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Internet searches offer insight 
into early‑season pollen patterns 
in observation‑free zones
Jane Hall1*, Fiona Lo2, Shubhayu Saha3, Ambarish Vaidyanathan4,5 & Jeremy Hess6,7,8

Tracking concentrations of regional airborne pollen is valuable for a variety of fields including plant 
and animal ecology as well as human health. However, current methods for directly measuring 
regional pollen concentrations are labor-intensive, requiring special equipment and manual counting 
by professionals leading to sparse data availability in select locations. Here, we use publicly available 
Google Trends data to evaluate whether searches for the term “pollen” can be used to approximate 
local observed early-season pollen concentrations as reported by the National Allergy Bureau across 
25 U.S. regions from 2012–2017, in the context of site-specific characteristics. Our findings reveal 
that two major factors impact the ability of internet search data to approximate observed pollen: (1) 
volume/availability of internet search data, which is tied to local population size and media use; and 
(2) signal intensity of the seasonal peak in searches. Notably, in regions and years where internet 
search data was abundant, we found strong correlations between local search patterns and observed 
pollen, thus revealing a potential source of daily pollen data across the U.S. where observational 
pollen data are not reliably available.

Understanding regional airborne pollen patterns is important for a wide range of applications, including both 
basic and applied science in a range of domains from biology to ecology to public health. Estimates of pollen 
concentrations at a given location feed into agricultural, phenological, and ecological surveillance and models, 
and are incorporated into retrospective epidemiological analyses of associations between pollen exposure and 
adverse health outcomes like rhinitis and allergic asthma, which are of broad importance given that seasonal 
allergies affect 20–40% of the U.S. population1, 2. Observations are also important for driving forecast models 
that are used in risk communication to reduce pollen exposure in susceptible individuals.

Currently, the principle and most reliable source of pollen concentration information in the United States 
comes from the National Allergy Bureau (NAB), part of the American Academy of Allergy Asthma and Immu-
nology (AAAAI). Pollen data included in the NAB dataset are collected by certified counting stations, where 
specially trained and certified allied health workers count pollen under the direction of an allergist3. Data must 
meet certain quality metrics to be included. While the data in this dataset are collected and reported using 
standardized methods, there is variability in sampling strategies, the costs of data collection are borne by the 
participating organizations, and participation varies over time. The totality of pollen count stations data cur-
rently listed on the AAAAI website covers less than 70 geographic locations in the continental U.S.3. Given these 
concerns, other valid approaches to generating estimates of airborne pollen that could expand spatial coverage 
and address some of the issues related to variable sampling time frames would be welcome for gaining insight 
into pollen season dynamics in regions without pollen monitors.

OPEN

1Department of Emergency Medicine, School of Medicine, University of Washington, 4730 University Way NE, 
Suite 104, #2021, Seattle 98105, WA, USA. 2Department of Atmospheric Sciences, College of the Environment, 
University of Washington, 408 Atmospheric Sciences–Geophysics (ATG) Building, Box  351640, Seattle, 
WA 98195‑1640, USA. 3Rollins School of Public Health, Emory University, Grace Crum Rollins Building, 1518 Clifton 
road, Atlanta, GA  30322, USA. 4School of Environmental Health, Emory University, 1518 Clifton road, Atlanta, 
GA  30322, USA. 5School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic 
Drive, Atlanta, GA  30332‑0355, USA. 6Department of Emergency Medicine, School of Medicine, University of 
Washington, 4730 university way NE, Suite 104, #2021, Seattle, WA 98105, USA. 7Department of Environmental 
and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE pacific St, Seattle, 
WA 98105, USA. 8Department of Global Health, Schools of Medicine and Public Health, University of Washington, 
4225 Roosevelt Way NE #100, Suite 2330, Box 354695, Seattle, WA 98105, USA. *email: janehall@uw.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-68095-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11334  | https://doi.org/10.1038/s41598-020-68095-y

www.nature.com/scientificreports/

Among seasonal allergy sufferers who are sensitive to airborne pollen, a majority self-identify and self-treat 
allergy symptoms4. For this reason, we explored the potential for using Google Trends (GT), a web-based tool 
for quantifying popular interest in specific search terms, as a proxy for pollen observations in observation-free 
zones and for predicting pollen season dynamics. Our study builds on prior work examining associations between 
online search queries and real-life phenomena. Specifically, GT search data has been shown to correlate to out-
breaks of West Nile Virus and respiratory syncytial virus, while the most well-known GT offshoot, Google Flu 
Trends, correlates strongly with official influenza surveillance data and frequently predicts major flu outbreaks5–7.

Relationships between GT searches and observed NAB pollen concentrations are a topic of great interest in 
the fields of allergy and ecology. Within the U.S., studies have examined this association on the scale of the U.S. 
as a whole, correlating also to allergic symptoms and antihistamine sales8, 9; as well as, state-wide in Texas from 
2011–201210. Outside of the U.S., authors have examined pollen and GT searches in Lisbon11, three regions in 
Germany12, and 21 regions in France, and have reported a wide range of associations from poor to excellent. 
Data from France showed that GT may be especially useful for identifying early spring tree pollen and grass pol-
len seasons, and poorer for identifying the later weed pollen season, though even associations during the early 
pollen season varied substantially13, suggesting site-specific factors that remain to be identified. Understanding 
these factors will be key to guiding appropriate GT data use and may be especially important in the U.S. due to 
the country’s large geographic area and heterogenous population.

Thus, the main goals of this study were to: (1) evaluate regional relationships between GT searches related to 
pollen and NAB pollen concentrations at diverse sites across the U.S., and (2) identify site-specific factors affect-
ing association strength. In addition, we assess the potential for estimating the start of the pollen season using 
GT data. To these ends, we analyzed data from 40 location-matched GT Designated Market Areas (DMAs) and 
NAB stations both to determine the ability of GT data to accurately match NAB data, in the context of regional 
data availability, biogeography, and population. We restricted the scope of our investigation to early season 
pollen (January through June) when the largest peak in annual pollen concentration is commonly observed in 
the U.S. (mainly produced by trees); our analyses do not examine subsequent grass or weed pollen peak times 
which may have distinct characteristics14.

