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Genomic imprinting analyses 
identify maternal effects as a cause 
of phenotypic variability in type 1 
diabetes and rheumatoid arthritis
Inga Blunk 1*, Hauke Thomsen2,3, norbert Reinsch1, Manfred Mayer1, Asta försti2,4,5,6, 
Jan Sundquist4,7,8, Kristina Sundquist4,7,8 & Kari Hemminki2,4,9

Imprinted genes, giving rise to parent-of-origin effects (POEs), have been hypothesised to affect 
type 1 diabetes (T1D) and rheumatoid arthritis (RA). However, maternal effects may also play a role. 
By using a mixed model that is able to simultaneously consider all kinds of POEs, the importance of 
POEs for the development of T1D and RA was investigated in a variance components analysis. The 
analysis was based on Swedish population-scale pedigree data. With P = 0.18 (T1D) and P = 0.26 (RA) 
imprinting variances were not significant. Explaining up to 19.00% (± 2.00%) and 15.00% (± 6.00%) of 
the phenotypic variance, the maternal environmental variance was significant for T1D (P = 1.60 × 10−24) 
and for RA (P = 0.02). For the first time, the existence of maternal genetic effects on RA was indicated, 
contributing up to 16.00% (± 3.00%) of the total variance. Environmental factors such as the social 
economic index, the number of offspring, birth year as well as their interactions with sex showed large 
effects.

The failure of the immune system to distinguish self from non-self antigens is the basis for autoimmune disorders 
(AIs)1. Type I diabetes (T1D) is an AI that causes chronic destruction of pancreatic islet ß-cells and hyperglycemia 
due to reduced insulin  production2. With the incidence said to be increasing by 3–4% yearly, more than 20 mil-
lion individuals are estimated to have T1D  worldwide3. Rheumatoid arthritis (RA) is associated with autoantigen 
presentation with antigen specific T and B cell activation and aberrant inflammatory cytokine production. Con-
sequences thereof include synovitis, proliferation of synovia and cartilage, and subchondral bone  destruction4. 
The occurrence of RA is relatively constant and ranges between 0.5 and 1.0% in European and North-American 
 populations5. The exact etiology of T1D and RA remains largely  unknown1, however, a complex interplay of 
genetic, environmental, and epigenetic factors is  assumed4,6,7.

With regard to genetic factors, the strongest effects have been found within the major histocompatibility 
complex or human leukocyte antigen system. T1D and RA show genetic overlap in terms of associations within 
HLA, PTPN22, CTLA4, and TAGAP8. Causal loci explain over 80% of T1D heritability which reportedly ranges 
between 40 and 92%3. For RA, associated variants outside and inside of the major histocompatibility complex 
region explain about 5% and 60% of the  heritability9,10. Heritability estimates range between 12 and 60%11–13.

As disorder concordance rates in monozygotic twins have been observed to be less than 100%, AIs are 
assumed to be subject to epigenetic  modifications4,14–16. Perhaps the best-known example for all epigenetic phe-
nomena is imprinting, in which the expression of genes is either maternally or paternally inactivated. Inactivation 
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can either be full or  partial17. Partial imprinting occurs when the inactivation of alleles is not complete. For 
example, loci may be imprinted in a tissue-specific  manner18, or the imprinting status varies over time during 
the developmental  stages19. As they appear as phenotypic differences between heterozygotes depending on their 
parental allele origin, imprinting effects belong to the class of parent-of-origin effects (POEs)20. Imprinting has 
been identified in mammals, insects, and  plants21. It is nevertheless assumed that less than 1% of all genes in 
mammals are  imprinted20,22, however, they have important functions in stem cells, neuronal differentiation, 
development, and  growth22,23. In humans, imprinted genes are associated with diseases such as Prader–Willi 
 syndrome24, Angelman  syndrome25, and  cancer26,27. They are also assumed to affect susceptibility to diabe-
tes. This assumption originates from observations that T1D is preferentially expressed by children of T1D-
affected  fathers28–30. Whether this observation is due to imprinting or other factors is not clear since findings 
are  contradictory29,31. With regard to RA, the existence of imprinting has been discussed since its incidence 
is considerably higher in women than in  men32. However, imprinting studies are rare and results have been 
inconclusive; the role of imprinting in RA susceptibility is therefore not yet  understood33,34. Imprinted genes 
are difficult to detect in conventional association studies as their effects depend on the parental origin of the 
risk  allele35. The incorporation of knowledge on whether imprinting affects susceptibility to T1D and RA could 
increase the power to find causal  genes34. Moreover, the development of therapeutic approaches targeting these 
genes or their regulators could be  improved33. Therefore, the first goal of this study was to investigate the impact 
of imprinting on the susceptibility to T1D and RA in a variance components analysis by applying a unique mixed 
model (imprinting model). The model allows for the simultaneous consideration of all kinds of imprinting pat-
terns (full, partial, maternal, and paternal). As it has never been applied to human population data before, it 
opens up new opportunities for understanding the etiology of T1D and  RA17,36–40.

In an imprinting variance components analysis, maternal effects must be accounted for in the model to avoid 
inflated  estimates41. The second research goal was therefore to incorporate maternal effects into the statistical 
model; not only to prevent biases in the imprinting variances, but also to investigate the maternal contribution 
to T1D and RA susceptibility. Like imprinting effects, maternal effects contribute to the broader class of POEs. 
However, their variation is assigned to the environmental contribution to the phenotypic variance. According to 
 Falconer42, they are defined as prenatal and postnatal effects on offspring and can have two main components. 
The first component is the maternal genotypic effect on, for example, the birthweight of her children (mater-
nal genetic effect)43. The second component is the maternal environmental effect on the birthweight of her 
 offspring42. This component refers to the permanent environmental effects of the mother on all of her offspring 
and can therefore also be considered a shared household  effect42. Although T1D and RA differ in their average 
age of onset, attention must be given to the maternal contribution in the development of both diseases since 
early environmental factors can permanently modify the development of the immune  system44. The imprinting 
model is able to separate maternal effects from maternal imprinting effects, allowing the first imprinting variance 
components analysis to be performed in human population genetics.

