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interactive machine learning 
for soybean seed and seedling 
quality classification
André Dantas de Medeiros1*, nayara pereira capobiango1, José Maria da Silva1, 
Laércio Junio da Silva1, clíssia Barboza da Silva2 & Denise cunha fernandes dos Santos Dias1

New computer vision solutions combined with artificial intelligence algorithms can help recognize 
patterns in biological images, reducing subjectivity and optimizing the analysis process. the aim of 
this study was to propose an approach based on interactive and traditional machine learning methods 
to classify soybean seeds and seedlings according to their appearance and physiological potential. 
in addition, we correlated the appearance of seeds to their physiological performance. images of 
soybean seeds and seedlings were used to develop models using low-cost approaches and free-access 
software. The models developed showed high performance, with overall accuracy reaching 0.94 for 
seeds and seedling classification. The high precision of the models that were developed based on 
interactive and traditional machine learning demonstrated that the method can easily be used to 
classify soybean seeds according to their appearance, as well as to classify soybean seedling vigor 
quickly and non-subjectively. the appearance of soybean seeds is strongly correlated with their 
physiological performance.

Soybean [Glycine max (L.) Merrill] is one of the main commodities in world agribusiness. Soybean seeds are rich 
in amino acids, lipids, vitamins, and minerals and are an abundant source of proteins, constituting a key crop 
for global food security. Achieving high soybean yield depends on successful establishment of soybean plants, 
which requires use of high-quality  seeds1.

Seed quality is very susceptible to environmental conditions and post-harvest procedures such as mechani-
cal threshing and artificial  drying2. These factors may lead to significant seed damage and to changes in seed 
appearance. Damage from mechanical kneading pressure, attack from pathogens, broken seeds, ruptured seed 
coats, moisture damage, and greenish seeds may comprise seed performance. Many efforts have been made to 
prevent this damage and improve seed quality. The identification of low-quality seed lots is particularly impor-
tant. In most cases, this identification is based on visual inspection of seed lots and on chemical methods that 
are destructive, subjective, inconsistent, and time-consuming3.

Machine learning methods have supported a recent revolution in computer  vision4. One recent and promising 
user-oriented machine learning approaches is Interactive Machine Learning (IML). IML approaches are defined 
by algorithms that can interact with both computational agents and human  agents5. They aim to use human 
knowledge and skills in a timely and repeated manner to improve the accuracy of the models. IML approaches 
can therefore be effective in problems with small datasets or complex datasets when traditional machine learning 
methods become  inefficient6. The combination of these machine learning algorithms with computer vision has 
brought new and promising perspectives for analyzing the quality of agricultural products, especially  seeds7–9. 
With these technologies, many of the limitations now faced by traditional methods of visual seed inspection 
could be resolved.

Collaborative open-source software has offered powerful solutions in several research fields that use bio-
images. These tools have become prominent due to their flexibility and transparency in dealing with new 
 technologies10, and new possibilities of application are opening in as yet little explored areas. Among these tools, 
Ilastik is open-source software that allows the development of models based on interactive machine learning 
with images; it is easy to use and ideal for users without substantial computational  knowledge4. This software has 
been used in recent studies to measure the confluence of Hep G2 cell culture in phase-contrast  micrographs11, 
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high-throughput screening for quantifying thrips  damage12, quantification and spatial analysis of features in his-
tological images of rodent  brains13, and others. However, there is still no information on application of interactive 
machine learning via Ilastik in plant science and, in particular, in studies on seeds and seedlings.

Considering that the use of image analysis in seed science technology has led to considerable advances in 
seed quality  assessment14, the Ilastik software could be integrated in this image analysis, which would make 
seed quality assessment even more efficient. Thus, the aim of this study was to propose an approach based on 
interactive and traditional machine learning methods to classify soybean seeds and seedlings according to their 
appearance and physiological potential. In addition, we correlated the appearance of seeds with their physi-
ological performance.

