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plasma proteomics reveals 
markers of metabolic stress in HiV 
infected children with severe acute 
malnutrition
Gerard Bryan Gonzales1,2*, James M. Njunge3,4, Bonface M. Gichuki3,4, Bijun Wen5,6, 
isabel potani3, Wieger Voskuijl3,7,8, Robert H. J. Bandsma3,5,6 & James A. Berkley3,4,9

HIV infection affects up to 30% of children presenting with severe acute malnutrition (SAM) in Africa 
and is associated with increased mortality. Children with SAM are treated similarly regardless of HIV 
status, although mechanisms of nutritional recovery in HIV and/or SAM are not well understood. 
We performed a secondary analysis of a clinical trial and plasma proteomics data among children 
with complicated SAM in Kenya and Malawi. Compared to children with SAM without HIV (n = 113), 
HIV-infected children (n = 54) had evidence (false discovery rate (FDR) corrected p < 0.05) of metabolic 
stress, including enriched pathways related to inflammation and lipid metabolism. Moreover, we 
observed reduced plasma levels of zinc-α-2-glycoprotein, butyrylcholinesterase, and increased levels 
of complement C2 resembling findings in metabolic syndrome, diabetes and other non-communicable 
diseases. HIV was also associated (FDR corrected p < 0.05) with higher plasma levels of inflammatory 
chemokines. Considering evidence of biomarkers of metabolic stress, it is of potential concern that 
our current treatment strategy for SAM regardless of HIV status involves a high-fat therapeutic diet. 
The results of this study suggest a need for clinical trials of therapeutic foods that meet the specific 
metabolic needs of children with HIV and SAM.

Malnutrition, specifically undernutrition in all its forms, remains a global public health burden that accounts 
for 45% of all death among children under 5 years  old1. Despite careful monitoring and adherence to guidelines 
set by the World Health Organization, whilst in general, uncomplicated SAM cases treated in the community do 
well, up to 25% of children with complicated severe acute malnutrition (SAM) treated in a hospital environment 
do not  survive2–5. Furthermore, about one in five children treated for complicated SAM and discharged alive, die 
in the first year after discharge in low-resource  settings6–8. However, our understanding of the pathophysiology 
underlying the poor prognosis for these children is surprisingly limited.

Infection with the human immunodeficiency virus (HIV) is a common co-morbidity of SAM in sub-Saharan 
Africa affecting up to 30% of admissions among SAM  cases9. HIV-infected or exposed children are significantly 
more likely to be stunted, wasted, and  underweight10. They also more often present with other clinical complica-
tions and greater susceptibility to infections, thus further complicating their clinical management, which may 
include providing more aggressive antimicrobial therapy and higher caloric nutritional  intervention11. Moreover, 
response to clinical management is also less predictable and less well-understood in HIV-infected children com-
pared to their uninfected  counterparts12. Although acute opportunistic infections play a key role in the outcome 
of these children, intestinal pathology including inflammation and malabsorption, and metabolic perturbations 

open

1Department of Gastroenterology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 
Belgium. 2VIB Inflammation Research Centre, Ghent, Belgium. 3The Childhood Acute Illness & Nutrition 
(CHAIN) Network, Nairobi, Kenya. 4KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya. 5Centre for 
Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada. 6Department of Nutritional Sciences, 
Faculty of Medicine, University of Toronto, Toronto, Canada. 7Global Child Health Group, Emma Children’s 
Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands. 8Department of Global Health, 
Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centres, Amsterdam, 
The Netherlands. 9Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of 
Oxford, Oxford, UK. *email: Gerard.gonzales@ugent.be

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-68143-7&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11235  | https://doi.org/10.1038/s41598-020-68143-7

www.nature.com/scientificreports/

may also be present. However, mechanisms driving poor nutritional recovery of children with HIV even when 
detected co-morbidities are treated remain poorly  understood12.

We hypothesised that inflammatory, metabolic and other pathways which are likely to be involved in the 
response to infection, survival and nutritional recovery differ between children with SAM with and without 
HIV. We conducted a secondary analysis of clinical data and biological samples from a randomised clinical trial 
in Kenya and  Malawi13.