Methods
Data sources.  NAB pollen concentration data were requested by mail from the AAAAI Executive Office. 
Total and taxa-specific pollen concentrations were received for 60 NAB certified stations, spanning 2003–2017, 
although only data collected in 2012 or later were used in this study. The list of participating sites and stations are 
listed in the acknowledgements. No imputation was done to fill in missing pollen concentration values.

GT data are freely available online and are reported as a random sample of historical Google search volume 
data. The data are adjusted by Google to fall between a range of 0–100 based on the highest value in each data 
sample accessed. Google does not quantify searches made by very few people (i.e., sets these values to “0”) and 
excludes duplicate searches (repeated searches by the same individual over a short period of time)15.

Biogeographical characteristics were gathered from multiple sources. Ecoregions were based on U.S. Envi-
ronmental Protection Agency definitions16 and total annual precipitation and mean spring temperatures were 
calculated from daily values obtained from NASA’s Modern-Era Retrospective analysis for Research and Applica-
tions version 2 (MERRA-2) M2SDNXSLV, a satellite-based atmospheric reanalysis dataset17.

Google trends data collection and preparation.  Google Trends data on search volumes for the term 
“pollen” from 2012–2017 with daily resolution were accessed using pytrends, an open-source, user-created ver-
sion of an Application Programming Interface that allows programs created in the language Python to directly 
communicate download parameters with GT servers https​://githu​b.com/drjan​ehall​/GTDai​lySea​rches​18. Other 
GT search terms previously described in the literature related to pollen, including “pollen count” and “pollen 
allergy” were examined visually via the GT web app, but were not ultimately used in analysis due to low overall 
search volumes and lack of seasonal peaks (see Supplementary Fig. 1A,B for representative examples and Sup-
plementary Table 1 for the full list of candidate search terms). Geographical parameters for data downloads were 
specified for each Nielsen Designated Market Area (the smallest search region available for GT data) that most 
closely matched available NAB pollen count data (for a maximum of 0.3 latitude or longitude decimal degrees of 
distance to be considered a match). All available NAB stations data with associated DMA matches were exam-
ined with the exception of Twin Falls, ID which had exceptionally sparse GT data representing less than 10 
daily data points per year. See Supplementary Table 2 for the complete list of regions used in the analyses. All 
downloads were performed with 10 × replicates and averaged to compensate for inter-download variation (See 
Supplementary Fig. 2A,B for visualization of variation between downloads).

Statistical analyses.  Inclusion criteria.  NAB data were evaluated on the level of station-year. Since sta-
tions are directed by the NAB to collect and measure pollen at least three times per week, we excluded stations 
based on two metrics serving as proxies for compliance: percent days missing collections and longest gap in 
between collections during the pollen season. Station-years missing pollen concentration records for more than 
60% of days per year were excluded from analyses. Station-years with over four consecutive days missing pollen 
concentration records within 10 days before or after the first “high” pollen concentration day were also excluded 
from analyses. Pollen concentrations of at least 200 grains/m3 were considered “high”, as frequently defined19.

Assessment of data quality.  Data quality was assessed for NAB and GT data with a focus on missing data (total 
and consecutive days of missing data). Regional factors were also screened for association with data quality via 
Pearson’s correlations; these included ecoregion classification, total annual precipitation, mean spring tempera-

https://github.com/drjanehall/GTDailySearches
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tures, latitude, longitude, and media consumption (TV-homes per DMA region). Factors identified as associated 
with data quality were then evaluated using scatter plot visualization and univariate linear regression to assess 
magnitude and direction of the associations. Comparisons between groups were done via Student’s t-tests.

Relationship between GT and NAB data.  GT and NAB data for the first half of the calendar year (January to 
June) were visually compared using line plots for search volumes vs. pollen concentrations over time. NAB data 
were normalized to a maximum value of 100 per year for comparison to GT data. Further, GT and NAB data 
were log-transformed and lightly smoothed using locally weighted scatterplot smoothing (LOWESS) methods, 
via the lowess package in Stata with a bandwidth of 0.1. Bandwidth is a smoothing parameter ranging from 
0–1, where lower values correspond to less smoothing (See Supplementary Fig. 3A,B for a representative plot 
before and after smoothing). Log-transformed and lightly smoothed data were then compared using Spearman 
rank correlation to generate a rho value quantifying the strength of the ordinal relationship between NAB and 
GT data. Correlations were also examined in the context of (1) percent days per year that GT-adjusted search 
volumes were equal to zero, and (2) seasonal peak signal-to-noise ratio. Peak signal-to-noise ratio was approxi-
mated by comparing Lowess smoothed GT data (bandwidth = 0.8) and untransformed GT data, and defined as 
the mean average difference. Similar strategies for peak detection have been previously used in such settings as 
fire history detection in sediment charcoal records for ecological study and detection of pulsatile secretions of 
luteneizing hormone in endocrinology20, 21.

Pollen season start dates.  In the absence of academic consensus or regulatory guidelines to define pollen season 
start dates, current definitions used in the literature vary widely22. Most commonly, the start of the pollen season 
is the date upon which a predefined threshold is met, based on either: (1) a percentage of annual pollen, (2) a 
certain daily pollen concentration (or over a predefined period, such as three days), or (3) a number of consecu-
tive days during which pollen grains are recorded23, 24.