Materials and methods
plant material and image acquisition. Seven commercial soybean seed lots from production in the 
2019/2020 crop season were acquired, from which 700 seeds were selected. The seeds were divided into seven 
groups according to physical, health, and physiological aspects. The groups were composed of mechanically 
damaged seeds, seeds infested by fungi, and green seeds (with low chlorophyll degradation). Initially, images of 
the seeds were obtained from an Epson Perfection V800 scanner. The seeds were tested for germination capacity 
by placing them on rolls of germination paper moistened with water in the amount of 2.5 times the dry weight of 
the paper and kept in a germinator (Mangelsdorf) at 25 °C for three days. The seedlings produced were individu-
ally evaluated through image analysis to determine seed vigor. Images of the seedlings were acquired through an 
HP Scanjet 200 scanner fastened in an inverted position within an aluminum box. Both seed and seeding images 
had 300 dpi resolution.

image pre-processing and segmentation. Image pre-processing and segmentation were performed 
with the Ilastik  software4 using the pixel classification tool. The images were semantically segmented, and two 
segmentation classes were defined: “seed or seedling” and “background”. The features of the seeds or seedlings 
were based on color and pixel intensity and border and texture descriptors, computed as pre-smoothed filters 
with a sigma ranging from 0.3 to 1. To create the probability maps, the pixels belonging to the regions of each 
class were selected by painting brushstrokes of different colors directly on the input data. A Random Forest 
classifier was then used for pixel classification (Ilastik standard). The probability that the pixel belonged to the 
semantic segmentation classes (“seed/seedling” or “background”) was estimated for each pixel of the image. The 
trained classifier was applied to all images, individual seeds and seedlings, in batch mode, and the probability 
maps were exported for each image.

Seed appearance and physiological quality classification. In this study, we developed independent 
classifications for soybean seed appearance and physiological quality, considering seedling growth and the non-
germinated seed data. The methods used for both classification procedures were similar; therefore, the descrip-
tions were presented only once.

Seed appearance classes. Seeds were classified into seven different classes, based on visual inspection 
of each individual seed: (1) high-quality seed (HQS)—seed nearly round, firm, with smooth skin, and a sin-
gle color; (2) mechanically kneaded seed (KNS)—seeds with irregular surfaces and surface depressions due 
to mechanical damage; (3) purple stained seed (PSS)—seeds with pink to light or dark purple discoloration, 
with size ranging from a small spot to covering the entire seed coat; (4) broken seed (BRS)—seeds with poor 
structural integrity; (5) seed coat tear (SCT)—seeds showing coat ruptures; (6) moisture damaged seed (MDS)—
seeds showing wrinkles in the region opposite the hilum; (7) greenish seed (GRS)—seeds with a greenish seed 
coat or cotyledon.

physiological quality classes. The seedlings were placed in two classes: (1) vigorous seedlings (VSD)—
morphologically healthy seedlings showing vigorous growth of the hypocotyl and roots; and (2) weak seedlings 
(WSD)—seedlings showing absence, underdevelopment, or deformation of some essential structure (cotyle-
dons, primordial leaves, and roots). In addition, the class (3) non-germinated seeds (NGS)—seeds unable to 
germinate after three days under suitable conditions—was established.

Interactive classification of seed appearance and vigor. Interactive classification was performed 
with the Ilastik software, using the inbuilt object classification tool. This step was the main human task in the 
application of interactive machine learning. First, the training images were input (10% of the total images were 
used) and their respective probability maps were obtained in the pre-processing stage. Then 103  variables15, all 
the features available in the Ilastik software, were calculated for each seed and seedling, including convex-hull, 
skeleton-based shape descriptors, and property intensity statistics. Finally, we trained the classifier by selecting 
known individual classes. This process was performed by clicking on the reference objects of the different classes. 
Immediately, the classification was made. That way, real-time classification allowed us to track the classification 
errors and to correct them. This approach differs from traditional machine learning, which requires a lot of effort 
to detect point flaws in classification and often requires significant amounts of training  data6. It is important to 
highlight that, in this study, the human effort of performing the classifications was not evaluated, but it com-
prised only the initial steps, and once the classification was completed, the classifier could be used automatically.

Then, the trained classifier was applied to the entire set of images in batch mode. The descriptors and the 
individual prediction maps were exported in CSV and PNG file formats, respectively. This approach did not 
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require hardware with a high level of processing capacity. We performed all classifications on an Intel CoreCPU 
i5‐42000 @ 1.60 GHz and 4 GB of RAM.

