǫ] = θ .

(7)f (φI) = (f (I)+ α) det(φ)

Table 1.  List of symbols

Symbol

I Overhead imagelet, centered on a pedestrian

f Orientation estimator, modelled via a neural network

P
1(R) Real projective line, the set on which we consider pedestrian orientation

E[x] , Ey[x] Average value of x (probability law and/or set are indicated as subscript, y, if necessary)

hpred Network estimate of θ as a discrete probability distribution

h2(θv) “Two-hot” discrete probability distribution encoding for θv (in training)

H(·, ·) Cross-entropy loss

v(t) Instantaneous velocity

θ Ground-truth shoulder-line orientation angle

θv Velocity direction angle

θo Orientation point estimation, as predicted by the network

θ(t), θv(t) Low-pass filtered continuous time signals of, respectively, θ0 and θv
ǫ Symmetric, zero-centered residual that relates θ and θv
O(2) Orthogonal group, containing all rotations and mirrorings that can be applied to I

f̃ Orientation estimator, strictly respecting O(2) symmetry

b̂ Average prediction bias, quantifying the network systematic error

ARMSE Average root mean square error, quantifying the total network error

θgt Ground-truth orientation annotation, available only for synthetic data

θr Reference annotation for real-life data. Obtained by subsampling from smoothed orientation signals θ(t)

v̂ Average walking velocity

d(t) Simulated delay θ(t) and θv(t)

A Simulation parameter, relating amplitudes of θ(t) and θv(t)

d̂ Simulation parameter, average delay of 80 ms between θ(t) and θv(t)

ξ Simulation parameter, intensity of the δ-correlated noise

τ Simulation parameter, relaxation time of OU-process

Ẇ δ-Correlated white noise
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we leave the proof of this identity, the O(2)-symmetry of f̃  and further details on P1(R)-averages to the SI. In the 
following, we consider approximations of the integral in Eq. (9) by equi-spaced and random sampling of O(2).

CNN: training and testing
We consider two types of training/testing imagelets: algorithmically generated, “synthetic”, imagelets, of which 
the orientation angle θ is known, and real-life imagelets. In the first case we mimic a velocity-based training by 
adding a centered noise to labels known exactly [following Eq. (5)]. In the second case, as we have no manually 
annotated ground truth, of which the accuracy would nevertheless be debatable, we propose a validation based on 
the convergence towards low-pass filtered orientation signals. In both cases, we show that the average prediction 
error [ARMSE, Eq. (11)] is about 7.5◦ degrees or, possibly, lower, should the training set size N be large enough. 
Specifically, the datasets are as follows:

Synthetic dataset.  We generate synthetic imagelets mimicking the overhead shape of people in terms of 
a superposition of two ellipses: one for the body/shoulders, Eb , and another one, Eh , at lower depth values (i.e. 
higher on the ground), for the head. We generate synthetic imagelets mimicking the overhead shape of people 
in terms of a superposition of two ellipses: one for the body/shoulders, Eb , and another one, Eh at lower depth 
values (i.e. objects higher above the ground are closer to the overhead mounted depth sensors and are thus asso-
ciated with smaller depth values), for the head.

We report examples of such imagelets in Fig. 3, while the details of the generation algorithm are left to the SI.
By construction, the rotation angle αb of Eb represents the pedestrian orientation, i.e. it is the ground truth 

for the training. We train the network with such synthetic imagelets and a small centered Gaussian noise 
ǫ ∼ N (0◦, 20◦) superimposed to αb = θgt to imitate velocity-based training. Hence, we train using labels αgt + ǫ 
while we validate with αgt (cf. Eq. 5).

Real‑life dataset.  We consider depth images and velocity data from a real-life measurement campaign 
conducted during a city-wide festival (GLOW) in Eindhoven, The Netherlands, in Nov. 2017. The measurements 
involve a uni-directional crowd flow passing through a corridor-shaped exhibit (tracking area: 12 m× 6 m ), 
for further details  see6. The dataset leverages on high-resolution individual localization and tracking based on 
overhead depth images (as in Fig. 1) and with 30Hz time sampling. The localization and tracking algorithms 
employed are analogous to what employed in previous  works7, 8. To ensure that our velocity data provides a well-
defined proxy for orientation, we restrict to pedestrians having average velocity above 0.65m/s . Moreover, for 
each trajectory we extract imagelets and velocity data with a time sampling of �T ≈ 0.5 s , which increases the 
independence between training data.

Additionally, we apply random rotations and random horizontal flips to all imagelets (and, correspondingly, 
to labels). This aims at training with a dataset uniformly distributed on P(R1).