In order to address this issue, we tested multiple definitions from recent literature and assessed their concord-
ance when applied to NAB data. These were: the date that (1) cumulative pollen count reached 5% of annual 
total25–27, (2) cumulative pollen reached 2.5% of annual total28, 29, and (3) four consecutive days of pollen grains 
were recorded30. In addition, we examined the date that total daily pollen concentration exceeded 200 grains/
m3, which is sometimes considered a threshold relevant to clinical symptoms, and thus potentially also relevant 
to the internet search activity of allergy sufferers31. However, defining symptom thresholds is itself a challenge, 
since both the ways in which the presence and severity of symptoms manifest, and are recorded, can change 
across individual experiences and study definitions32, 33.

In line with previous literature, we found major differences in season start date between definitions—both the 
magnitude and directionality of the difference were heterogenous by region and year24. However, of the defini-
tions tested, we eventually selected cumulative pollen reaching 5% of annual total as the criteria for this study, due 
to the fact that it was found to overlap most closely with the first date of absolute pollen concentrations reaching 
200 grains/m3 and thus potentially more likely to be reflected in Google searches (Supplementary Fig. 4A–C).

Pollen season start dates calculated from NAB data and those calculated from GT data were compared using 
univariate analysis.

Software.  Stata IC version 15.1 (College Station, TX, USA) was used for all data analyses. DMA character-
istics and GT data were downloaded using Python version 2.7.10 (Python Software Foundation). All Stata code 
used for analysis and Python scripts used for GT downloads are available upon request.

Results
Assessment of data quality.  National Allergy Bureau pollen concentration data quality.  To assess the 
quality of NAB data overall, we analyzed gaps in data recording and percentages of missing data in daily NAB 
measurements from each station from January to December of each year. Availability of pollen concentration 
data varied widely by station, with percent of days per year missing pollen data ranging from 0% (e.g. San An-
tonio, TX; 2012) up to 100% (e.g. Oklahoma City, OK; 2014) (Supplementary Fig. 5A). Common days missing 
data were at the beginning of the year, the end of the year, and on weekends (data not shown). Although NAB 
directs its certified pollen counting stations to collect data for a minimum of 3 days per week, gaps in pollen 
collection within 10 days before and after the first recorded high pollen concentration (200 grains/m3) spanned 
up to 10 consecutive days (Supplementary Fig. 5B). Over the span of the year, the median gap between measure-
ments across station-years was 5 days (IQR = 3.12). The date of first available pollen concentration data ranged 
from day 1 of the year to day 96 with a median day of 3 (IQR = 1.27) (Supplementary Fig. 5C). For the majority 
of station-years (64.5%), the first day of the first recorded data for the year was the same as the first day with a 
non-zero pollen count.

Google trends search data quality.  We analyzed GT daily data quality per DMA region during the early pollen 
season, from January to June of each year. The percent of missing days of GT data ranged from 0–93% (low-
est missing from San Jose CA 2013 and highest missing from Midland TX 2012, respectively) with median 
and IQR = 33% (8–51%) (Supplementary Fig. 6A). Earlier years of GT data had more daily search volumes not 
quantified (referred to here as “missing”) due to lower search volumes and not meeting Google’s threshold for 
inclusion (Supplementary Fig. 6B). Variation was observed between GT download iterations, as GT provides a 
random sample of its data for each download (Supplementary Fig. 2A,B).
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Factors associated with data quality.  Biogeography and population characteristics were assessed for 
their impact on data quality, specifically overall ecoregion classification, total annual precipitation and mean 
spring temperature (chosen for their likely impact pollen production and seasonality34), as well as TV-homes, a 
combinatorial metric for population size and media use.

With respect to ecoregion, the majority of NAB stations were classified as Eastern Temperature Forests 
(67.6%) or Great Plains (21.6%). Other ecoregions each represented 5% or less of NAB stations: Marine West 
Coast Forest, Mediterranean California, and Northwestern Forested Mountains. U.S. ecoregions not represented 
by NAB stations included: Northern Forests (as in Vermont), Tropical Wet Forests (as in southern Florida), 
North American Deserts (as in Nevada), Southern Semi-Arid Highlands (as in southeastern Arizona), and 
Temperate Sierras (as in southwestern New Mexico). As a whole, NAB stations in Great Plains ecoregions had 
slightly higher data quality (p < 0.01), with a median of 70.7% days of non-missing data (IQR = 60.3%, 89.9%), 
versus Eastern Temperate Forests with a median of 63.8% (IQR = 53.2%, 68.4%) across station-years. Statistical 
comparisons were not performed between other ecoregions due to small sample sizes, however data by ecoregion 
can be viewed in Supplementary Fig. 7.

With respect to climactic factors, we evaluated mean spring temperatures, total annual days of precipitation, 
latitude, and longitude, in relation to percent of missing GT and NAB data as well as number of consecutive days 
of missing NAB data. Among all pairwise comparisons, a few significant relationships were identified. Mean 
spring temperature (°C) exhibited a positive correlation with non-missing NAB data (% days) [R-squared = 0.29, 
Coefficient = 1.89 (95% CI 1.31, 2.46), Supplementary Fig. 8]. This may reflect the behavior described by some 
pollen counting stations in northerly, colder regions of not recording or monitoring pollen until weather is 
warmer and pollen is more likely to be produced (from personal correspondence, data not shown). Mean spring 
temperature was strongly inversely correlated with latitude, as is expected (R2 = 0.73). Total annual days of 
precipitation was found to be positively correlated with longitude (R2 = 0.38; Coefficient = 1.39; 95% CI 1.04, 
1.73), which is consistent with Köppen–Geiger dry-moist climate classifications for the continental U.S.35. No 
associations were detected between any other climactic factors or data quality metrics examined via univariate 
regression analyses (R2 ≤ 0.1).

With respect to regional population sizes and media consumption, the percent of non-missing NAB pol-
len concentration data was not found to be correlated (as estimated by number of TV-homes in the associated 
DMA region; p = 0.29; R2 < 0.01). In contrast, the percent days of missing GT data was strongly correlated to the 
log-transformed number of TV-homes in the region [Coef = − 22.6 (95% CI − 24.7, − 20.6); p < 0.01; R2 = 0.68] 
(Supplementary Fig. 9).