The third goal of this study was to gain knowledge on the importance of sex and environmental triggers such 
as birth year, social economic index, and the number of offspring on the susceptibility to T1D and RA. Overall, 
this study brought to light the complex interplay between genetic, epigenetic and environmental factors in the 
development of autoimmunity.

theory
A unique mixed model, previously used on animal data, was applied to investigate the existence of 
 imprinting36–40,45. The advantage this model confers is that it is able to simultaneously consider all kinds of 
imprinting (i.e. maternal, paternal, full, and partial imprinting) in its  analyses17, ultimately separating maternal 
imprinting effects from maternal “non-imprinting” effects (e.g., maternal environmental and maternal genetic 
effects). This was not possible with previous population-scale imprinting analyses models, for example, that 
of Engellandt and  Tier46. Our imprinting model estimates two parental gametic variances and one covariance 
simultaneously. It is written as:

 where Y is a vector of the response variable; b is a vector of fixed effects; gs is the vector of random gametic 
effects under a paternal expression pattern; gd is the vector of random gametic effects under a maternal expres-
sion pattern; X, Zs, and Zd are the corresponding incidence matrices; and e is the vector of random residuals. 
The variance–covariance structure is:

 where σ 2
s  and σ 2

d  are the gametic variances and σsd is the covariance. Matrix G is the gametic relationship matrix 
reflecting the relationships between the gametes of all individuals in a pedigree. It is therefore twice the size 
of the number of individuals included in the  analysis47,48. The symbol ⊗ denotes the Kronecker product. The 
imprinting effect is defined as the vector of differences (gs − gd) and the corresponding variance of differences is 
σ 2
i = σ 2

s + σ 2
d−2σsd , which represents the imprinting variance. Where no imprinting is observed, σ 2

s = σ 2
d = σsd 

and σ 2
i = 0.

Y = Xb + Zsgs + Zdgd + e, (imprinting model)
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Results
Parent-of-origin effects. Type 1 diabetes. Genomic imprinting. Using a REML log-likelihood ratio 
test (RLRT), the significance of the imprinting variance was tested by comparing the logarithmic value of the 
restricted maximum likelihood (REML log-likelihood) of the linear imprinting model to the REML log-likeli-
hood outcome of a corresponding linear Mendelian model (equivalent null model that assumes the non-exist-
ence of imprinting). At a 5% significance level, the analysis revealed that imprinted genes did not significantly 
contribute to the total genetic variance in T1D susceptibility in the Swedish population data (P = 0.18).

Maternal effects. Initially, data were analysed using linear models in order to test the significance of the vari-
ance components. First, a linear model that ignored maternal effects was applied, i.e. only the genetic effect of 
the individual was included in the model (Mendelian model 1). This led to a T1D heritability estimate (h2) of 0.19 
(± 0.1 × 10−1), i.e. 19% of the phenotypic variation in T1D is due to the variation in genetic factors in the analysed 
population (Fig. 1). Adding a maternal environmental effect to the model (Mendelian model 2) revealed signifi-
cant maternal environmental variance with P = 1.60 × 10−24. The relative maternal T1D environmental variance 
was 0.19 (± 0.2 × 10−1), i.e. 19% of the phenotypic variance in T1D is due to the variation in maternal environ-
mental effects (Fig. 1). Heritability was reduced to 0.10 (± 0.1 × 10−1). Augmentation of Mendelian model 2 by the 
maternal genetic effect (Mendelian model 3) did not change the REML log-likelihood or variance component 
ratios (Fig. 1). More detailed information on the variance component estimates in T1D and REML log-likeli-
hood models is provided in Supplementary Table S1.

In addition to the linear models, threshold models were applied to account for the binary nature of the phe-
notypic traits. However, each of the threshold models could only pick up one variance component, i.e. with the 
addition of parameters, the same amount of variation was explained by additive genetic effects, then by maternal 
environmental effects, and then by maternal genetic effects (Table 1).

Rheumatoid arthritis. Genomic imprinting. As maternally derived environmental and genetic effects could 
not be unambiguously disentangled, the imprinting model was applied in two forms: (a) with only the maternal 
environmental effect in addition to the two parental gametic effects, and (b) with only the maternal genetic 
effect in addition to the two parental gametic effects. The RLRT of model version (a) did not indicate significant 
imprinting variance (P = 0.26). Model version (b) led to a REML log-likelihood of 8,408.70, which was slightly 
smaller than the REML log-likelihood obtained from the corresponding null model containing a gametic effect 
and a maternal genetic effect (8,408.88). Because the addition of a parameter to a model should result in an 
REML log-likelihood value either being equal to or larger than that found here, these results could indicate a flat 
likelihood surface or numerical inaccuracies.

Maternal effects. Maternal effects were initially ignored (Mendelian model 1), which resulted in an h2 value of 
0.10 (± 0.3 × 10−1; Fig. 1). Following the inclusion of a maternal environmental effect (Mendelian model 2), the 
h2 value was reduced to 0.85 × 10−1 (± 0.3 × 10−1). The corresponding maternal variance component was signifi-
cant at a 5% significance level (P = 0.02). The relative maternal environmental variance was 0.15 (± 0.6 × 10−1; 
Fig. 1). While the REML log-likelihood value was not significantly altered upon addition of the maternal genetic 
effect (P = 0.21; Mendelian model 3), the relative maternal RA genetic variance estimate was 0.14 (± 0.4 × 10−1; 
Fig. 1), the h2 estimate dropped to zero and the relative maternal environmental variance was reduced from 0.15 
(± 0.6 × 10−1) to 0.49 × 10−1 (± 0.7 × 10−1). To investigate the importance of maternal genetic effects in more detail, 

Figure 1.  Phenotypic variance of type 1 diabetes (a) and rheumatoid arthritis (b) is partitioned into the residual 
variance (gray), additive genetic variance (green), maternal environmental variance (blue), and maternal genetic 
variance (red). The variance components were estimated using models with a gametic effect (g), a maternal 
environmental effect (c), a maternal genetic effect (m), and a residual (e). Standard errors are indicated by error 
bars.
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a linear model that corresponded to the Mendelian model 2 but substituted the maternal environmental effect 
with maternal genetic effect was applied. The application of this model resulted in a relative maternal genetic 
variance of 0.16 (± 0.3 × 10−1) and an h2 estimate of zero (Fig. 1). The RLRT indicated a significantly better fit in 
comparison to Mendelian model 1 (P = 0.01). Comparing the results to those associated with Mendelian model 3, 
the REML log-likelihood was not significantly different (P = 0.53). Detailed information on RA variance compo-
nent estimates and REML log-likelihoods of the models is provided in Supplementary Table S2.