Results
Patient characteristics. Table 1 presents the baseline characteristics of the children in the randomised 
trial. A total of 843 complicated SAM children were recruited for the randomised trial, of which 179 (22%) 
patients were HIV(+). Age was higher and MUAC was lower in HIV(+) children than HIV(−) counterparts. 
Most HIV cases were found in Malawi. Sex and the presence of oedema were not associated with HIV status. 
Mortality was more than two times higher among in HIV(+) compared to HIV(−) (p < 0.001). Children whose 
HIV status were unknown had the highest mortality of 34%, which indicates bias due to frequent death before 
testing could be undertaken or refusal of testing when a child was more severely ill.

Among HIV(+), 33% were already receiving an anti-retroviral treatment (ART) regime: 53/179 (30%) on 
highly active antiretroviral therapy (HAART), and 7/179 (4%) on Nevirapine only. About half of the children 
(90/179) were naïve for ART whereas HIV treatment status was unknown for 16% (29/179). Mortality was not 
significantly different among children on HAART, ART naïve and children with unknown HIV treatment status 
(Supplementary Table 1).

HIV is associated with increased inflammation, immune activation, dysregulated lipid metab-
olism, and increased proteolysis in children with SAM. Among the children included in the prot-
eomics study, 54 were HIV (+) and 113 were HIV(−) (Table 2). In this sub-population, age, sex and the presence 
of oedema were not significantly associated with HIV. HIV(+) children also had significantly lower MUAC and 
higher mortality than HIV(−) children.

A total of 204 circulating proteins were annotated and compared between children with and without HIV 
infection. Of these, levels of 42 proteins were found to be significantly associated with HIV status in the initial 
univariate analysis (Fig. 1A) (Supplementary Table 2). Specifically, HIV(+) was associated with higher circulating 
levels of immunoglobulins, inflammatory proteins such as calprotectin (S100 calcium binding protein A8 and 
S100 calcium binding protein A9), complement proteins, and proteins related to host response to infection (i.e. 
lipopolysaccharide binding protein, galectin 3 binding protein and CD5 molecule-like protein). Enrichment 
analysis suggested that HIV(+) children had higher levels of proteins associated with classical complement 
pathway activation, immune activation and inflammation than HIV(−) children. Neutrophil aggregation and 
chemokine production appeared to be the pathways most highly enriched in HIV(+) compared to HIV(−) SAM 
children. To substantiate these results, we quantified chemokine and cytokine levels in plasma. As shown, most 
chemokines had the tendency to be associated with HIV infection, where elevated plasma concentration of 12 
were significantly associated with HIV status in SAM children (Fig. 1B), namely: monocyte chemoattractant 
protein 1 (MCP1), macrophage inflammatory protein 1 beta (MIP1b, CCL4), granulocyte colony-stimulating 
factor (GCSF), interleukin 1 beta (IL1b), tumour necrosis factor alpha (TNFa), interleukins 2,5,7, 8 and 15 (IL2 
, 5, 7, 8, 15), interleukin 12 subunit beta (IL12p40), interferon gamma-induced protein 10 (IP-10), and interleu-
kin-1 receptor antagonist (IL-1RA).

Table 1.  Descriptive characteristics of the study participants. *Comparison between HIV(+) and HIV(−). 
°Adjusted for age, sex and site of recruitment.

All HIV (+) HIV (−) Unknown HIV status p*

n (%) 843 179 (21%) 618 (73%) 46 (5%)

Median age in months 
[IQR] 16 [10–25] 21 [12–31] 16 [10–25] 10 [8–17] < 0.001

% girls (n) 45% (359) 45% (81) 45% (278) 56% (26) 0.95

Mean MUAC in cm 
[95% CI] 11.2 [11.1–11.3] 10.5 [10.36–10.7] 11.4 [11.3–11.5] 11.2 [10.9–11.5] < 0.001

Mean weight-for-age 
z-score [95% CI] − 4.01 [− 4.11 to − 3.92] − 4.51 [− 4.72 to − 4.31] − 3.92 [− 4.03 to − 3.80] − 3.56 [− 3.94 to − 3.92] < 0.001

% mortality (n) 15% (127) 26% (47) 10% (64) 34% (16) < 0.001°

% oedematous (n) 31% (264) 30% (54) 33% (203) 15% (7) 0.50

Site

Coast Provincial Gen-
eral Hospital, Kenya 39% (329) 25% (45) 40% (247) 80% (37) Reference

Kilifi County Hospital, 
Kenya 22% (187) 22% (40) 23% (145) 4% (2) 0.08

Queen Elizabeth Cen-
tral Hospital, Malawi 39% (327) 52% (94) 36% (226) 15% (7) < 0.001
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Table 2.  Patient characteristics of those subjected to proteomics analysis. *Comparison between HIV(+) and 
HIV(−). °Adjusted for age, sex, site of recruitment, oedema.