Correlation between NAB and GT data with respect to data quality.  Data quality inclusion criteria 
for correlation analyses.  NAB total pollen concentrations from the majority of station-years showed a bimodal 
seasonality consisting of one larger peak early in the year and one smaller peak later in the year (See Supplemen-
tary Fig. 1 for national seasonality). For correlation analyses, we focused specifically on the period from January 
to June to examine the extent to which GT data correlated to the larger, early season peak in total pollen. Of 
246 GT location-matched NAB station-years, 24 (9.7%) had no NAB data recorded in the period of interest. In 
addition, the following station-years did not meet data quality inclusion criteria: 85 (34.5%) station-years had 
over 60% of days missing data during the pollen season, and an additional 32 (13.0%) station-years had over 
four consecutive days missing data within 10 days of the first high pollen concentration day of the year. A total 
of 105 station-years, representing 27 NAB stations, were ultimately included in correlation analyses. See the Sup-
plement for visualizations of ecoregions (Supplementary Fig. 10) and geographical distribution (Supplementary 
Fig. 11; Interactive Map https​://bit.ly/2XTlH​rC)36 of NAB stations represented in the included study sample.

Effects of data missingness on NAB‑GT correlation strength.  Daily total pollen concentrations from NAB data 
were compared to daily GT search counts by station-year via Spearman rank correlation. Since GT data varied 
widely with respect to percent of missing days of data per year, station-years were grouped into quartiles to 
test the effect of missingness on ability of GT to correlate with NAB data, with quartile cutoffs at 1.8%, 14%, 
and 32% of days missing GT data. Significant differences were identified in correlation strength between Q1 
v. Q2 (p < 0.01) and Q2 v. Q3 (p = 0.02). Rho values by quartile were: Q1 0.71 (IQR 0.83, 0.93), Q2 0.66 (IQR 
0.38–0.85), Q3 0.44 (IQR 0.04–0.77), Q4 0.23 (IQR = 0.06, 0.59) (Fig. 1A).

Effects of GT peak signal strength on GT‑NAB correlation strength.  As a proxy for site-specific estimates of signal 
to noise ratio and ability to identify peaks in GT data, the mean absolute difference between daily GT adjusted 
search volumes (“signal”) and a heavily smoothing lowess function (baseline fluctuations or “noise”) was calcu-
lated per station year (Supplementary Fig. 12A). Station-years were separated into quartiles to test the effect of 
signal strength on ability of GT to correlate with NAB data, with cutoffs at 0.19, 0.24, and 0.28. Significant dif-
ferences were identified in correlation strength between Q2–Q3 (p = 0.04) and Q3–Q4 (p = 0.02). Spearman’s rho 
values by quartile were: Q1 0.23 (IQR 0.00, 0.57), Q2 0.52 (IQR 0.19–0.73), Q3 0.73 (IQR 0.43–0.86), Q4 0.83 
(IQR 0.69, 0.95) (Fig. 1B). Correlation between GT peak signal strength and GT-NAB correlation strength can 
also be visualized by scatter plot (Supplementary Fig. 12B).

Effects of ecoregion and climate on GT‑NAB correlation strength.  When comparing the two main 
ecoregions represented in the study sample, correlations appeared to be somewhat weaker (p = 0.01) in Great 
Plains locations, among which the median rho value was 0.70 (IQR 0.39, 0.90) than in Eastern Temperate Forest 
locations, among which the median rho was 0.44 (IQR 0.13, 0.73). Other ecoregions were not compared due to 
small sample sizes, but correlation data by ecoregion are reported in Supplementary Fig. 7. We were not able 

https://bit.ly/2XTlHrC
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to detect statistically significant associations between either precipitation or spring temperatures with GT-NAB 
correlation strength, although numbers were small (e.g., N = 18 stations in 2013). However, scatter plot visualiza-
tion indicate that GT-NAB correlation strength may tend toward positive associations with annual precipitation 
and negative associations with spring temperature (Supplementary Fig. 13A,B).

Variation in correlation strength across sites.  Overall, comparisons between GT search data with any amount of 
non-missing data and NAB pollen concentration data resulted in Spearman’s rho values that ranged from very 
poor (rho = − 0.63) to excellent (rho = 0.98) for 105 station-years, covering 27 unique stations (see Fig. 2A–D), 
with a median rho of 0.24 (IQR 0.61–0.80). See Supplementary Table 2 for complete data missingness and rank-
correlation values by station-year.

Season start estimates.  To evaluate whether Google Trends data on search volumes for “pollen” could 
be used to estimate the start of the pollen season, we compared GT-calculated to NAB-calculated season starts, 
where start date was defined as the first date that pollen concentrations reached 5% of total annual cumulative 
pollen (see “Methods” for rationale and additional context).

Effects of data transformations and data quality thresholding on estimation accuracy.  Estimates derived from 
GT data were examined in the context of percent days missing and first date of available NAB data (Fig. 3A–C 
and Supplementary Table 3). Overall, comparing smoothed GT and NAB data, and comparing log-transformed 
smoothed GT and NAB data decreased the discrepancies between GT-derived and NAB-derived estimates of 
season start dates, as compared to using untransformed data. As a result of applying progressive inclusion crite-
ria based on data quality, the range of discrepancies between NAB- and GT-derived data also decreased. When 
examining all station-years using smoothed, log-transformed data, GT-derived start estimates preceded NAB-
derived start dates by a median value of − 24 days (IQR − 39, 7). With progressive inclusion criteria applied, 
this decreased to − 12 days (IQR − 28, − 3) and then to − 8.5 days (IQR − 21, 0). NAB-derived start dates using 
data from the previous year had discrepancies from the current year with a median of 2 days, and in IQR within 
1–2 weeks.