The threshold version of Mendelian model 1 resulted in an h2 of 0.26 × 10−1 (± 0.2 × 10−1). As an equal additive 
genetic variance, and thus the same h2, was found using the threshold version of Mendelian model 2, maternally 
derived environmental factors appeared not to play a role (Table 1) in RA. However, when the maternal genetic 
effect was added (Mendelian model 3) the h2 value was 0.65 × 10−2 (± 0.1), while the maternal environmental 
variance remained zero and the relative maternal genetic variance was 0.20 × 10−1 (± 0.1; Table 1).

Environmental and sex effects. Type 1 diabetes. Birth year. Across all models (including linear and 
threshold models), the effects of the year of birth (ranging from 1944 to 2012) were shown to differ significantly 
(P < 1.00 × 10−3; Table 2; Supplementary Table S3). Effects increased until the end of the 1950s and started declin-
ing slightly at the beginning of the 1960s. The effects increased after 1972 until the mid-1980s, declined again 
until the mid-1990s, and have been increasing ever since (Fig. 2). With the exception of a strong increase of 
effects and standard errors in 1992 when applying the threshold models (data not shown), trends observed and 
effects generated under the threshold models were in accordance with those observed for the linear models.

Social economic index of the mother. When considering the social economic index (SEI), analyses revealed that 
the effects of the mother’s SEI differed significantly for T1D with P values ranging from 2.56 × 10−12 to 1.13 × 10−9 
across all models (Table 2; Supplementary Table S3). Although small, the largest effect (0.02; ± 3.00 × 10−3) was 
found for the intermediate group of non-manual employees (code 4). The lowest effect (− 2.00 × 10−3; ± 5.00 × 10−3) 
was found for professionals as well as higher civil servants and executives (code 5).

Medical region. To investigate the effect of geographical location on T1D susceptibility, medical regions were 
used. Using linear and threshold models, effects differed significantly for T1D across medical regions with P 
values ranging from 2.12 × 10−156 to 4.60 × 10−104 (Table 2; Supplementary Table S3). As depicted in Fig. 3, effect 
sizes varied widely across Sweden.

Sex. A slight male skew towards T1D was observed (14,626 male vs. 12,629 female), with significantly different 
effects seen across all models for sex. P values ranged from 8.05 × 10−225 to 3.23 × 10−20 (Table 2; Supplementary 
Table S3). The analyses further revealed significant interactions between sex and birth year with P values ranging 
from 1.50 × 10−50 to 3.45 × 10−11 (Table 2; Supplementary Table S3). Minimal changes were found for estimates 
across models. The effect of male sex on T1D increased proportionally with birth year starting in 1965, reaching 
its highest point in the late 1970s, and declined until no interactions could be observed in 1990 (Supplementary 
Fig. S1).

Rheumatoid arthritis. Birth year. Ranging from 1939 to 2007, the effects of birth year differed significantly 
across all models with P values ranging from 3.34 × 10−265 to 2.64 × 10−24 (Table 2; Supplementary Table  S3). 
Negative effects were observed from 1939 with the lowest point obtained in 1958. Since then, RA susceptibility 
has increased with a positive effect being observed in 1963; a trend that continued until the end of the 1970s. 
The trend remained constant for approximately 10 years, with a slight increase noticeable towards the end of the 
1980s. Increasing standard errors must however be noted (Fig. 2). While a similar trend was observed for the 
threshold models (data not shown), effects increased in 1974 and remained constant before decreasing in 1991. 
Large standard errors were observed for effects after 1973.

Table 1.  Heritability (h2), relative maternal environmental variance (c2), and relative maternal genetic variance 
(m2) for type 1 diabetes (T1D) and rheumatoid arthritis (RA) estimated using threshold models with a gametic 
effect (g), a maternal environmental effect (c), a maternal genetic effect (m), and a residual effect (e). Standard 
errors are in parentheses.

Mendelian model 1 Mendelian model 2 Mendelian model 3

g + e g + c + e g + c + m + e

T1D

h2 0.44 × 10−1 (± 0.1 × 10−1) 0.00 (± 0.0) 0.00 (± 0.0)

c2 0.47 × 10−1 (± 0.1 × 10−1) 0.00 (± 0.0)

m2 0.52 × 10−1 (± 0.1 × 10−1)

RA

h2 0.26 × 10−1 (± 0.2 × 10−1) 0.26 × 10−1 (± 0.2 × 10−1) 0.65 × 10−2 (± 0.1)

c2 0.00 (± 0.0) 0.00 (± 0.0)

m2 0.20 × 10−1 (± 0.1)
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SEI of individual. The SEIs of individuals significantly differed for RA with an average P value of 1.66 × 10−9 
for linear models and P = 0.01 for threshold models (Table 2; Supplementary Table S3). Effect estimates varied 
little across models. The largest effect (0.11; ± 0.03) was found for unskilled or semi-skilled workers, while the 
lowest effect (0.02; ± 8.00 × 10−3) was observed for foremen in industrial production and assistant non-manual 
employees.

SEI of the mother. Maternal SEIs had a small but significant effect on RA susceptibility in offspring under both 
the linear and threshold models. P values ranged from 0.01 to 0.02 (Table 2; Supplementary Table S3). Effects 
varied little across models with similar estimates being calculated. The lowest effect was found for foremen in 
industrial production and assistant non-manual employees (− 0.03; ± 0.01), followed by skilled manual workers 
(− 0.01; ± 0.01). Except for the unknown SEI group, the highest effect was found for the group of professionals as 
well as higher civil servants and executives (4.00 × 10−3; ± 0.01).

Number of offspring. In the dataset, women had an average number of 1.94 children (ranging from zero to 
11 children; sd = 1.25), while men had an average number of 2.04 children (ranging from zero to 11 children; 
sd = 1.37). The number of offspring affected RA development significantly across all models (P < 1.00 × 10−3). An 
inverse and almost linear relationship between RA susceptibility and the number of children is depicted in Fig. 4. 
While effects greater than zero were estimated for individuals with zero, one or two children, decreasing effects 
were observed below zero for individuals with more than two children.

Medical region. Medical regions, serving as the proxy for residential and geographic location, differed signifi-
cantly in their impact on RA with P values ranging from 0.70 × 10−2 to 0.01 across all models (Table 2; Supple-
mentary Table S3). Effect sizes varied widely across Sweden and were generally small with large standard errors 
(Supplementary Fig. S2).