External algorithms for seed appearance and physiological quality classification. The descrip-
tors generated by Ilastik for each seed and seedling were used to develop classification models using traditional 
machine learning techniques based on three methods: Linear Discriminant Analysis (LDA), Random Forest 
(RF), and Support Vector Machine (SVM). The data were divided into training sets and validation sets, in the 
proportion of 70% and 30%, respectively. The three classifiers were developed with the R 3.6.3 software (R Core 
Team, 2019). For LDA, the Mass (https ://cran.r-proje ct.org/web/packa ges/MASS/index .html) package was used. 
For RF models, the cforest function of the partykit package (https ://www.rdocu menta tion.org/packa ges/party 
kit) was used, with 500 decision trees and default hyperparameters. For SVM, the caret (https ://cran.r-proje 
ct.org/web/packa ges/caret /index .html) package was used, with a radial kernel and default parameters.

Model validation. The models developed with the interactive method using the Ilastik software were vali-
dated using 90% of the data set. These data had not been used for training. The external models developed were 
validated through cross-validation (10-folds) and through an independent validation set that had not been used 
before. They were evaluated based on True Positive (TP), False Positive (FP), True Negative (TN), and False 
Negative (FN) data. The Accuracy, Kappa, Precision, Sensitivity, and Specificity metrics were calculated:

Association of seed appearance and physiological quality. In order to understand the relationship 
between seed appearance and seed physiological quality, we made an association between seed classes and their 
respective seedling classes. Seedling length was measured and the data were used to obtain the growth, uniform-
ity, and vigor indices and root length using the Vigor-S  software16. Multivariate principal component analysis 
was applied to these data, adopting the seed classes as individuals and the seedling vigor indices as vectors.

Results
Machine learning models for seed classification. We developed and compared four different models 
to classify soybean seeds based on relevant visible aspects using a high-performance tool. The model based on 
interactive machine learning showed an overall accuracy of 0.83 (Table 1). The BRS and SCT classes had the 
highest hit rates, with sensitivity greater than 0.97. In contrast, the HQS and MDS classes had lower individual 
accuracy, with a higher rate of false-positives and false-negatives. At least 21% of HQS class seeds were confused 
with MDS class seeds, while the confusion increased to 30% in the opposite direction.

The seed descriptors generated by the Ilastik software were tested applying three different machine learning 
methods (Table 2). In general, high performance was observed for all three models developed. The LDA method 
stood out, achieving an accuracy of 0.93 in the cross-validation set and 0.94 in the independent validation set, 
and a Kappa coefficient above 0.91. In independent validation, the classes SCT and BRS had the highest hit rates 
in the LDA, RF, and SVM models. 

Machine learning models for physiological quality classification. The physiological data were used 
for seed classification into three classes according to seed germination capacity and seedling growth: vigorous 
seedlings (VSD), weak seedlings (WSD), and non-germinated seeds (NGS). Four models were developed to 
that end—the first based on interactive machine learning and the others using the traditional machine learning 
approach to analyze the data generated by the Ilastik software. Note that although the data set in this study had 
700 seeds, only 600 were used for development and evaluation of these models. The BRS class was excluded since 
it is not usually used to assess seed vigor.

A high precision classification model within the interactive Ilastik machine learning method was used 
(Table 3). The model achieved average accuracy of 0.97, and values above 0.92 for kappa, precision, sensitivity, 
and specificity metrics for the VSD class. The highest rate of false-negatives was found in the WSD class and the 
lowest rate in the VSD class. 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Kappa = 2 ∗
TP ∗ TN − FP ∗ FN

TP ∗ FN + TP ∗ FP + 2 ∗ TP ∗ TN + FN2
+ FN ∗ TN + FP2

+ FP ∗ TN

(3)Precision =
TP

TP + FP

(4)Sensitivity =
TP

TP + FN

(5)Specificity =
TN

TN + FP

https://cran.r-project.org/web/packages/MASS/index.html
https://www.rdocumentation.org/packages/partykit
https://www.rdocumentation.org/packages/partykit
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html


4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11267  | https://doi.org/10.1038/s41598-020-68273-y

www.nature.com/scientificreports/

Models based on external classification were also satisfactory (Table 4). For those models, the data generated 
by the Ilastik software for seedlings and non-germinated seeds were used. The training set comprised 70% of the 
data. The Random Forest method performed slightly better than the others in the cross-validation and independ-
ent validation sets, showing 0.93 and 0.94 accuracy, respectively. The hit rate for each class varied according to 
the classifier, but in general, there was a more significant classification error for the WSD class.