Discussion
NAB station locations are limited due to the requirement of needing specially trained and certified allied health 
workers who must dedicate 2 hours a day, three times a week to counting pollen, as well as an allergist to oversee 
pollen counting. GT data can be a useful source of publicly available user-derived data related to pollen allergy 
patterns in regions where NAB are not available, though there are limitations on the extent to which GT can 
serve as a reliable proxy measure.

We found that associations between NAB early season total pollen concentrations and GT search volumes 
for “pollen” are moderate to excellent in many regions, with one important factor being the percent of missing 
GT data. We find that DMA rank (a proprietary metric from The Nielsen Company to approximate large popu-
lation size and media consumption in terms of TV-homes) is directly related to percent of missing data (see 
Supplementary Fig. 14). This suggests that regions with more people performing Google searches give rise to GT 
reports with less missing data, which is logical given that Google uses a threshold to set low volumes of searches 
to zero. A second important factor affecting associations is peak signal strength in GT data. Peak signal strength 
may be both an indicator of signal to noise ratio intrinsic to GT data, and a marker of regions with a distinct 
and large early season pollen peak that can be more well captured by Google searches; regions with lower peak 
signal strength had poorer associations with NAB data (Fig. 4). Indeed, percent missing data and signal strength 
in GT data are strongly correlated for many regions (Supplementary Fig. 12B).

Figure 1.   Correlation between Google Trends searches and National Allergy Bureau pollen concentration data 
with respect to data quality and pattern. (a) Correlation by quartiles of annual percent of missing Google Trends 
data. (b) Signal to noise ratio (size of peak relative to smoothing function).
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Of the top 50 Nielsen ranked DMAs, which are likely have adequate population size and media consumption 
for approximating NAB data, at least 25 could provide GT data in NAB observation-free zones (Supplementary 
Fig. 11; Interactive map may be accessed at https​://bit.ly/2XTlH​rC)36. In addition, the utility of GT data as a 
proxy for observed pollen pattern information should improve over time as more search use leads to more search 
volume and less data exclusion, following our observed trends of improved data quality over time.

In addition to re-assessing the relationships outlined here as online search volumes increase over time, there 
are other potential applications based on our findings. For example, although currently using GT data to identify 
pollen season start dates tends to precede the NAB-derived start dates, the precision of GT-derived start dates 
appears to comparable to start dates calculated from previous year data. Thus, GT-derived data may be useful 
for approximating true season starts either with lead-time in mind or in more advanced modeling that includes 
factors affecting lead time such as climate-based data. In this way, GT data may be helpful in the future for 
estimating a large number of historical and current location-specific data points for annual pollen season start 
dates over time, and this data could be used to investigate varied trends alongside other data, including weather, 
plant phenology, health, or other GT data to assess co-variance between variations in pollen season start dates 
and other trends like the effects of climate change over time (comparing to local temperatures or extended spring 
indices, for example).

One caveat of our findings is that the underlying reason for GT search results demonstrating an associa-
tion with NAB pollen concentrations are unknown. That is, Google users may search for pollen-related terms 
due to concerns or questions related allergic symptoms, or for unrelated reasons such as observed pollen 
release; searches may be at first onset or with continuing interest or symptom persistence, and with or without a 

Figure 2.   Overlay of lightly smoothed, normalized Google Trends search data (blue) and NAB pollen 
concentration data (orange) for representative station-years. Examples of (a) excellent, (b,c) good to moderate, 
and (d) poor correlation between GT and NAB data.

https://bit.ly/2XTlHrC
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dose-dependent relationship. In the setting of allergy sufferers, particularly those who are aware of their diagnosis 
and the etiology of their symptoms, the threshold for performing Google searches related to pollen are unknown, 
and much of the population likely experiences seasonal allergies with varying sensitivity to pollen doses and in 
response to varying allergenic plant taxa. Factors that can affect the relationship between pollen and symptoms 
include the sensitization history of the individual, concomitant asthma or respiratory infections, climactic factors 
such as humidity, and exposure to risk factors such as agricultural pesticides37–39.

Figure 3.   Difference in days between Google Trends- and NAB-calculated season start dates. Differences 
in start dates are shown for untransformed, smoothed, and log-transformed smoothed data. As a reference, 
differences between NAB-calculated start dates those calculated from NAB data for the previous year dates 
are displayed as well, for (a) All available station-years, (b) additional inclusion criteria of NAB data collection 
beginning within first month of the year applied, (c) additional inclusion criteria of < 20% missing GT data 
applied.
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As noted, our analyses do not extend to pollen produced in the second half the year, including pollen pro-
duced by many grasses and weeds, which can affect allergy sufferers differently than the tree pollen that is 
commonly produced in the spring. An additional consideration is that airborne pollen concentrations may not 
directly relate to allergen exposure, as pollen potency can change dynamically throughout the season40. It should 
also be noted that air pollution can also cause rhinitis and other pollinosis-like symptoms that could in turn 
drive internet search activity wholly independent of pollen concentrations. Therefore, researchers that plan to 
use GT searches to estimate pollen concentrations should account for air quality measures such as ozone and 
particulate matter concentrations41. Finally, with respect to search data, Google reserves the rights to change its 
search algorithms at any time and without notice, which could change the relationship between pollen-related 
searches and actual pollen concentrations and limit reproducibility of the findings presented here.

Conclusion
GT data may be helpful for examining annual pollen patterns and estimating the start of the pollen season in 
regions that currently lack data on actual pollen concentrations. There is potential for using GT data to extend 
or in lieu of pollen data observations, particularly when limitations in the relationship between GT data and 
pollen observations are taken into account.