Single child. We found that being a single child or having siblings made a significant difference regarding RA 
susceptibility with P values ranging from 0.01 to 0.02 across the models (Table 2; Supplementary Table S3). For 
the linear models, the mean estimated effect of being a single child was − 0.02 (± 9.00 × 10−3), while an effect of 
− 0.15 (± 0.06) was observed under the threshold models.

Table 2.  Overview of incremental Wald F values (F), number of numerator degrees of freedom (DF), number 
of denominator degrees of freedom (DFden), and the P values (P) for all fixed effects on type 1 diabetes (T1D) 
and rheumatoid arthritis (RA), which were sex, birth year, social economic index (SEI), number of offspring 
(no. offspring), medical region, SEI of the mother  (SEImother), years under observation  (yearsobs), and whether 
an individual was a single child or not (single child). Linear mixed models were used containing a gametic 
effect (g), a gametic effect as father (gs), a gametic effect as mother (gd), a maternal environmental effect (c), a 
maternal genetic effect (m), and a residual effect (e).

Effect DF

Mendelian model 1 Mendelian model 2 Mendelian model 3 imprinting model

g + e g + c + e g + c + m + e gs + gd + c + e

DFden F P DFden F P DFden F P DFden F P

T1D

Birth year 67 68,461.1 1,696.76 0.00 69,638.8 1,579.83 0.00 69,631.0 1,579.70 0.00 69,586.8 1,577.98 0.00

SEImother 5 70,870.5 12.35 5.35 × 10−12 68,490.8 12.64 2.68 × 10−12 68,489.6 12.64 2.68 × 10−12 68,395.0 12.66 2.56 × 10−12

Sex 1 70,917.7 1,032.05 8.05 × 10−225 70,779.3 971.73 6.88 × 10−212 70,779.3 971.68 7.05 × 10−212 70,464.8 892.65 6.45 × 10−195

Sex*birth year 67 69,252.5 6.12 1.50 × 10−50 70,163.3 6.12 1.50 × 10−50 70,157.3 6.12 1.50 × 10−50 70,105.4 6.11 1.98 × 10−50

Medical region 25 50,691.5 32.97 2.12 × 10−156 47,088.9 32.50 7.34 × 10−154 47,120.5 32.50 7.33 × 10−154 47,038.1 32.52 5.80 × 10−154

Yearsobs 3 70,670.0 1,086.26 0.00 70,689.1 1,086.68 0.00 70,687.3 1,086.68 0.00 70,674.5 1,086.92 0.00

RA

Birth year 56 20,417.2 26.69 3.34 × 10−265 20,513.0 25.01 7.06 × 10−247 20,356.1 24.54 1.14 × 10−241 20,067.2 23.07 1.84 × 10−225

SEI 5 20,858.0 9.89 1.84 × 10−9 20,853.7 9.93 1.68 × 10−9 20,851.0 9.94 1.64 × 10−9 20,811.1 9.98 1.49 × 10−9

SEImother 5 20,845.5 2.98 0.11 × 10−1 20,194.7 2.99 0.11 × 10−1 20,068.6 2.95 0.12 × 10−1 20,134.7 2.98 0.11 × 10−1

Sex 1 20,852.5 686.42 6.86 × 10−149 20,829.9 680.46 1.24 × 10−147 20,856.2 642.81 1.06 × 10−139 20,850.8 620.47 5.54 × 10−135

Sex*birth year 56 20,516.0 1.38 0.32 × 10−1 20,607.1 1.38 0.32 × 10−1 20,526.9 1.38 0.32 × 10−1 20,170.0 1.39 0.29 × 10−1

Sex*SEI 5 20,833.9 6.29 7.71 × 10−6 20,798.3 6.24 8.64 × 10−6 20,815.4 6.26 8.25 × 10−6 20,729.7 6.26 8.25 × 10−6

Sex*no. offspring 11 20,799.0 8.58 2.51 × 10−15 20,605.9 8.59 2.39 × 10−15 20,587.5 8.57 2.64 × 10−15 20,256.6 8.58 2.52 × 10−15

No. offspring 11 20,681.9 175.65 0.00 20,472.8 175.61 0.00 20,537.8 175.55 0.00 20,478.7 175.70 0.00

Medical region 25 16,126.9 1.81 0.80 × 10−2 16,090.3 1.81 0.80 × 10−2 17,638.6 1.82 0.70 × 10−2 15,772.9 1.84 0.65 × 10−2

Single child 1 20,857.7 6.33 0.12 × 10−1 20,804.6 6.14 0.13 × 10−1 20,537.8 6.09 0.14 × 10−1 20,760.6 6.14 0.13 × 10−1

Yearsobs 3 20,653.1 13.66 6.73 × 10−9 20,688.3 13.76 5.82 × 10−9 20,520.3 13.68 6.54 × 10−9 20,314.2 13.60 7.35 × 10−9
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Sex. The incidence of RA was considerably higher in women than in men with 11,442 female and 4,408 male 
cases, respectively. Sex effects were significantly different with P values ranging from 6.86 × 10−149 to 6.61 × 10−101 
across models (Table 2; Supplementary Table S3). Interactions between sex and birth year were significant only 
under the linear models (P = 0.03; P = 1.00 in the threshold models). No clear trend was visible for interaction 
effects amongst male patients (Supplementary Fig. S1). Significant interactions between sex and SEI (average 
P value of 4.56 × 10−6) as well as between sex and the number of offspring were observed (average P value of 
2.55 × 10−15). The latter interaction was not significant using threshold models (average P value of 0.48; Sup-
plementary Table S3).

Linear versus threshold model. Firstly, the concordance across the linear and threshold model results 
were investigated by comparing the predicted genetic values under Mendelian model 1. High Pearson correla-
tion coefficients were obtained with r = 0.99 for both T1D and RA. The linear relationships are shown in Sup-
plementary Fig. S3. Secondly, threshold genetic values were fitted using the linear genetic values as independent 
variables. These results and their respective residual values are shown in Supplementary Fig. S3. The residual 
variation was fairly constant with some outliers observed over the entire range for T1D and RA.