All HIV (+) HIV (−) p*

n 167 54 113

Median age in months [IQR] 15 [10–26] 15 [10–26] 15 [10–24] 0.433

n girls (%) 76 (45%) 27 (50%) 49 (43%) 0.506

Mean MUAC at admission (cm) [95% CI] 10.9 [10.7–11.1] 10.2 [9.8–10.5] 11.3 [11.0–11.5] < 0.001

n oedematous (%) 49 (29%) 15 (28%) 34 (30%) 0.856

n mortality (%) 79 (47%) 36 (67%) 43 (38%) < 0.001°

Use of antiretroviral medication

Naïve 27 (50%)

Highly active antiretroviral therapy (HAART) 14 (26%)

Nevirapine only 3 (6%)

Unknown 10 (18%)

Figure 1.  Univariate analysis of plasma proteome and individual plasma cytokines associated with HIV. (A) 
Volcano plot showing several significantly different (FDR adjusted p value < 0.05) proteins and their log2 HIV(+) 
versus HIV(−) fold change. Red points represent those significantly higher in plasma of HIV(−), blue points 
significantly enriched in plasma of HIV(+) and orange points significantly higher than 1.5 folds in HIV(+) 
compared to HIV(−) SAM children. Vertical lines indicate significance level at p = 0.05 and 0.01; horizontal 
lines indicate more than 1.5 folds enrichment. (B) Log odds plots showing association of chemokine markers 
analysed using Luminex platform and HIV status. Points indicate log odds ratio for every log increase in plasma 
protein concentration; bars indicate 95% confidence interval.
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Out of the 43 differentially expressed proteins, three proteins were found to be negatively associated with 
HIV status on initial univariate analysis, namely: adiponectin, kininogen-1 and peptidase inhibitor 16. Among 
HIV(+) children, there were no statistically significant associations with receiving HAART (n = 14) compared to 
ART naïve (n = 27) children (Supplementary Fig. 1), recognising our study was not powered for this comparison. 
Furthermore, sensitivity analysis to address the possibility of HIV maternal antibodies in younger children, 
showed no significant interaction of age above or below 18 months and individual proteins plasma levels towards 
HIV status, although power to detect was limited.

The weighted EN model extracted 73 circulating proteins (Fig. 2A) that are associated with HIV status with 
AUROC = 0.97 [95% CI 0.95–0.99] (Fig. 2B) and misclassification error rate of 2.4%. Optimism-adjusted vali-
dated AUROC after bootstrapping was 0.90 [95% CI 0.90–0.902], indicating a robust model. Pathway enrichment 
analysis highlighted that apart from immune activation, HIV(+) children with SAM had increased levels of 
proteins involved in proteolysis and lipid mobilisation pathways, specifically increased very low-density lipo-
protein assembly, indicating metabolic dysregulation related to cholesterol and triglyceride metabolism among 
HIV(+) patients (Fig. 2D).

After 2000 bootstrap iterations during bootstrap validation, 3 proteins were consistently extracted by the 
EN model > 80% of the time (Fig. 2D), namely: butyrylcholinesterase (BChE), complement C2 and zinc-α-2-
glycoprotein (ZAG), indicating that these three proteins are likely to be the most important features associated 
with HIV in children with complicated SAM. Weighted logistic regression model of these 3 proteins showed 
good discrimination of HIV status (AUROC = 0.80 [95% CI 0.74–0.87]) (Fig. 2E).

Discussion
In this study, we report plasma proteomic differences associated with HIV status, suggesting that HIV imposes 
additional metabolic and inflammatory insults among HIV(+) children with SAM. Our results show that path-
ways involved in inflammatory response, complement cascade activation and lipid metabolism dysregulation 
are associated with HIV status. Circulating levels of several plasma chemokines were also found to be higher in 
HIV(+) among children with SAM. Greater inflammatory responses in these children could be related to the 
higher inpatient mortality of HIV(+) compared to HIV(−) children with SAM.