Classification summary. In general, the classifications based on interactivity machine learning and the 
traditional approach were accurate. However, especially for classifications based on seed appearance, the exter-
nal classification models performed better (Fig. 1a). For those models, it is important to emphasize that 70% of 
the data was used for training; thus, we expected higher accuracy. For classification based on seed physiologi-
cal quality, the models showed similar performance (Fig. 1b). Note that the Ilastik method was slightly better 
(higher values) in most metrics than the LDA and SVM algorithm, even using only 10% of the data for training, 
versus 70% in the external classification method.

Relationship between seed appearance and seedling growth. The seeds exhibited different physi-
ological performance according to their appearance (Fig. 2). In multivariate principal component analysis, the 
physiological quality vectors were positioned to the right of the ordering diagram, indicating that individuals 
located in negative scores of PC1 had significantly lower values for these variables (Fig. 2a). In more detail, 
HQS and SCT classes showed higher values of seedling length and higher vigor, uniformity, and growth indices 
(Fig. 2a). For those classes, all seeds germinated and generated a high proportion of vigorous seedlings (Fig. 2b). 
In addition, in the PSS and MDS classes, the seeds generated mainly vigorous seedlings and weak seedlings. The 
MDS also had a high proportion of non-germinated seeds. For the KNS class, the seeds generated mostly weak 
seedlings or did not germinate. Finally, the seeds of the GRS class mostly did not germinate. The seedling appear-
ance that predominated in each seed class is shown in Fig. 2c.

Discussion
The quality of soybean seed has a direct impact on its market price and affects seedling establishment in the 
 field7. Visual-based inspection methods are currently used by laboratories to precisely evaluate soybean seed 
quality, including seedling evaluations. However, these methods are subjective, inconsistent, time-consuming, 
and usually  destructive3. In this study, we present an approach based on interactive and traditional machine 
learning methods to classify soybean seeds and seedlings automatically, efficiently, and without costly resources.

The proposed methods were highly satisfactory. The accuracies found in discriminating seeds in their dif-
ferent appearance classes were high, ranging from 0.92 to 0.99 for the interactive machine learning model and 
greater than 0.90 of overall accuracy in the independent validation set for external classification (Tables 1, 2). 
These results indicate high potential for practical application of these methods. In this study, we used several 
seed lots, which is a good first step toward generalization, and it raises hope concerning possible generalization 
for industrial purposes. The models developed can easily be inserted in the quality control programs of seed 
companies or seed analysis labs, or even in studies in research centers. We are aware that this approach does 
not entirely dispense with human effort, as some manual tests are required to meet ISTA  standards17, but it can 
be used in the process of sorting lots regarding seed quality and identifying reasons for loss of quality rapidly 
and accurately. It is noteworthy that this is a pioneering study using interactive machine learning methods for 
classifying soybean seeds according to their appearance.

Table 1.  Confusion matrices and metrics of the interactive classification of soybean seeds according to their 
visual appearance. The Random Forest classifier was applied and 10% of total images were used for training. 
a In the columns are the true seed classes, and in the rows are the estimated classes.

Classa

High-quality 
seed Kneaded seed

Purple stained 
seed Broken seed Seed coat tear

Moisture 
damaged seed Green-ish seed

n = 630

High-quality 
seed 70 1 3 0 2 27 0

Kneaded seed 0 76 17 0 0 0 6

Purple stained 
seed 1 2 64 0 0 0 2

Broken seed 0 0 0 87 0 1 0

Seed coat tear 0 3 3 3 88 1 2

Moisture dam-
aged seed 19 0 1 0 0 61 3

Greenish seed 0 8 2 0 0 0 77

Accuracy 0.92 0.95 0.94 0.99 0.98 0.92 0.96

Kappa 0.68 0.78 0.77 0.97 0.91 0.65 0.85

Precision 0.68 0.77 0.93 0.99 0.88 0.73 0.89

Sensitivity 0.78 0.84 0.71 0.97 0.98 0.68 0.86

Specificity 0.94 0.96 0.99 1 0.98 0.96 0.98
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Table 2.  The number of seeds correctly classified in each class and metrics for the external seed classification 
models using the seed descriptors generated by Ilastik software.