Discussion
Parent-of-origin effects. Our finding that imprinting did not seem to affect T1D susceptibility supported 
previous findings by McCarthy et al. (1991), who analysed the importance of imprinting in an epidemiologi-
cal study of clinical data from the Children’s Hospital of Pittsburgh IDDM Registry in Pennsylvania,  USA29. 
They rejected the imprinting hypothesis and suggested that other genetic and environmental factors may have 
caused disease  occurrence29. In addition, Guo and Tuomilehto (2002) stated that the male preponderance in 
T1D prevalence, fecundity differences, misclassification of T1D and birth order effects could have led to a higher 
T1D-prevalence in children of T1D-affected  fathers30. In contrast, a genome-wide association study of Euro-
pean T1D patients showed that an imprinted T1D-associated locus was located within the maternally expressed 
MEG3  gene31.

With regard to RA our findings are consistent with observations made by Zhou et al. (2007), who found that 
imprinting is unlikely to affect the susceptibility to  RA34. In most tissues, the IGF2 (insulin-like growth factor 

Figure 2.  Effects of birth years on the susceptibility to type 1 diabetes (a) and rheumatoid arthritis (b). For 
type 1 diabetes, effects were estimated using a linear mixed model that includes a random gametic effect and a 
random maternal environmental effect. For rheumatoid arthritis a random maternal genetic effect was added. 
The standard errors are indicated by error bars.
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Figure 3.  Effects of counties on the susceptibility to type 1 diabetes summarised into medical regions in 
Sweden. Effects were estimated using a linear mixed model that includes a random gametic effect and a random 
maternal environmental effect. Standard errors are indicated by error bars. Coordinates of Sweden were 
downloaded from https ://www.scb.se/hitta -stati stik/regio nal-stati stik-och-karto r/regio nala-indel ninga r/digit 
ala-grans er/ (accessed in November 2019) in the ArcView-shape format. Data were edited using the “readOGR” 
function implemented in the R-package “rgdal” version 1.4-8 (Bivand, R., Keitt, T. & Rowlingson, B. rgdal: 
Bindings for the ’Geospatial’ Data Abstraction Library. R package version 1.4-8. (2019)) which was used in R 
version 3.6.1 (R Core Team (2019). R: A Language and Environment for Statistical Computing (R Foundation 
for Statistical Computing, Vienna, Austria)).

https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/regionala-indelningar/digitala-granser/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/regionala-indelningar/digitala-granser/


8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11562  | https://doi.org/10.1038/s41598-020-68212-x

www.nature.com/scientificreports/

2) gene is only paternally expressed, i.e. the maternal allele is imprinted. Martin-Trujillo et al. (2010) found an 
increased expression of IGF2 in a subset of RA fibroblast-like  synoviocytes33. This cell type forms the synovial 
intimal lining and contributes to cartilage destruction and synovial  inflammation49. The authors reported that 
IGF2-linked “loss of imprinting” was responsible for the increased expression that contributed to the autonomous 
growth of RA fibroblast-like  synoviocytes33. These findings demonstrated the effects of partially imprinted loci 
on RA susceptibility.

In our study, the hypothesis that imprinted loci were the major cause influencing T1D and RA susceptibility 
was rejected. However, where a small number of fully or partially imprinted genes with small or moderate effect 
sizes does exist, the relative imprinting variance (ratio between the imprinting variance and the total additive 
genetic variance) is expected to be small. Although the imprinting model considers all kinds of  imprinting17,36,37, 
our study may have been underpowered and therefore unable to obtain statistical significance. Power to detect 
significant imprinting variances depends on both the h2 value of a trait and relative imprinting variance. In this 
study, heritability estimates for T1D and RA were comparatively small at 19.00% and 10.00%, respectively. How-
ever, h2 estimates vary widely in literature; T1D estimates range between 40 and 92%3 while RA estimates range 
between 12 and 60%11–13. Estimates also depend on the underlying data or the method used in the analysis. For 
example, twin studies result in broad sense heritability estimates where epigenetics are not taken into account. 
This increases the risk of inflated  estimates3,50. Furthermore, sample size and pedigree information affect the 
ability to estimate genetic parameters and thus the power to detect significance. The depth of the pedigrees was 
theoretically sufficient to derive imprinting variances, but coancestry information between the maternal and 
paternal gametes of individuals with RA phenotypes would be a requirement for imprinting variance compo-
nents analyses. In this context, the availability of genealogy databases in combination with genotypic data would 
increase the traceability of coancestries. Examples of such databases include the Utah Population database and a 
number of reliable Icelandic  databases51,52. The availability of population-scale family  trees53 would further allow 
the determination of the parental origin of  alleles54 and generally enable large scale human population studies 
on epidemiological  history55. Overall, the reliability of data and its impact on T1D and RA diagnoses must be 
discussed. According to Ludvigsson et al. (2011) the ratio of correct diagnoses for RA in the Swedish Hospital 
Discharge Register is 93.5% and 87.1% with and without lymphoma, respectively. In this study, no distinction 
was made between T1D and T2D from ICD-7 through ICD-9. T1D was therefore defined according the age at 
first hospitalisation as being not older than 20 years. For T1D and T2D 79% of cases were correctly diagnosed. 
The Swedish Hospital Discharge Register has provided complete national coverage since 1987 with more than 
99% of all somatic hospital discharges currently  registered56.

The replicability of the results of this study depends on the available data basis. Our results are based on data 
collected until 2007 (RA) and 2012 (T1D). The constant upgrade of the Swedish Hospital Discharge Register, 
supported by an increasing digitization of data collections, will further improve the size of good quality data 
and increase the pedigree depth so that higher power to detect significance can be expected when fitting our 
methods. Furthermore, while disease incidences in the data may not reflect the population incidences, the 
extension of data will lead to an accumulation of information on family affiliations as well as on the occurrence 
of the disorders across generations. This will improve the efficiency of estimating heritability in general and the 
separation of variance components in particular.

With regard to the impact of the mother, we found highly significant maternally derived environmental effects 
on T1D susceptibility. This finding is supported by Hirschhorn (2003) who stated that there are convincing data 
that non-genetic factors, such as environmental factors in early childhood, play a role in T1D  susceptibility7, while 
Nisticò et al. (2012) found significant effects of the shared environment on T1D susceptibility in an Italian twin 
cohort  study57. Maternal environmental effects are expected to especially affect an individual in utero, perinatally, 
or during early childhood (familial environment)58. Factors such as early exposure to cow milk and cereals or a 
shortened duration of breastfeeding have been mentioned in this  context58. In addition, we found the mother’s 
SEI to have a significant effect on T1D susceptibility in her offspring. It should however be considered that the SEI 

Figure 4.  Effects of the number of offspring on the susceptibility to rheumatoid arthritis estimated using a 
linear mixed model that includes a random gametic, a random maternal environmental, and a random maternal 
genetic effect. The standard errors are indicated by error bars.