An earlier metabolomics study in Uganda reported reduced serum levels of adiponectin and leptin, whereas 
serum triglycerides, ketones and even-chain acylcarnitines were higher in HIV(+) children with SAM indicating 
perturbed lipid  metabolism14. Our current study therefore concurs with this finding, as we also found reduced 
plasma levels of adiponectin in HIV(+) SAM children compared to HIV(−) SAM children, along with upregula-
tion of pathways involved in lipid transport and metabolism, specifically very low-density lipoprotein assembly.

Using optimism-adjusted bootstrap validation of the EN model, we found three proteins: complement c2, 
BChE and ZAG robustly distinguished HIV(+) from HIV(−) in children with SAM, demonstrating the ability 
of multivariate analysis techniques, such as EN, to uncover underlying relationships between protein markers 
which would be difficult to identify when analysed individually. The activation of the complement system during 
HIV infection has been previously discussed at length, which is associated with the increased cellular invasion 
of HIV in  cells15–17.

On the other hand, BChE is a protein synthesized in the liver and abundant in plasma, which hydrolyses 
acetylcholine. Although very similar to its sister protein, acetylcholinesterase, biological functions of BChE 
appear to be more varied but less  understood18. In a recent study in China, low circulating BChE was found to 
be highly associated with HIV severity, was predictive of mortality in adults, and was proposed as a plausible 
strategy for severity classification among adults with  HIV19. BChE is also reported to be reduced in SAM, stress 
and  inflammation20. In animal studies, BChE deficiency was found to strongly affect fat metabolism and promotes 
hepatic lipid  accumulation21. Serum BChE levels have been found to have a significant negative correlation with 
serum total cholesterol and serum low-density-lipoprotein cholesterol among people with diabetes  mellitus22.

ZAG is a newly characterized adipokine that is involved in lipolysis, body weight regulation and may also be 
involved in the development of insulin  resistance23. Reduction in plasma levels of ZAG was previously reported 
to be implicated in dyslipidaemia in HIV(+) adults under ART  treatment23. Reduced circulating levels of ZAG 
has also been found among adults with clinically diagnosed metabolic syndrome, based on guidelines of the 

Figure 2.  Multivariate analysis of plasma proteome associated with HIV. (A) Elastic net (EN) regularized 
regression lambda parameter optimization curve, optimal lambda parameter was chosen based on the highest 
area under the receiver operator curve (AUROC); (B) AUROC (0.97 [95% CI 0.95–0.99]) of the EN model 
generated using the lambda parameter, alpha parameter was set to 0.75, final model extracted 34 protein 
features, optimism-adjusted bootstrap validation of the generated EN model, validated AUROC = 0.90 [95% CI 
0.90–0.90] using 2000 iterations; (C) Gene entology (GO-terms) enrichment analysis of proteins extracted by 
the EN model. X-axis represents z-scores; y-axis, fold enrichment, and size of the spheres represent the number 
of proteins involved in the particular pathway. Gold circles represent pathways enriched in HIV(+) whereas blue 
circles are pathways more associated with HIV(−). The grey circle indicate that there are as much proteins in 
this pathway that are significantly upregulated and downregulated in HIV. Only significantly enriched pathways 
(p < 0.05 after FDR adjustment) are plotted. See main text for explanation of the plots. Pathways enriched are 
identified in the table. (D) Log odds ratio plot of the three proteins extracted after bootstrap validation with log 
odds on the x-axis and bars indicating 95% confidence interval obtained using weighted logistic regression with 
HIV as outcome variable and the three proteins as covariates. Weights used were obtained by inverse probability 
of treatment weights; (E) predictive ability of the weighted logistic regression model using the three bootstrap 
validated proteins with HIV as outcome variable, AUROC = 0.80 [95% CI 0.73–0.87].

◂



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11235  | https://doi.org/10.1038/s41598-020-68143-7

www.nature.com/scientificreports/

United States National Cholesterol Education Program (NCEP) Expert Panel Adult Treatment Panel (ATP) III 
 criteria24. Serum ZAG levels have been reported lower among adults with impaired glucose tolerance and type 2 
diabetes  mellitus25. Taken together, our results therefore suggest that children with both HIV and SAM manifest 
hallmarks of metabolic stress similar to those occurring in metabolic syndrome and other non-communicable 
diseases (NCD).