In absence of ground truth, we build our test set as follows: we rely on our neural network trained with 1M 
different imagelets (i.e. twice as much the largest training dataset considered in Fig. 4d,e, on which we perform 
random augmentation and final O(2)-averaging of the operator), hence the most accurate, to make orienta-
tion predictions over complete pedestrian trajectories. As an orientation signal θ(t) needs to be continuous in 
time, we smoothen the predicted θ(t) in time (low-pass Butterworth  filter19 of order n = 1 , cutoff frequency 

(8)f̃ (I) =
1

|O(2)|

∫

O(2)
(f (φI)− α) det(φ) dφ,

(9)=
1

2π

∫ 2π

0

f (RαI)− f (JRαI)

2
− α dα,

(a) (b) (c)

Figure 3.  Examples of synthetic imagelets that we employ to analyze the performance of our neural network. 
Contrarily to the real-life data, ground-truth orientation is available for synthetic data, enabling accurate 
validation of the estimations. The neural network is trained against labeled target data with predefined noise 
level ( σ = 20◦ ) to imitate training with real-life imagelets and velocity target data. Target data with predefined 
noise level and ground-truth orientation for validation are superimposed on the imagelets as blue and red bars 
respectively.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11653  | https://doi.org/10.1038/s41598-020-68287-6

www.nature.com/scientificreports/

cf = 2.0Hz and window length l = 52 ) to eliminate random noise. The final dataset contains values θ(t) from 
different trajectories and sampled at different, independent, time instants. Therefore, we build the dataset on the 
basis of two independent elements: a heavily trained network and a physics-based time-regularity hypothesis 
on orientation signals.

We assess the prediction performance as the training set size, N, increases. To compute exhaustive perfor-
mance statistics, we train the network on M independent datasets for every N (in a cross-validation-like setting). 
We can distinguish two kinds of errors, systematic and  random20. The first is an error that always, and in the 
same manner, interferes with the outcome of the measurements (e.g. a constant rotation offset for all predic-
tions); the second, also referred to as variance, is caused by unexplained variability of the model with respect 
to the observed imagelets (i.e. the prediction accuracy may vary between different imagelets). To quantify the 
network performance in relation to these two sources of error, we employ the two following measures. Given a 
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Fig. 4.  (a–c) Velocity direction and shoulder orientation signal, for three trajectories collected in real-life 
(depth maps sequences similar to Fig. 2 are on the right of each panel). We report the instantaneous values of 
velocity (obtained from tracking) and predicted orientation, θv and θo , and the continuous orientation signal 
θ(t) (low-pass filter of θo ). Orientation has been computed via our CNN trained on 30 h of real-life velocity 
data. (a) Reports a typical pedestrian behavior, where θv(t) and θ(t) oscillate “in sync” (frequency f ≈ 0.8Hz ) 
following the stepping. Our tool resolves correctly also rare sidestepping events or orientation of standing 
individuals in which the signals are out of sync. (b) Shows a pedestrian rotating their body, possibly observing 
their surroundings, while maintaining the walking direction. (c) Shows an individual initially standing, then 
performing a 150◦ body rotation and finally walking away. In this case, the velocity θv is undefined for time 
t < 10 s as there is no position variation (so high noise intensity θv ). Note that the depth map sequences in (c) 
are in space-time coordinates, in a photo finish-like fashion. In this reference, when the pedestrian stands still, 
a horizontal y = const line is traced. (d–f) Prediction performance of the network, f (Eq. 1), in case of artificial 
imagelets (d) and real-life data (e). We train with datasets of increasing size (N, x-axis). We report the Root 
Mean Square Error of the predictions averaged over M = 32 independent training of the networks [ARMSE, 
Eq. (11)] and, in the inset, the average bias, b̂ (Eq. 10). The test sets used to compute the indicators include, for 
(d), 25k unseen synthetic images with error-free annotation ( θgt ) and, for (e), 25k unseen real-life imagelets, 
annotated considering low-pass filtered high-resolution orientation estimates, θr , obtained with our neural 
network trained with 1M samples and O(2)-group averaging. The bias, in both cases, decreases rapidly below 
0.1◦ . The ARMSE, for the networks trained with the largest dataset approaches, respectively, 5.5◦ and 11◦ , as N 
grows. For both ARMSE and bias, we report the fitted exponents characterizing the error converge in the label. 
We complement the evaluation of the ARMSE considering noisy labels [ θgt + ǫ for case (d) and θv for case 
(e)]. In case (d) the ARMSE saturates consistently with the level of noise in the labels (cf. SI). In case (e), the 
ARMSE approaches a saturation point at about 20◦ . This reflects the random disagreement between velocity and 
orientation. (f) Performance can be further increased by enforcing O(2)-symmetry of the orientation estimator, 
map f̃  , Eq. (8). In (f) we consider maps f̃  built from the networks trained with the largest training datasets 
from (d, e) ( N ≈ 0.5M ), both for the synthetic and real-life cases, vs. the number of samples used for the group 
average, k. We consider both uniform and random sampling of O(2) (superscript U and R respectively). The 
group average further reduces the ARMSE from 5.5◦ to 4.5◦ in case of synthetic imagelets Is (no observable 
difference between uniform and random sampling), and from 11◦ to 7.5◦ in case of real-life imagelets Ir , with 
higher performance in case of random sampling for k < 16.
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reference orientation (e.g. ground truth), θr(I) , for an imagelet I  from dataset Dk ( k = 1, 2, . . . ,M ), we quan-
tify the systematic error as the average prediction bias, b̂ , evaluated as the root-mean-square of the individual 
network biases, b̂k:

Additionally, we consider the average root-mean-square error (ARMSE), which quantifies the total error, as 
superposition of systematic and random components. In formulas, this reads

where Vk is the variance of the prediction of the k-th network.

Results
In Fig. 4a–c, we report the orientation signals as estimated by the networks in three different real-life contexts. 
The network is capable of accurate predictions that, as expected, are independent of the actual instantaneous 
velocity. Hence, it remains accurate in case of a pedestrian walking sideways (Fig. 4b), in which the orientation 
signal loses temporarily coupling with the velocity orientation and in case of a pedestrian temporarily stopping 
and standing (Fig. 4c), in which the velocity orientation is even undefined (note that these cases were excluded 
from the training).

We include in Fig. 4d–f the values of average prediction bias and ARMSE as the training set size increases, 
in case of synthetic and real-life imagelets [respectively, in (d) and (e)]. In both cases the network performance 
increases with N, with slightly slower convergence rate for the ARMSE for the real-life dataset, which is likely 
more challenging to learn than the synthetic one. In both cases the predictions are free of bias (cf. sub-panels). 
With the largest number of training imagelets considered ( N ≈ 5× 105 ), we measured an ARMSE of about 5◦ for 
the synthetic data and 11◦ for the real-life data. We managed to further reduce this error to, respectively, 4.5◦ and 
7.5◦ by enforcing O(2) symmetry. Note that we could trivially apply Eq. (8) as we are in a bias-free context, else a 
systematic correction for the bias would have been necessary. In Fig. 4f, we report the network performance as we 
approximate better and better the O(2) group average. We stress that in case of real-life data, the network predic-
tions, on which no time-smoothing has been applied, converge to test data that underwent time-smoothing. Thus, 
as N grows, the network predictions show increasing robustness and consistency approaching jitter-free signals.

Real‑life orientation dynamics
We are now capable of investigating with high-resolution, and in real-life conditions, the connection between 
shoulder orientation and velocity direction—which, in the previous sections, we reduced to the error term ǫ . 
In particular, we can characterize a stochastic delay signal, d(t), which allows us to model the relation between 
velocity and orientation as

where A is a positive constant.
First, thanks to the high-accuracy of our tool, we measure a velocity-dependent delay between velocity 

orientation and shoulder orientation whose probability distribution function is in Fig. 5 (see Supplementary 
information for details on the delay measurement algorithm). The velocity orientation follows in time the shoul-
der yawing, with a delay that decreases (on average) between 160ms and 100ms as the average walking velocity, 
v̂ , increases from 0.6m/s to 1.4m/s (respectively walking speed values in leisure and normal walking regimes, 
see, e.g. Ref.21).

The structure of d(t) appears well-modeled by a OU process:

where d̂ > 0 is the average delay ( ̂d ≈ �d(t)� ), τ > 0 is the OU time-scale and ξ > 0 is the intensity of the δ-cor-
related white noise Ẇ . In particular, in Fig. 6 we compare statistical observables of measurements and simulations 
considering the case of normal walking speed (average velocity v̂ ≈ 1.3m/s ), of which we retain the measured ori-
entation signals, θ(t) , as a basis for Eq. (12) (simulation parameters: A = 1.85 , d̂ = 0.08 s , τ = 1.2 s and ξ = 1.85 ). 
In Fig. 6a, we report the pdf of the difference between orientation and velocity orientation when one is shifted in 
time by, d̂ , to compensate for the average delay. Measurements and simulations, in excellent mutual agreement, 
follow a Gaussian statistics. Thanks to a stochastic delay, we achieve a very good quantitative agreement in the 
delay distributions (Fig. 6b). In Fig. 6c, we report the Power Spectral Density (psd) of θv(t) and θ(t) computed 
by averaging all the psds obtained from individual velocity direction and orientation signals. We observe that 
the stochastic delay does not substantially modify the psd of orientations, especially at low frequencies. As an 
effect, the peak around f = 1Hz , connected with the periodic swinging in walking (see Fig. 4a), is reproduced 
(yet it is slightly underestimated). Moreover, the psd shows another peak around 0.2Hz , which is connected to 
large-scale motion (a pedestrian might curve along their path) and/or have a non-periodic orientation signal 
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(12)θv(t) = A θ(t − d(t)),
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τ
+ ξẆ ,
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(which yields low-frequency spectral artifacts). Also this peak, not modeled by Eq. (13), is reproduced by the 
model but with a slight overestimation.