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11562  | https://doi.org/10.1038/s41598-020-68212-x

www.nature.com/scientificreports/

of a mother is in itself influenced by her environment. Examples include her husband’s SEI or other life circum-
stances. Apart from indications for the importance of maternal environmental effects, corresponding variance 
component analyses in full-sib populations could indicate the existence of an autosomal dominant inheritance 
pattern. However, based on findings from studies in Finland and the University of Southern California, Jerram 
and Leslie (2017) concluded that T1D susceptibility is unlikely to be affected by autosomal dominant  genes59.

With regard to RA, the maternal genetic variance was found to be significant when maternal environmental 
effects were not part of the model. Moreover, results indicated an inflation of both, the additive genetic and the 
maternal environmental variance by maternal genetic effects if ignored in the models. The threshold model 
results underline these findings. Maternal genetic effects on RA susceptibility have not been reported before. 
However, as sex-linked effects such as X-chromosomal and mitochondrial effects were not considered in the 
analysis, an inflation of the maternal genetic variance cannot be excluded. The role of the X-chromosome for 
the development of RA has previously been discussed; however, these studies have focused on the impact of 
skewed X-chromosomal inactivation in the context of sex differences in RA  susceptibility60,61. In addition, the 
existence of maternal environmental effects on RA susceptibility cannot be excluded. In utero effects, which 
include maternal  smoking62 or protective effects of maternal non-inherited HLA-antigens63, breast-feeding in 
perinatal  life64, or hygiene standards during postnatal  development44 have been reported. This study found that 
RA development was affected by the mother’s SEI. To conclude, while their relative importance could not clearly 
be quantified, both maternal genetic and environmental effects are indicated in RA susceptibility. Furthermore, 
while the ability to estimate covariances depends on the population  structure65, the existence of covariances 
between additive and maternal genetic effects is nevertheless possible given that the h2 value was reduced to zero 
when a maternal genetic effect was added to the various models.

Regardless, our study clearly indicated the significance of maternal effects on the development of T1D and 
RA. This was important as some of the contributory factors could be modified, possibly leading to the prevention 
of disease or treatment  interventions66.

Environmental and sex effects. The development of T1D and RA were found to be significantly dif-
ferent over the last century when considering the effects of the year of birth. With regard to T1D, Gale (2002) 
stated that an increase in the incidence thereof over the second half of the twentieth century within a genetically 
relatively stable population would imply that environmental factors play a role in its  etiology67. Hence, birth 
year effects could be attributed to environmental factors which have changed during the last century. There is 
a reason to suspect that these factors are linked to adjustments in living conditions which are, among others, 
affected by the economic state of a country. The Swedish economy has been characterised by a steady accelera-
tion in economic growth with decelerations observed during the 1970s and early  1980s68. Increased disposable 
incomes are usually associated with improved living conditions. That living conditions can have an effect on T1D 
susceptibility is supported by our finding that the SEI of the mother, and thus the environment she provides for 
her children, significantly affects their likelihood of being diagnosed with T1D. In earlier studies, the susceptibil-
ity to T1D has also been shown to be associated with increased, lifestyle-associated linear growth and  obesity69. 
While T1D susceptibility varied between regions, medical and the presumed corresponding residential regions 
were found to significantly affect the likelihood of being diagnosed with this condition. This finding is supported 
by Tzaneva et al. (2001), who reported that the onset of T1D is strongly dependent on the area of  residence70. 
Nevertheless, as observed in Fig. 3, the varying effects associated with the medical regions and year of birth 
might also be due to the periodic and regional variation in the construction of the Swedish Hospital Discharge 
Register and Outpatient Register. While the Swedish Hospital Discharge Register was founded in 1964 in six 
Swedish counties mainly located in the Uppsala region, its nationwide launch was only in 1986. Notably, the 
Swedish Hospital Discharge Register is now almost 100% with lower coverage of hospital-based outpatient care 
(approximately 80%)56.

As rheumatoid arthritis usually occurs later in life, it cannot accurately be determined which environmental 
factors have operated during a lifetime. There is evidence that an immune system can be permanently modified 
by environmental factors at an early age, with growth, nutrition and infectious exposure already having activated 
the immune system before disease  onset44. This was supported by our novel finding that the SEI of the mother 
significantly affected RA susceptibility in children and that the SEI of the individual affected RA susceptibility 
later in life. The latter effect is also influenced by environmental factors such as the intake of oral  contraceptives71. 
In addition, an inverse relationship between the total number of children and RA susceptibility was found. 
Pregnancy has been reported to typically ameliorate symptoms of  RA72 and breast feeding is known to decrease 
RA  susceptibility64. With regard to men, causal effects remain to be discussed. It should be noted that while the 
effect of the number of children on RA susceptibility was not investigated separately in women and men, sig-
nificant interactions between sex and the number of children underline existing sex-associated differences. The 
difficulty in determining when environmental triggers occurred in individual life times may be reflected in the 
challenging endeavor of estimating the effects of medical regions on disease susceptibility. No information was 
available for how long individuals have resided in the analysed regions, potentially explaining the small effects 
and large standard errors. However, as for T1D, the periodic and regional variation in the data collection might 
also be a reason for  this56. Nevertheless, geographical variation in RA incidence has previously been reported. 
Indications were found for the lower incidence rates in South European countries compared to North American 
and north European  countries73,74.

In the context of sex differences in T1D and RA susceptibility, effects of the X-chromosome, sex hor-
mones, sex-specific behavior, and sex-specific differences in body composition and structure have been 
 discussed32,60,61,75,76. Our study confirmed that there was a significant sex effect in the development of both 
disorders. Moreover, especially for T1D, significant interactions between sex and birth year were found. This 
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raises the question whether environmental effects preferentially interact with either sex. Based on the hypothesis 
that the prevalence of T1D amongst males increases proportionally in relation to disease incidence when the 
underlying environmental causes preferentially affect males, Gale and Gillespie (2001) reviewed sex ratios in 
T1D-incidence in multiple populations. They found that, although disease incidence increased, the sex ratio 
does not change and the trend towards male cases is specific for some  populations75. They concluded that envi-
ronmental effects do not interact with males over females. In our study, the effect of sex on T1D was only visible 
from 1960 to the mid-1980s.