This study is the first proteomics investigation on the interaction between HIV and SAM. In summary, 
our results, which together with the previously published metabolomics  study14, strengthens evidence on the 
increased metabolic stress and altered metabolic response among children living with both HIV and SAM. Our 
results also concur with previous studies that reported elevated metabolic stress among non-malnourished adults 
living with HIV leading to increased prevalence or risk for metabolic syndrome, cardiovascular diseases, diabetes 
and other non-communicable  diseases26–32.

Metabolic abnormalities have previously been reported to be attributed HAART use among HIV(+)  patients33. 
In a recent systematic review, use of two classes of HAART, protease inhibitors and nonnucleoside reverse tran-
scriptase inhibitors, has been found to be associated with abnormalities in plasma lipid  profiles34. However, dys-
regulation in lipid metabolism has also been reported in HAART-naïve patients, which indicates that HIV infec-
tion alone cause lipid metabolism perturbations. An earlier longitudinal study of 50 men in the USA reported 
notable declines in serum total cholesterol after HIV infection compared to results of blood analysis from last 
seronegative visit. Large increases in total cholesterol and low-density lipoproteins (LDL) were detected after 
HAART  initiation35. However, many other studies reported increases in total cholesterol among HIV-infected 
patients naïve to HAART. For instance, in a study of ART-naïve HIV-infected adults in Ethiopia, malnutrition 
and lipid abnormalities (specifically total cholesterol) were associated with CD4 + T cell  counts36. In in vitro 
studies, transfection of a T-cell (RH9) with HIV led to the enhanced production of free fatty acids and  LDL37. 
Furthermore, monocytes isolated from HIV-infected patients both taking HAART and HAART-naïve, were 
found to have altered expression patters of receptors linked with lipid metabolism (i.e. FXR, PXR, PPARα, GR, 
RARα and RXR) compared to monocytes of HIV-uninfected  controls38. For our study however, we are unable to 
ascertain whether the lipid metabolism dysregulation we observed is due primarily on the viral load itself or the 
use of HAART due to lack of power for this sub-analysis. Majority of the participants subjected to proteomics 
analysis were HAART-naïve (50%), where 26% were on HAART, 6% were on Nevirapine alone and we had no 
data on treatment of 18% of the patients (Table 2). In all these studies cited, authors argue to need for monitoring 
of lipid profiles in HIV-infected populations. Hence, lipid monitoring may also inform nutritional and clinical 
recovery of children with SAM and HIV and could be implemented to improve clinical care for these children.

However, despite our knowledge that HIV-infected populations have altered metabolic requirements com-
pared to HIV-uninfected counterparts, WHO guidelines for the nutritional management for SAM are globally 
the same regardless of HIV status, which is summarized in Table 339. Nutritional management for in-patient 
children with SAM involves provision of a low-protein, low-fat milk-based food, F75, every three hours. F75 
is used during clinical stabilization occurring during the first few days after admission and is not intended for 
weight gain. Once the children are clinically stabilized and are able to tolerate the milk/solute load, children are 
transitioned to F100, a higher-calorie, high-fat milk intended to boost weight gain or to Ready-to-Use Therapeu-
tic Food (RUTF), a peanut-based calorie-dense diet. Upon discharge from in-patient care, children are referred 
to community based nutritional therapeutic centres where they are provided with RUTF on a 2 weekly basis.

Considering evidence of biomarkers of metabolic syndrome and NCD in HIV(+) children with SAM, it is of 
potential concern that our current treatment strategy involves a high-fat therapeutic diet. About 50% of much 
needed calories during the growth catch-up phase are supplied as lipids, which HIV(+) children may not be able 
to efficiently assimilate. Alterations in lipid metabolism in HIV(+) children with SAM may also mean that the 
high amounts of dietary lipids could be deposited as ectopic fat in the liver and muscle, predisposing to insulin 
resistance, diabetes, cardiovascular problems and other NCDs later in life. Although long-term metabolic follow-
up studies could be done for HIV(+) children previously treated for either complicated and uncomplicated SAM, 
significant barriers are the high mortality rate in earlier studies of HIV(+) children with SAM, cost and difficulty 
tracing them years later. The results of this study indicate a need for clinical trials of F100 or RUTF modified to 
meet the expected metabolic needs of HIV(+) children with SAM. This could initially be done in relatively small 
groups with outcomes that include measuring metabolic stress.