Discussion
In this paper we presented an extremely accurate estimator for the pedestrian shoulder-line orientation based on 
deep convolutional neural networks. We leveraged on statistic aspects of pedestrian dynamics to overcome two 
outstanding issues related to deep networks training: the labor-intensive annotation of training data in sufficient 
amounts (generally millions of images) and the accuracy of annotations in non-trivial contexts.

Thanks to the strong statistical correlation of shoulder-line and velocity direction, which are typically orthogo-
nal, we can employ the velocity direction as a training label. Although often slightly incorrect, it remains correct 
on the average, to which our point-estimator converges. Notably, the relation between velocity and orientation 
holds regardless of the quality of the raw imaging data employed. In case of overhead depth maps, as used here, 
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Fig. 5.  Probability distribution function of the delay time between the shoulder orientation, θ(t) , and velocity 
orientation, θv(t) , signals for different average velocities, v̂ . As the average velocity grows, the average delay and 
the delay fluctuations reduce. The inset reports the ratio between the standard deviation, σ , and the average, µ , 
of the delay as a function of v̂ . The measurements considered are 78k trajectories ( 20 h of data, all not exceeding 
a maximum orientation of ±60◦ ), acquired during the GLOW  event6.
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Fig. 6.  Comparison between simulations (red dots) and real-life measurements (blue solid line). We build 
velocity direction signals θv(t) on top of delayed orientation measurements θ(t − d(t)) , where the delay d(t) is 
modelled by a OU random process [cf. Eqs. (12), (13)]. Measurements have been acquired during the GLOW 
event (36k trajectories, restricting to people keeping normal average velocity v̂ ≈ 1.3m/s ). In (a) we report the 
probability distribution function (pdf) of the difference between velocity direction and orientation shifted in 
time by the average delay, d̂ = 0.1 s . In (b), analogously to Fig. 5, we report a PDF of the delay time between θ(t) 
and θv(t) . The insets in (a, b) report the data in semi-logarithmic scale. For both these quantities we observe 
excellent agreement among simulations and measurements for (a, b). Panel (c) shows the velocity direction 
signals’ grand average power spectral density (psd) of θv(t) and θ(t) . Our model modifies the psd only at high 
frequencies. As an effect, the most energetic components of the velocity orientation, around 0.2Hz and 1Hz , 
remain, respectively slightly under and slightly over-represented.
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often we had disagreement between human annotators, which would unavoidably yield low quality labels. By 
using velocity we can circumvent this issue and produce training data in arbitrarily large amounts. We stress that 
this correlation assumption is crucial only for training the estimator. As evidenced in the paper, once trained, 
the estimator can be used to successfully measure pedestrian orientation when shoulder-line orientation and 
velocity direction are systematically not orthogonal (like it happens for people walking sideways), or even for 
vanishing walking velocity (where the velocity orientation is not defined). We mention additionally that our 
approach can be conceptually extended to other imaging formats, such as color images, provided accurate and 
sufficiently prolonged tracking data are available.

Our tool unlocked the possibility to accurately investigate the relation between velocity direction and shoulder 
orientation. We could measure a velocity-dependent delay of about 100ms between velocity and orientation, that 
we are able to quantitatively reproduce in terms of a simple Ornstein–Uhlenbeck process. In particular, on the 
basis of measured orientation signals, we could generate velocity directions featuring amplitude with respect to 
the orientation signal, velocity-orientation delay distribution and power spectral density in very good agreement 
with the measurements.

We currently employed our velocity-trained network to investigate dynamics at relatively low density. We 
expect the network to be capable to operate and deliver accurate orientation estimates in different scenarios from 
those considered. As such, natural next steps are the investigation of static and dynamic high-density crowds, 
clogged bottlenecks conditions, or other scenarios in which the “nematic” ordering of the crowd is expected 
to play a key role in the dynamics. Additionally, the tool developed can be applied to do (real-time) analyses of 
orientation, e.g. to gather a first estimate of sight/attention direction and/or possibly extend anomaly detection 
capabilities for crowd motion.
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