Linear versus threshold model. One difficulty in this study was that the affection status was measured 
as a categorical trait with binomial distributions. Therefore, the linear models are not appropriate to analyze 
this data type. Nevertheless, statistical significance of genetic parameters could only be tested using the REML 
log-likelihood of linear models via RLRT. When a threshold model is used, the ASReml-package employs an 
approximate likelihood (penalised quasi-likelihood) that cannot be used to test  differences77. There are currently 
no alternatives to the ASReml-package for our specific imprinting analysis as it is the only package that allows 
setting an appropriate correlation between the two parental gametic effects. This function ensures equivalence 
between the Mendelian and imprinting models. Equivalence is needed to perform an RLRT. Regarding the utilisa-
tion of linear and threshold models, both models generated similar results in uncovering the underlying genetic 
variation for T1D and RA. High correlations between the estimated genetic values indicated a fairly good fit of 
both models to the data.

Conclusion
Not only was new knowledge gained on the environmental effects on T1D and RA development, the separate 
contributions of each POE was able to delineate the genetic and phenotypic variation in T1D and RA suscepti-
bility for the first time. Results supported findings that imprinting was of minor importance, but confirmed the 
role maternal factors played in the occurrence of both diseases. The prospects of fitting complex genetic vari-
ance–covariance structures can be expected to further improve given the size of good quality epidemiological 
data and pedigree depth.

Material
General data. This study was based on Swedish population-based registries with national coverage. Registry 
entries were linked using each person’s unique identification number. To ensure participant confidentiality, this 
identification number was replaced by a serial number. The project registry was linked to the Multigeneration 
Register and Population Registers providing information on family relations, and SEI (in Swedish, socioekono-
misk indelning), medical region and birth year, respectively. Individuals diagnosed with AIs were identified 
from the Swedish Hospital Discharge Register (contains data regarding hospitalisation and diagnoses in some 
regions since 1964 and nationwide since  198678) and from the Outpatient Register since 2001. For further infor-
mation see Hemminki (2001) and Hemminki et al. (2009)79,80.

Type 1 diabetes. The data selection for T1D was strict. T1D was not defined as an independent entity 
until the ICD-10 (International Classification of Diseases) classification  system80. Therefore, T1D was defined 
through first hospitalisation until an age of 20 years in addition to the ICD codes (ICD-7 code 250, ICD-8 code 
260, ICD-9 code 260 or ICD-10 code E10) to unambiguously delineate T1D from type 2  diabetes81. Furthermore, 
as AIs were recorded from 1964, it was assumed that the health status of individuals born prior to 1944 can-
not be unambiguously defined. Therefore, only individuals born after 1943 were assigned a case/control status 
(Fig. 5). Furthermore, only individuals born in Sweden and with known maternal data were considered in the 
analyses. Overall 27,255 T1D patients (14,626 male and 12,629 female) and 43,856 controls (20,234 male and 
23,622 female) were used for the analyses. All individuals were born between 1944 and 2012. The age at diagnosis 
ranged between zero and 20 years with a mean age of 11 years (sd = 5.16; Supplementary Fig. S4). Ancestral data 
was extracted from the Multigeneration Register for all patients. The complete dataset included 208,114 individ-
uals (103,434 male and 104,680 female), with birth years ranging between 1862 and 2012. The dataset contained 
five generations with 111,626 founders and 23,124 families. The smallest family contained two individuals, and 
the largest 91 individuals. The average number of cases per family was 1.18 (the lowest number was one case per 
family; the highest number was 12 cases per family).

Rheumatoid arthritis. To not erroneously assign an individual with RA to the control status, health status 
was only declared for individuals born after 1938, i.e. for individuals not older than 25 years in 1964 when AIs 
registration was initiated (Fig. 5). Cases were selected according to the following codes: ICD-7 code 722, ICD-8 
codes 712.0, 712.1, and 712.3, ICD-9 code 714, and ICD-10 codes M05, M06, M08.0, and M08.2. Only indi-
viduals born in Sweden and with known maternal data were considered in the analyses. Overall 15,850 patients 
(4,408 male and 11,442 female) diagnosed with RA and 5,199 controls (2,358 male and 2,841 female) were used 
for the analyses. They were born between 1939 and 2007. The age at diagnosis ranged between zero and 73 years 
with a mean age of 46.29 years (sd = 16.65; Supplementary Fig. S4). Ancestral data was extracted from the Mul-
tigeneration Register for all patients. The generated dataset included 60,684 individuals (26,339 male and 34,345 
female), with birth years ranging between 1875 and 2007. The dataset contained five generations with 37,142 
founders and 15,314 families. The smallest family contained two individuals, and the largest 21 individuals. The 
average number of cases per family was 1.04 (the lowest number was one case per family; the highest number 
was six cases per family).
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Methods
The Mendelian models. To test the significance of the imprinting variance, a nested, equivalent version 
of the imprinting model must be applied. This model predicts a reduced number of parameters. It is called the 
Mendelian model as it represents the null-hypothesis that imprinting does not exist, i.e. the two parental gametes 
are not expressed differently (pure Mendelian inheritance). It can be written as:

where Y is a vector of the response variable; b is a vector of fixed effects; g is the vector of random gametic effects; 
X and Zg are incidence matrices; and e is the vector of random residuals. They are assumed to be normally dis-
tributed with a mean of 0 and variances Gσ 2

g .

Model extensions. Other POEs such as maternal genetic or maternal environmental effects have been 
reported to be potential nuisance factors, i.e. erroneously assumed to be maternal effects due to imprinting, if 
not considered within the model  definitions41. To be able to distinguish maternal effects due to imprinting from 
other POEs as well as to investigate the importance of the latter, the following versions of Mendelian model 1 
were applied:

where c and m are vectors of random maternal environmental and maternal genetic effects, respectively. They 
are assumed to be normally distributed with a mean of 0 and variances Ic σ 2

c  and Aσ 2
m . Matrix Ic is an identity 

matrix and A is the additive genetic relationship matrix; the incidence matrices Zc, and Zm relate observations 
and random effects. The significance of the additional random maternal environmental effect in Mendelian model 
2 was tested by comparing the REML log-likelihood values of Mendelian model 1 and Mendelian model 2 using a 
one-sided RLRT. The RLRT is assumed to be χ2-distributed with a degree of freedom (DF) of one. The significance 
of the maternal genetic effect in Mendelian model 3 was tested by comparing the REML log-likelihood values of 
Mendelian model 2 and Mendelian model 3 using a one-sided RLRT (χ2-distributed with DF = 1).