Several studies on nutritional intervention strategies among HIV-infected adults have been reported. For 
instance, a study in the USA showed that dietary fat intake, specifically saturated fats, was significantly associated 
with hypertriglyceridemia among HIV-infected adults (18–60 years)40. Moreover, in a preclinical model, high 

Table 3.  Nutritional management protocol for children with severe acute  malnutrition39.

Stabilization phase In-patient rehabilitation phase Out-patient rehabilitation phase

Days 1—7 Weeks 2—6 Lengths vary depending on site

Complicated SAM F75 F100 RUTF

Uncomplicated SAM – – RUTF

Composition

Energy (kcal per 100 mL F75/F100 or 100 g 
RUTF) 75 100 5.2–5.5

Protein (% total energy) 5 12 10–12

Fat (% total energy) 32 53 45–60
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saturated fat consumption was found to accelerate immunodeficiency virus disease progression in macaques, 
specifically increased mortality hazard and circulating levels of pro-inflammatory cytokines, especially  IL841, 
which has been previously reported to be associated with lipodystrophy among HIV  patients42. In our study, we 
also found a significant association between high plasma IL8 concentration and HIV in SAM children. Hence, 
modifying the saturated fat composition of the milk-based F75 and F100 could potentially lower metabolic stress.

The European Society for Parenteral and Enteral Nutrition (ESPEN) have given a grade A recommendation 
for the use of medium-chain triglyceride (MCT)-based diet on HIV(+) patients with diarrhoea and severe under-
nutrition in its 2006 ESPEN Guidelines on Enteral  Nutrition43. Grade A recommendations are given to strategies 
based on meta-analysis or at least one randomised control trial. In this case, the recommendation was based on 
a prospective, randomized double-blind comparative trial on 24 adult patients with HIV and diarrhoea of more 
than 4-week duration, fat malabsorption, and loss of 10–20% of ideal body  weight44. In this study, the authors 
found improved outcomes from diarrhoea and fat malabsorption from MCT than long-chain triglyceride-based 
diet among HIV(+) adults.

HIV infection has been reported to be accompanied by substantial damage to gut integrity and changes in 
gut microbiome  composition45. In this study, we observed increased circulating levels of LPS binding protein, 
which is a marker of bacterial translocation from the gut into the bloodstream. Therefore, understanding the 
interaction between HIV and gut microbiota could provide insights into aetiology and interventional points of 
view. As more evidence on the role of gut microbiota and gut integrity on health outcomes emerge, we must also 
be aware of the potential impact of antibiotics and nutritional therapeutic strategies on the microbiome. Markers 
of gut health and microbiome restoration among children with HIV and SAM therefore need to be studied in 
parallel with improved/modified RUTF formulations to fully elucidate the mechanisms of their efficacy.

Lastly, the long-term metabolic effect of nutritional intervention strategies for SAM still remains unresolved. 
Most specifically, the potential metabolic stress associated with the rapid weight gain during the nutritional 
rehabilitation phase after SAM and its implications on nutritional outcomes during adulthood demands urgent 
research attention, especially for HIV(+) children with SAM.

Limitations of this study include absence of data on viral load and CD4+ counts of the patients, which could 
provide a deeper understanding of the results. Furthermore, in this study, we did not find association between 
oedematous malnutrition and HIV status, although several studies have a found higher HIV prevalence among 
non-oedematous children with  SAM46–48. In our study however, we found high in-patient mortality rate (16/46, 
34%) among children with unknown HIV status, where 39/46 (85%) had non-oedematous SAM. Considering 
the high rate of mortality, these children may have been HIV(+). This highlights the need for earlier HIV screen-
ing among children with SAM. Finally, a deeper understanding of the comorbidity of HIV and SAM would 
require studies also involving non-malnourished HIV+ and HIV− children preferably in various geographical 
and social contexts. Hence, further studies are needed fully characterize the interplay between HIV infection 
and malnutrition.

conclusion
Plasma proteomics reveals that HIV(+) children with SAM manifest hallmarks of metabolic stress similar to 
those observed in non-communicable diseases. This could be related to the poor nutritional recovery and high 
mortality of HIV(+) children with SAM despite clinical and nutritional intervention. The results of this study 
indicate a need for clinical trials modifying the composition of F100 or RUTF to meet the specific metabolic 
needs of HIV(+) children with SAM during rehabilitation phase. This could initially be done in relatively small 
groups with outcomes that include measuring metabolic stress.