Method Class

Training set

Cross-validation

Validation set

(n = 490) (n = 210)

Hits (total)

LDA

High-quality seed 68 (70) – 29 (30)

Kneaded seed 64 (70) – 29 (30)

Purple stained seed 69 (70) – 28 (30)

Broken seed 68 (70) – 30 (30)

Seed coat tear 70 (70) – 30 (30)

Moisture damaged seed 66 (70) – 25 (30)

Greenish seed 69 (70) – 27 (30)

Overall accuracy 0.98 0.93 ± 0.03 0.94

Kappa 0.96 0.92 ± 0.04 0.93

Precision 0.97 0.93 ± 0.04 0.94

Sensitivity 0.97 0.93 ± 0.03 0.94

Specificity 0.99 0.99 ± 0.01 0.99

RF

High-quality seed 64 (70) – 25 (30)

Kneaded seed 65 (70) – 27 (30)

Purple stained seed 70 (70) – 28 (30)

Broken seed 69 (70) – 30 (30)

Seed coat tear 70 (70) – 29 (30)

Moisture damaged seed 64 (70) – 24 (30)

Greenish seed 66 (70) – 26 (30)

Overall accuracy 0.96 0.89 ± 0.06 0.90

Kappa 0.95 0.87 ± 0.07 0.88

Precision 0.96 0.90 ± 0.06 0.90

Sensitivity 0.96 0.89 ± 0.07 0.90

Specificity 0.99 0.98 ± 0.07 0.98

SVM

High-quality seed 67 (70) – 27 (30)

Kneaded seed 63 (70) – 26 (30)

Purple stained seed 68 (70) – 28 (30)

Broken seed 68 (70) – 30 (30)

Seed coat tear 70 (70) – 30 (30)

Moisture damaged seed 64 (70) – 24 (30)

Greenish seed 67 (70) – 26 (30)

Overall accuracy 0.95 0.92 ± 0.03 0.91

Kappa 0.95 0.91 ± 0.04 0.89

Precision 0.95 0.92 ± 0.03 0.91

Sensitivity 0.95 0.92 ± 0.03 0.90

Specificity 0.99 0.99 ± 0.01 0.98

Table 3.  Confusion matrices and metrics of the interactive Ilastik machine learning classification of soybean 
seeds according to their physiological quality. a In the columns are the true seed classes, and in the rows are the 
estimated classes.

Classa

Vigorous seedling Weak seedling Non-germinated seed

n = 600

Vigorous seedling 230 18 0

Weak seedling 1 157 9

Non-germinated seed 0 10 174

Accuracy 0.97 0.94 0.97

Kappa 0.93 0.85 0.93

Precision 0.93 0.94 0.95

Sensitivity 0.99 0.85 0.95

Specificity 0.95 0.98 0.98
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In previous studies, researchers have tried to identify damage to soybean seeds using different techniques. 
Lin et al. described the representation of jointly multi-modal bag-of-feature (JMBoF) to inspect the appear-
ance quality of post-harvest dry soybean seeds using images obtained in the visible spectrum. The proposed 
algorithm reached an accuracy of 82% in the test set. Mahajan et al. used RGB and X-ray images to assess the 
physical purity, viability, and vigor of soybean seeds. The classifier developed that was based on a neural network 
achieved an accuracy of 91%. Momin et al. developed a machine vision system to detect impurities in samples 
of harvested soybeans and achieved accuracy ranging from 75 to 98%. Liu et al. developed a system to identify 
and eliminate damaged soybean seeds using computer vision, image-processing technologies, neural networks, 
and automated mechanical control. The system showed an average recognition accuracy of 97%. Several other 
techniques used to assess soybean seed quality are Raman  spectroscopy18,19, near-infrared  spectroscopy20,21, and 
nuclear magnetic  resonance22,23.