Data availability
Data from the National Allergy Bureau is available upon written request and may be released directly by the 
pollen counting station or by the AAAI Executive Office. Visit https​://www.aaaai​.org for current data release 
guidelines. Data downloaded by the authors from Google Trends for this study can be accessed in its original 
form at Mendeley Data (https​://dx.doi.org/10.17632​/xpy7j​ykfzw​.1). The Python script used for downloading 
Google Trends data can be accessed at https​://githu​b.com/drjan​ehall​/GTDai​lySea​rches​.
Data sources National Allergy Bureau data for the analyses in the study were provided by the following sta-
tions (the associated professionals and clinics for each station are listed below). Stanley M Fineman, MD MBA 
FAAAAI, Atlanta Allergy and Asthma Clinic, Marietta (Atlanta), GA. Sheila Amar, MD, FAAAAI, FACAAI, 
Allergy & Asthma Center of Georgetown, Austin, TX. Jonathon Matz, MD, FAAAAI, & David Golden, MD, 
FAAAAI, Baltimore, MD. Linda Ford, MD, FAAAAI, The Asthma and Allergy Center, PC, Bellevue, NE. David 
Weldon, MD, FAAAAI, FACAAI, Scott & White Clinic, College Station, TX. Robert Nathan, MD, FAAAAI, & 
Daniel Soteres, MD, MPH, FAAAAI, Asthma and Allergy Associates, PC, Colorado Springs, CO. Donald Pul-
ver, MD, FAAAAI, Allergy, Asthma & Immunology of Rochester, Rochester, NY. Andy Roth, RAPCA, Dayton, 
OH. Duane Harris, MD, FAAAAI, Intermountain Allergy & Asthma Clinic, Draper, UT. Philip Gallagher, MD, 
FAAAAI, Allergy & Asthma Associates of Northeastern Pennsylvania, Erie, PA. Kraig Jacobson, MD, FAAAAI, 
Allergy & Asthma Research Group, Eugene, OR. Neil Kao, MD, FAAAAI, Allergic Disease and Asthma Center, 
Greenville, SC. Tony Huynh, City of Houston, Houston, TX. Jay Portnoy, MD, FAAAAI, Children’s Mercy Hos-
pital, Kansas City, MO. James Anderson, MLT, OSHTECH, London, ON. Robert Bush, MD, FAAAAI, University 
of Wisconsin Medical School, Madison, WI. Joseph Leija, MD, FAAAAI, Melrose Park, IL. Harold Kaiser, MD, 
FAAAAI, Clinical Research Institute, Minneapolis, MN. Warren Filley, MD, FAAAAI, OK Allergy Asthma Clinic, 
Inc., Oklahoma City, OK. Martha Tarpay, MD, Allergy & Asthma Center, Oklahoma City, OK. Wayne Wilhelm, 
Saint Louis County Health Department, St. Louis, MO. Robert Gomez, Wiford Hall Ambulatory Surgical Center, 
San Antonio, TX. Alan Goldsobel, MD, FAAAAI, & James Wolfe, MD, FAAAAI, Allergy and Asthma Associates 
of Northern California, San Jose, CA. Frank Virant, MD, FAAAAI, Northwest Asthma & Allergy Center, Seattle, 
WA. Rhizza Adams, Springfield-Greene County Health Department, Springfield, MO. James Love, Jr., MD, PhD, 
FAAAAI, Allergy Clinic of Tulsa, Tulsa, OK. Richard Henry, MD, Asthma & Allergy of Idaho, Twin Falls, ID. 
Pramila K. Daftary, MD, FAAAAI, Allergy & Asthma Care of Waco, Waco, TX. Susan E. Kosisky, MHA, US Army 

Figure 4.   Summary of findings: covariates related to strength of correlation between regional internet searches 
and observed pollen, with representative examples. Line graphs show lightly smoothed normalized values for 
both Google Trends search volumes and daily observed pollen concentrations.

https://www.aaaai.org
https://dx.doi.org/10.17632/xpy7jykfzw.1
https://github.com/drjanehall/GTDailySearches
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Garrison-Forest Glen, Silver Spring, MD (Washington D.C.). Christopher Randolf, MD, FAAAAI, Waterbury, 
CT. Michael Nickels, MD, PhD, Allergy and Asthma Consultants, Inc., York, PA.

Received: 18 November 2019; Accepted: 20 May 2020

References
	 1.	 Bielory, L. et al. Ocular and nasal allergy symptom burden in America: The allergies, immunotherapy, and rhinoconjunctivitis 

(AIRS) surveys. Allergy Asthma Proc. 35(3), 211–218 (2014).
	 2.	 Singh, K., Axelrod, S. & Bielory, L. The epidemiology of ocular and nasal allergy in the United States, 1988–1994. J. Allergy Clin. 

Immunol. 126, 778–783 (2010).
	 3.	 American Academy of Allergy Asthma & Immunology. NAB Pollen concentrations. (2019). https​://www.aaaai​.org/globa​l/nab-polle​

n-count​s.
	 4.	 Storms, W., Meltzer, E. O., Nathan, R. A. & Selner, J. C. Allergic rhinitis: The patient’s perspective. J. Allergy Clin. Immunol. https​

://doi.org/10.1016/S0091​-6749(97)80043​-7 (1997).
	 5.	 Carneiro, H. A. & Mylonakis, E. Google trends: A web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis. 

https​://doi.org/10.1086/63020​0 (2009).
	 6.	 Oren, E., Frere, J., Yom-Tov, E. & Yom-Tov, E. Respiratory syncytial virus tracking using internet search engine data. BMC Public 

Health 18, 445 (2018).
	 7.	 Cook, S., Conrad, C., Fowlkes, A. L. & Mohebbi, M. H. Assessing Google Flu trends performance in the United States during the 

2009 influenza virus A (H1N1) pandemic. PLoS ONE 6, e23610 (2011).
	 8.	 Kang, M. G. et al. Google unveils a glimpse of allergic rhinitis in the real world. Allergy Eur. J. Allergy Clin. Immunol. 70, 124–128 

(2015).
	 9.	 Zuckerman, O., Luster, S. H. & Bielory, L. Internet searches and allergy: Temporal variation in regional pollen counts correlates 

with Google searches for pollen allergy related terms. Allergy Asthma Immunol. Ann. https​://doi.org/10.1016/j.anai.2014.07.015 
(2014).