Methods
Patient recruitment and study design. This is a secondary analysis of a nested case control study from 
a randomised controlled trial (NCT02246296), which tested the effect of a lactose-free, low-carbohydrate F75 
milk to limit carbohydrate malabsorption, diarrhoea and refeeding syndrome among children hospitalized for 
complicated SAM at Queen Elizabeth Central Hospital in Blantyre, Malawi, Kilifi County Hospital and Coast 
General Hospital, Mombasa,  Kenya13. Children aged 6 months to 13 years were eligible for enrolment into the 
trial at admission to hospital if they had SAM, defined as: mid-upper arm circumference (MUAC) < 11.5 cm or 
weight-for-height Z score <  − 3 if younger than 5 years of age, BMI Z score <  − 3 if older than 5 years, or oedema-
tous malnutrition at any age and had medical complications or failing an appetite test, as defined by WHO 
 guidelines49. Children were excluded if they had a known allergy to milk products and did not provide consent. 
Biological samples were obtained before the children received the randomised treatment irrespective of HIV 
status. Unless a child’s HIV positive status was documented, HIV status was assessed by offering an antibody test 
at admission plus appropriate counselling. For this analysis, patients that tested positive on an HIV antibody test 
were considered HIV(+) and children with missing or declined HIV test were excluded.

To compare the proteomic profiles between HIV infected and non-infected children with SAM, we used data 
from a nested case–control study to investigate inpatient mortality. Of 127 children who died, 92 had sufficient 
samples available for proteomics analysis. Since the main outcome of our current study is HIV, we excluded 
deaths with unknown HIV status (n = 13), resulting to 79 cases included in this analysis. Among children who 
survived, 92 had been randomly selected in the nested case–control study matched on site of recruitment. After 
excluding children with unknown HIV status (n = 4), 88 controls from the nested case–control study were used 
for this analysis. Proteomic, cytokine, and chemokine data was generated using plasma samples collected at 
admission during enrolment to the trial. A weighted analysis was designed to help overcome selection bias, as 
described in the data analysis section below.
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Proteomics, cytokine and chemokine analysis. Untargeted proteomics and targeted cytokines and 
chemokines analysis of plasma samples were performed following methods described  previously50. The tar-
geted protein panel included: epidermal growth factor (EGF); eotaxin; granulocyte-colony stimulating factor 
(GCSF); granulocyte–macrophage colony-stimulating factor (GMCSF); interferon alpha-2 (IFNa2); interferon 
gamma (IFNg); interleukins 10, 12p40, 12p70, 13, 15, 17A, 1a, 1b, 1RA, 2 to 8; interferon gamma-induced pro-
tein 10 (IP10); monocyte chemoattractant protein 1 (MCP1), macrophage inflammatory protein 1 alpha and 
beta (MIP1a & b); tumour necrosis factor alpha (TNFa) and beta (TNFb); and vascular endothelial growth factor 
(VEGF).

Data analysis. Data analyses were performed using R v3.551. Analysis of the prevalence of HIV(+), nutri-
tional status and their associations with inpatient mortality utilised the entire trial dataset (N = 843). Analysis 
of categorical data was performed using Fisher’s test and generalised linear models for continuous outcomes. 
Logistic regression was used to analyse binary outcomes adjusting for age, sex, presence of oedema, and site of 
recruitment. These associations were also adjusted for MUAC. As a sensitivity analysis to address the possibility 
of confounding due to HIV maternal antibodies in younger children, a test of interaction between age above or 
below 18 months and individual proteins towards HIV status was performed.

The proteomics, cytokines and chemokines analyses were secondary analyses of data collected from a nested 
case–control study with inpatient mortality as its primary outcome, hence with strong selection bias. The analysis 
for the association between HIV status and individual proteins was therefore performed using logistic regression 
analysis with inverse probability weighting (IPW) to correct for selection  bias52–55. Weights (w) were calculated 
as suggested by  Samuelsen53 wherein the weight for each observation selected into the nested case–control study 
was computed as the inverse of the probability of being selected for the nested study from the main clinical trial. 
The probability of inclusion was therefore calculated as:

where p(i) is the probability of inclusion in the nested case–control study and × 1, × 2, …, × n are HIV status, sex, 
age, presence of oedema, mid-upper arm circumference, and site of recruitment of the ith observation (child) 
based on the entire trial population. Inverse probability weight is therefore:

Differences in individual proteins abundances were considered statistically significant when p < 0.05 after 
adjustment for multiple comparisons using Benjamini–Hochberg false discovery rate (FDR)56.