Table 4.  The number of seedlings classified correctly in each class and metrics for external classification using 
Ilastik descriptors of soybean seeds and seedlings according to their physiological quality.

Method Class

Training set

Cross-validation

Validation set

(n = 422) (n = 178)

Hits (Total)

LDA

Vigorous seedlings 159 (162) – 64 (69)

Weak seedlings 122 (131) – 44 (55)

Non-germinated seeds 129 (129) – 52 (54)

Overall accuracy 0.97 0.92 ± 0.04 0.90

Kappa 0.96 0.89 ± 0.06 0.85

Precision 0.97 0.92 ± 0.04 0.90

Sensitivity 0.97 0.93 ± 0.04 0.90

Specificity 0.99 0.96 ± 0.02 0.95

RF

Vigorous seedlings 160 (162) – 67 (69)

Weak seedlings 120 (131) – 49 (55)

Non-germinated seeds 128 (129) – 52 (54)

Overall accuracy 0.97 0.93 ± 0.03 0.94

Kappa 0.95 0.89 ± 0.04 0.92

Precision 0.97 0.93 ± 0.03 0.94

Sensitivity 0.97 0.93 ± 0.03 0.94

Specificity 0.98 0.96 ± 0.02 0.97

SVM

Vigorous seedlings 158 (162) – 60 (69)

Weak seedlings 110 (131) – 42 (55)

Non-germinated seeds 127 (129) – 48 (54)

Overall accuracy 0.94 0.89 ± 0.03 0.84

Kappa 0.90 0.83 ± 0.04 0.76

Precision 0.94 0.89 ± 0.02 0.84

Sensitivity 0.93 0.89 ± 0.03 0.84

Specificity 0.97 0.94 ± 0.02 0.92

Figure 1.  Star plot for the metrics of the machine learning classifiers tested. Classifications based on seed 
appearance (a) and physiological quality (b).
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The machine learning methods applied in this study were efficient for classification of seed physiological 
quality. We found overall accuracy of 0.94 in the interactive method and accuracy of up to 0.94 in the external 
classification using the independent validation set for RF (Tables 3, 4). This technique opens new perspectives 
for rapid analyses of soybean seed vigor and enables soybean seedling phenotyping for genetic studies. Other 
software programs have been developed to analyze soybean seed quality, mainly considering the length of seed-
lings, such as  SVIS24, VIGOR-S16,  SAPL25, and GroundEye (https ://www.tbit.com.br/). However, some software 
programs are commercial products, which restricts their use. Here, we present a free and efficient alternative for 
seed/seedling analysis that can be used by many researchers, laboratories, and institutions interested in applica-
tion of a highly efficient method for vigor classification of soybean seeds and seedlings.

A summary of the steps of the interactive method applied to soybean seed and seedling classification is shown 
in Fig. 3. Image acquisition is made on a blue background to facilitate segmentation and to improve the ROI 
probability map. The identification of individual seeds and seedlings can be seen immediately after the probabil-
ity map. Prediction of the classification of each seed or seedling is shown by the color of the respective groups.

The models developed can be improved to deal with more classes, and the Ilastik software provides all the 
tools necessary for this. The entire workflow of Ilastik (generic segmentation resources, nonlinear classifiers, 
probabilistic graphical models) is wrapped in an intuitive interface for interactive classifier training and post-
processing of segmentation and classification  algorithms4.

The machine learning algorithms applied to the external classification in this study have been used for com-
plex data sets of plant  phenotyping26. Methods such as LDA, RF, and SVM have been successfully used in plant 
science. The LDA is a popular machine learning algorithm that increases the distance between classes and reduces 
separability within the class, linearly combining features and creating limit estimates. The germination and vigor 
of Jatropha curcas seeds were accurately predicted using the LDA classifier combined with morphometric and 
tissue integrity resources obtained from X-ray images of  seeds14. The RF, for its part, is a non-linear classifier 
formed by many decision trees. It generates the final classification based on a voting system for each tree, and 
in the end, the algorithm selects the most voted  class27,28. In maize production areas in China, an RF-based clas-
sifier was developed using high-resolution remote-sensing images. The classifier was able to differentiate fields 
of seed and grain production and identify maize  varieties29. By 4, the interactive machine learning method of 
Ilastik uses an RF classifier with 100 trees for pixel  classification4. Lastly, SVM is a supervised algorithm that 
projects data into a higher dimensional resource space and identifies a hyperplane to separate classes with the 
most significant possible margin. The benefit of a hyperplane is its robustness to extreme values, considerably 
reducing false  classifications30. In addition, in a recent study on individual plants in Arabidopsis thaliana under 
different levels of various abiotic stresses, an SVM algorithm using microRNA concentrations as input resources 
was able to predict plant stress with high precision  (R2 = 0.96)31. These studies show the great potential of machine 
learning techniques.