As described for T1D, the maternal environmental variance turned out to be significant. Therefore, the fol-
lowing imprinting model was used to investigate the significance of the imprinting variance in T1D:

This model is equivalent to Mendelian model 2 but assumes different contributions of maternal and paternal 
gametes to the susceptibility to T1D.

Y = Xb + Zgg + e, (Mendelian model 1)

Y = Xb + Zgg + Zcc + e, (Mendelian model 2)

Y = Xb + Zgg + Zcc + Zmm+ e, (Mendelian model 3)

Y = Xb + Zsgs + Zdgd + Zcc + e.

Figure 5.  Distribution of birth years of all individuals in the pedigrees (light gray) as well as of all controls 
(black) and cases (gray) of type 1 diabetes mellitus (a) and rheumatoid arthritis (b).
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With regard to RA, the existence of maternal environmental and maternal genetic effects could not be 
excluded. Hence, the imprinting model was applied with an additional maternal environmental effect (see above) 
but also with an additional maternal genetic effect:

In general, the significance of the imprinting variance was determined by comparing the REML log-likelihood 
value of the imprinting model with the REML log-likelihood outcome of the corresponding Mendelian models 
using a one-sided RLRT. The test statistic was assumed to be asymptotically distributed as a mixture of two χ2 
distributions with DF = 1 and DF = 236–40,82.

Calculation of population parameters. For the Mendelian models the direct heritabilities were calcu-
lated as h2Mendel = σ 2

a /σ
2
p  , where σ 2

a = 2σ 2
g  and σ 2

p = σ 2
g + σ 2

e  in Mendelian model 1, σ 2
p = σ 2

g + σ 2
e + σ 2

c  in 
Mendelian model 2, and σ 2

p = σ 2
g + σ 2

e + σ 2
c + σ 2

m in Mendelian model 3. The latter two expressions of σ 2
p  were 

used to calculate c2Mendel ( c2Mendel = σ 2
c /σ

2
p  ) for Mendelian model 2 and Mendelian model 3, respectively. To calcu-

late m2
Mendel ( m2

Mendel = σ 2
m/σ

2
p  ) for Mendelian model 3, σ 2

p  was defined as σ 2
p = σ 2

g + σ 2
e + σ 2

c + σ 2
m.

For the imprinting models the direct heritabilities were calculated as h2imp = σ 2
a /σ

2
p  , where σ 2

a = σ 2
gs + σ 2

gd and 
σ 2
p = σ 2

gs + σ 2
gd + σ 2

e + σ 2
c  or σ 2

p = σ 2
gs + σ 2

gd + σ 2
e + σ 2

m . The first expression of σ 2
p  can be used to calculate c2imp 

as c2imp = σ 2
c /σ

2
p  . The latter expression of σ 2

p  can be used to calculate m2
imp ( m2

imp = σ 2
m/σ

2
p).

Threshold model. As the case/control-status is denoted 1/0, the trait can be assumed binomially distrib-
uted. Hence, apart from the linear mixed models, which were needed for hypotheses testing, generalised linear 
mixed models (threshold models) were applied using a logit link and the pseudo-likelihood approach of Gil-
mour et al. (2015)77. The probability that an observation with index k belongs to class zero is:

 where – using Mendelian model 2 as an example—the linear predictor is:

 and xk, zg,k, and zc,k are the kth rows of the aforementioned incidence matrices X, Zg, and Zc and the vectors ß, g 
and c are defined as described for Mendelian model 2.

Fixed effects. Fixed effects included sex (2 levels; 1 = male, 2 = female), birth year (68 birth years for T1D; 57 
birth years for RA), medical region (26 levels; individuals lived in 25 medical regions [26 = unknown]), and the 
SEI of the mother (6 levels) for which the following codes were used:

1 = unskilled/ semi-skilled workers
2 = skilled workers
3 = foremen in industrial production and assistant non-manual employees
4 = intermediate non-manual employees
5 = employed and self-employed professionals and higher civil servants and executives
6 = unknown

Note that coding differed across the various versions of the population database. Therefore, they were adjusted 
and equalised according to the 2012 version. The time an individual was under observation was considered by 
including the Legendre polynomials from the years under observation up to order three (linear, quadratic and 
cubic). Additional effects included in the RA model were the SEI of the individual (6 levels), whether an indi-
vidual was a single child or had any siblings (2 levels; 1 = single child, 2 = siblings), and the number of offspring 
(12 levels; range of 0–11 children). Furthermore, interactions between sex and birth years were fitted for both 
disorders. Interactions between sex and SEIs, as well as sex and the number of offspring were considered for RA.

Note that due to the underrepresentation of individuals in birth year levels, individuals were shifted to the 
next birth year level so that at least five individuals were obtained for each level.

The significance of all fixed effects was tested using an incremental Wald F test implemented within the sta-
tistical software package ASReml version 4.277. Note that ASReml caters for linear dependencies in the model by 
setting singular effects to  zero83. Variance–covariance components were also estimated via ASReml. The R-pack-
ages “kinship2” version 1.6.484 and “pedigree” version 1.485 in R version 3.5.286 were used to prepare the data.

Coordinates of Sweden used for Fig. 3 and Supplementary Fig. S2 were downloaded from https ://www.scb.se/
hitta -stati stik/regio nal-stati stik-och-karto r/regio nala-indel ninga r/digit ala-grans er/ (accessed in November 2019) 
in the ArcView-shape format. Data were edited using the “readOGR” function implemented in the R-package 
“rgdal” version 1.4–887 which was used in R version 3.6.188.

Data availability
Individual-based data for research purposes is protected by strict confidentiality protections imposed by the 
Swedish Government and applied by Statistics Sweden, but can be made available for research after an ethical 

Y = Xb + Zsgs + Zdgd + Zmm+ e.

π(ηk) = exp (ηk)/
[

1+ exp (ηk)
]

,

ηk = xkβ + zg ,kg + zc,kc

https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/regionala-indelningar/digitala-granser/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/regionala-indelningar/digitala-granser/
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review and a review by both Statistics Sweden and the Swedish National Board of Health and Welfare. The Swed-
ish National Board of Health and Welfare may be contacted for data access using the following link: https ://www.
socia lstyr elsen .se/stati stik-och-data/stati stik/.
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