Multivariate analysis was undertaken in order to determine several proteins that are collectively associated 
with HIV status, some of which may not be significantly associated to HIV independently. This was performed 
using a weighted elastic net (EN) model implemented using the “glmnet” package in  R57. EN is a penalized regres-
sion approach that was developed to help overcome problems caused by high dimensional data. It is an integra-
tion of two regularized approaches, ridge regression and least absolute shrinkage and selection operator (LASSO), 
wherein the contribution of each of these models to the final EN model is controlled by the α  parameter57,58. The 
strong penalization imposed by LASSO draws coefficients to zero thereby eliminating non-predictive proteins 
features, whereas ridge regression addresses potential multi-collinearity problems in high-dimensional  data57,58.

Weighted EN model generation was performed with HIV status as outcome, protein profile as predictors, and 
w as observation weights. The penalization parameter lambda, which influences the shrinkage of variable coef-
ficients to zero thus eliminating some non-contributing variables, was determined by estimating the area under 
the receiver operator curve (ROC) of the population using ten-fold cross validation. Several alpha parameter 
values were assessed and a final value of 0.85 was taken to achieve a compromise between predictive ability and 
fewer number of features extracted. The final lambda parameter was based on the value which gave the highest 
area under the ROC (AUROC) value.

Proteins with significant association with HIV status after correction for false discovery and those extracted 
by the EN model were then uploaded to The Database for Annotation, Visualization and Integrated Discovery 
(DAVID) v6.8 Bioinformatics  Resource59 to assess the Gene ontology (GO) enriched pathways of the differen-
tially expressed proteins.

EN model validity was judged based on the AUROC and misclassification error rate. The fitted EN model 
performance measured as optimism-corrected AUC was validated using bootstrap, following the procedure of 
Smith et al.60. Bootstrapping was performed on 2000 iterations using the “BootValidation” package in R. Protein 
features extracted at least 80% of all iterations by the bootstrap EN model were then considered to be the most 
relevant protein biomarkers. To test how well these proteins can discriminate HIV status, they were then fitted 
on a weighted logistic regression with HIV as outcome.

Visualisation of significantly enriched GO terms. Bubble plots were used to visualise the significantly 
enriched pathways (p < 0.05 after adjustment for FDR) obtained from DAVID. The p-values in DAVID were 
obtained using a modified Fisher’s exact  test61. The y-axis represents the fold enrichment which indicates the 
magnitude of the enrichment, as calculated in DAVID. Fold enrichment is defined as:

p(i) =
1

1+ e−(β0+β1×1+β2×2···+βn×n)
;

w(i) =
1

p(i)
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where m is the number of proteins significantly associated with HIV status or proteins extracted by the EN model 
that belong to a particular pathway, while M is the total number of proteins belonging to the same pathway. 
Variable n is the number of all proteins significantly associated with HIV status or extracted by the EN model 
and N is the total number of all proteins in the human background. Therefore, a fold enrichment of ten indicates 
that 10% of the proteins significantly associated with HIV status belong to a particular pathway, and 1% of all 
annotated proteins in the human background belongs to the same  pathway61. However, the proponents of this 
metric warn that big fold enrichments could be obtained from a small number of proteins, which could be due 
to small n or pathways with fewer members.

The x-axis on the hand represents the enrichment z-score for a particular  pathway62, which is calculated as 
follows:

where up is the total number of proteins upregulated, down is the total number of proteins downregulated, and 
count is the total number of proteins in the input which belongs to a particular pathway. Variables up and down 
were based on the weighted logistic regression for each individual protein. Hence, if five proteins belonging to 
pathway x were upregulated and two were downregulated, the z-score for pathway x would be: (5–2)/√7 = 1.13. 
A positive z-score indicates that the particular pathway is overall upregulated in HIV(+), whereas a negative 
z-score indicates an overall  downregulation62.

Ethics approval. The secondary analyses of the trial were approved by the Kenyan National Ethics Commit-
tee, KEMRI-SERU (KEMRI/RES/7/3/1). The trial was registered at clinicaltrials.gov (NCT02246296).
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