	10.	 Willson, T. J., Lospinoso, J., Weitzel, E. & McMains, K. Correlating regional aeroallergen effects on internet search activity. Oto‑
laryngol. Head Neck Surg. (United States) 152, 228–232 (2015).

	11.	 Gaspar Marques, J. et al. Pollen counts influence web searches for asthma and rhinitis. J. Investig. Allergol. Clin. Immunol. https​://
doi.org/10.18176​/jiaci​.0047 (2016).

	12.	 König, V. & Mösges, R. A model for the determination of pollen count using google search queries for patients suffering from 
allergic rhinitis. J. Allergy https​://doi.org/10.1155/2014/38198​3 (2014).

	13.	 Bousquet, J. et al. Google Trends and pollen concentrations in allergy and airway diseases in France. Allergy Eur. J. Allergy Clin. 
Immunol. https​://doi.org/10.1111/all.13804​ (2019).

	14.	 Lo, F., Bitz, C. M., Battisti, D. S. & Hess, J. J. Pollen calendars and maps of allergenic pollen in North America. Aerobiologia (Bolo‑
gna). https​://doi.org/10.1007/s1045​3-019-09601​-2 (2019).

	15.	 Google. How Trends data is adjusted. (2019). https​://suppo​rt.googl​e.com/trend​s/answe​r/43655​33. Accessed 6 Jan 2019.
	16.	 Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. 

Environ. Manag. 54, 1249–1266 (2014).
	17.	 Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 

(2017).
	18.	 General Mills. Unofficial API for Google Trends. (2019). https​://githu​b.com/Gener​alMil​ls/pytre​nds/blob/maste​r/READM​E.md. 

Accessed 6th Jan 2019.
	19.	 Northwest Allergy and Asthma Center. Pollen Count. (2019). https​://www.nwast​hma.com/polle​n-count​/. Accessed 7th Jan 2019.
	20.	 Kelly, R. F., Higuera, P. E., Barrett, C. M. & Hu, F. S. A signal-to-noise index to quantify the potential for peak detection in sediment-

charcoal records. Quat. Res. 75, 11–17 (2011).
	21.	 Urban, R. J. et al. Contemporary aspects of discrete peak-detection algorithms. I. The paradigm of the luteinizing hormone pulse 

signal in men. Endocr. Rev. 9, 3–37 (1988).
	22.	 Pfaar, O. et al. Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis: 

An EAACI position paper. Allergy Eur. J. Allergy Clin. Immunol. https​://doi.org/10.1111/all.13092​ (2017).
	23.	 Bastl, K., Kmenta, M. & Berger, U. E. Defining pollen seasons: Background and recommendations. Curr. Allergy Asthma Rep. https​

://doi.org/10.1007/s1188​2-018-0829-z (2018).
	24.	 Jato, V. et al. May the definition of pollen season influence aerobiological results?. Aerobiologia (Bologna). 22, 13 (2006).
	25.	 Makra, L., Juhász, M., Béczi, R. & Borsos, E. The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 

https​://doi.org/10.1080/00173​13051​00105​58 (2005).
	26.	 Zhang, Y., Bielory, L., Cai, T., Mi, Z. & Georgopoulos, P. Predicting onset and duration of airborne allergenic pollen season in the 

United States. Atmos. Environ. https​://doi.org/10.1016/j.atmos​env.2014.12.019 (2015).
	27.	 Nilsson, S. & Persson, S. Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana https​://doi.org/10.1080/00173​

13810​94276​61 (1981).
	28.	 Grundström, M. et al. Oak pollen seasonality and severity across Europe and modelling the season start using a generalized 

phenological model. Sci. Total Environ. https​://doi.org/10.1016/j.scito​tenv.2019.01.212 (2019).
	29.	 Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H. & Villamandos, F. A comparative analysis of daily variations in the gramineae 

pollen counts at córdoba, Spain and London, UK. Grana https​://doi.org/10.1080/00173​13950​94290​42 (1995).
	30.	 Ziska, L. H. et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern 

hemisphere: A retrospective data analysis. Lancet Planet. Health. https​://doi.org/10.1016/S2542​-5196(19)30015​-4 (2019).
	31.	 Anolik, R. Clinical benefits of combination treatment with mometasone furoate nasal spray and loratadine vs monotherapy with 

mometasone furoate in the treatment of seasonal allergic rhinitis. Allergy Asthma Immunol. Ann. https​://doi.org/10.1016/S1081​
-1206(10)60452​-8 (2008).

	32.	 Pfaar, O., Kleine-Tebbe, J., Hörmann, K. & Klimek, L. Allergen-specific immunotherapy: Which outcome measures are useful in 
monitoring clinical trials?. Immunol. Allergy Clin. N. Am. https​://doi.org/10.1016/j.iac.2011.02.004 (2011).

	33.	 De Weger, L. A. et al. Impact of pollen. In Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts 
(2013). https​://doi.org/10.1007/978-94-007-4881-1_6

	34.	 Makra, L., Matyasovszky, I., Páldy, A. & Deák, ÁJ. The influence of extreme high and low temperatures and precipitation totals 
on pollen seasons of Ambrosia, Poaceae and Populus in Szeged, southern Hungary. Grana https​://doi.org/10.1080/00173​
134.2012.66176​4 (2012).

	35.	 National Weather Service. Climate Zones. https​://www.weath​er.gov/jetst​ream/clima​tes.
	36.	 Hall, J., Lo, F., Saha, S., Vaidyanathan, A. & Hess, J. J. Google Trends Data Extends Geographic Range of Pollen Pattern Information. 