Figure 2.  Relationship between seed appearance and seedling growth. Biplot of principal component analysis 
showing the importance of the seed quality parameters for class dispersion (a), probability of generating 
vigorous seedlings and weak seedlings or lack of germination of individual seeds according to their class (b), 
and seed appearance and the predominant aspect of the seedlings in each seed class (c).

https://www.tbit.com.br/
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Although our results were very promising, some limitations were noticed. The combined presence of different 
classes in the same individual seed is common in soybean. For example, a seed can be greenish and mechani-
cally kneaded. This may have negative implications for classification if the objective is to accurately quantify 
individual damages. Another limitation is related to the acquisition method. Although the use of 2D scanners 
and cameras are the most accessible and straightforward approach to obtain images, the 2D image does not cover 
all the seed faces. In our study, this limitation caused confusion between the HQS and MDS classes (Table 1) 
since the moisture damage in some cases was not very evident. In future studies, 3D images could be applied.

Genetic and environmental factors regulate seed appearance, which is strongly correlated with seed physi-
ological performance, as shown in the present study (Fig. 2). Interestingly, seeds with ruptured seed coats showed 
high vigor, which was similar to the high-quality seeds. It is believed that these ruptures are caused by genetic 
factors associated with environmental conditions during seed maturation. Although it is very common, there 
are few reports on the effect of this trait on seed physiological  quality32.

Furthermore, the mechanically kneaded seeds resulted in a high number of non-germinated seeds and weak 
seedlings (Fig. 2b). This damage is caused by mechanical impacts during seed harvesting or processing. Depend-
ing on the location of the damage, the seeds may generate an abnormal seedling or not germinate at all. Seeds 
with extremely low moisture content are more susceptible to breakage during mechanical operations at harvest 
and in processing. These seeds were in the BRS class, which had practically no germinated seeds.

Purple stained seeds generally resulted in weak seedlings (Fig. 2b). This characteristic is mainly caused by 
the fungi Cercospora kikuchii. Previous reports showed a weak correlation between this characteristic and seed 
physiological quality, though it does compromise seed marketing.

Environmental conditions during seed production and mainly after seed maturation can lead to moisture 
damage. These seeds generally have low seed  quality33, which leads to weak seedlings and a significant number 
of non-germinated seeds, as observed in the present study (Fig. 2b). Furthermore, high temperatures and water 
deficit during seed maturation can lead to green seed formation. These seeds have a low rate of seed germina-
tion (Fig. 2b).

Fast assessment of seed quality is essential for the seed industry. Rapid decision making regarding disposal 
or destination of seed lots saves time and resources. Thus, tools that can accurately evaluate seed lots and iden-
tify seeds of low physiological quality is of great importance. This study showed that it is possible to classify 
seeds according to their appearance, and these characteristics are strongly correlated with their physiological 
potential. Therefore, the proposed approach has potential for application in soybean seed lot classification for 
non-destructive, non-subjective, and fast screening of seeds. In addition, this method was able to classify soybean 
seedling vigor effectively and precisely.

Figure 3.  Representation of interactive machine learning steps and physiological quality classification in 
soybean seeds.
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conclusions
The interactive machine learning method for classification of soybean seeds from their appearance is highly 
accurate. This approach effectively identifies seeds with damage and classifies seedlings in vigor levels. The use 
of LDA, RF, and SVM algorithms is recommended for classifying soybean seeds and seedlings based on data 
generated with the Ilastik software. Soybean seeds with changes in chlorophyll degradation, fungal stains, and 
mechanical damage have low physiological quality.
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