(2020). https​://www.googl​e.com/maps/d/drive​?state​=%7B%22ids​%22%3A%5B%2218r​MKzlb​FbfEK​RJgpZ​6pKlm​D6hh7​QGu56​
%22%5D%2C%22act​ion%22%3A%22ope​n%22%2C%22use​rId%22%3A%22116​82526​21789​30336​870%22%7D&usp=shari​ng.

https://www.aaaai.org/global/nab-pollen-counts
https://www.aaaai.org/global/nab-pollen-counts
https://doi.org/10.1016/S0091-6749(97)80043-7
https://doi.org/10.1016/S0091-6749(97)80043-7
https://doi.org/10.1086/630200
https://doi.org/10.1016/j.anai.2014.07.015
https://doi.org/10.18176/jiaci.0047
https://doi.org/10.18176/jiaci.0047
https://doi.org/10.1155/2014/381983
https://doi.org/10.1111/all.13804
https://doi.org/10.1007/s10453-019-09601-2
https://support.google.com/trends/answer/4365533
https://github.com/GeneralMills/pytrends/blob/master/README.md
https://www.nwasthma.com/pollen-count/
https://doi.org/10.1111/all.13092
https://doi.org/10.1007/s11882-018-0829-z
https://doi.org/10.1007/s11882-018-0829-z
https://doi.org/10.1080/00173130510010558
https://doi.org/10.1016/j.atmosenv.2014.12.019
https://doi.org/10.1080/00173138109427661
https://doi.org/10.1080/00173138109427661
https://doi.org/10.1016/j.scitotenv.2019.01.212
https://doi.org/10.1080/00173139509429042
https://doi.org/10.1016/S2542-5196(19)30015-4
https://doi.org/10.1016/S1081-1206(10)60452-8
https://doi.org/10.1016/S1081-1206(10)60452-8
https://doi.org/10.1016/j.iac.2011.02.004
https://doi.org/10.1007/978-94-007-4881-1_6
https://doi.org/10.1080/00173134.2012.661764
https://doi.org/10.1080/00173134.2012.661764
https://www.weather.gov/jetstream/climates
https://www.google.com/maps/d/drive?state=%7B%22ids%22%3A%5B%2218rMKzlbFbfEKRJgpZ6pKlmD6hh7QGu56%22%5D%2C%22action%22%3A%22open%22%2C%22userId%22%3A%22116825262178930336870%22%7D&usp=sharing
https://www.google.com/maps/d/drive?state=%7B%22ids%22%3A%5B%2218rMKzlbFbfEKRJgpZ6pKlmD6hh7QGu56%22%5D%2C%22action%22%3A%22open%22%2C%22userId%22%3A%22116825262178930336870%22%7D&usp=sharing


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11334  | https://doi.org/10.1038/s41598-020-68095-y

www.nature.com/scientificreports/

	37.	 Silverberg, J. I., Braunstein, M. & Lee-Wong, M. Association between climate factors, pollen counts, and childhood hay fever 
prevalence in the United States. J. Allergy Clin. Immunol. https​://doi.org/10.1016/j.jaci.2014.08.003 (2015).

	38.	 Buters, J. et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time 
in season the HIALINE working group. J. Allergy Clin. Immunol. https​://doi.org/10.1016/j.jaci.2015.01.049 (2015).

	39.	 Patel, O., Syamlal, G., Henneberger, P. K., Alarcon, W. A. & Mazurek, J. M. Pesticide use, allergic rhinitis, and asthma among US 
farm operators. J. Agromed. https​://doi.org/10.1080/10599​24X.2018.15014​51 (2018).

	40.	 Galan, C. et al. Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy Eur. J. 
Allergy Clin. Immunol. https​://doi.org/10.1111/all.12144​ (2013).

	41.	 Sacramento Metropolitan Air Quality Management District, S. Air Quality Pollutants and Standards. (2017). https​://www.airqu​
ality​.org/air-quali​ty-healt​h/air-quali​ty-pollu​tants​-and-stand​ards. Accessed 7th Oct 2019.

Acknowledgements
This work was supported by the National Aeronautics and Space Administration (NASA) Research Opportuni-
ties in Space and Earth Science (ROSES-2015) Program Element A.46: Health and Air Quality Applied Sciences 
Team [grant 15-HAQST15-0025].

Author contributions
Author contributions in terms of CRediT (Contributor Roles Taxonomy) as follows: J.H.: conceptualization, 
methodology, software, formal analysis, data curation, writing—original draft, writing—review and editing, 
visualization. F.L.: conceptualization, methodology, writing—review and editing, visualization, resources, funding 
acquisition. S.S.: methodology, writing—review and editing. A.V.: methodology, writing—review and editing. 
J.H.: conceptualization, methodology, writing—review and editing, resources, funding acquisition.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-68095​-y.

Correspondence and requests for materials should be addressed to J.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1016/j.jaci.2014.08.003
https://doi.org/10.1016/j.jaci.2015.01.049
https://doi.org/10.1080/1059924X.2018.1501451
https://doi.org/10.1111/all.12144
http://www.airquality.org/air-quality-health/air-quality-pollutants-and-standards
http://www.airquality.org/air-quality-health/air-quality-pollutants-and-standards
https://doi.org/10.1038/s41598-020-68095-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Internet searches offer insight into early-season pollen patterns in observation-free zones
	Anchor 2
	Anchor 3
	Methods
	Data sources. 
	Google trends data collection and preparation. 
	Statistical analyses. 
	Inclusion criteria. 
	Assessment of data quality. 
	Relationship between GT and NAB data. 
	Pollen season start dates. 

	Software. 

	Results
	Assessment of data quality. 
	National Allergy Bureau pollen concentration data quality. 
	Google trends search data quality. 

	Factors associated with data quality. 
	Correlation between NAB and GT data with respect to data quality. 
	Data quality inclusion criteria for correlation analyses. 
	Effects of data missingness on NAB-GT correlation strength. 
	Effects of GT peak signal strength on GT-NAB correlation strength. 

	Effects of ecoregion and climate on GT-NAB correlation strength. 
	Variation in correlation strength across sites. 

	Season start estimates. 
	Effects of data transformations and data quality thresholding on estimation accuracy. 


	Discussion
	Conclusion
	References
	Acknowledgements


