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Soft‑sensor modeling for l‑lysine 
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the l‑lysine fermentation process is a complex, nonlinear, dynamic biochemical reaction process with 
multiple inputs and multiple outputs. there is a complex nonlinear dynamic relationship between each 
state variable. Some key variables in the fermentation process that directly reflect the quality of the 
fermentation cannot be measured online in real‑time which greatly limits the application of advanced 
control technology in biochemical processes. this work introduces a hybrid icS‑MLSSVM soft‑sensor 
modeling method to realize the online detection of key biochemical variables (cell concentration, 
substrate concentration, product concentration) of the l‑lysine fermentation process. first of all, a 
multi‑output least squares support vector machine regressor (MLSSVM) model is constructed based 
on the multi‑input and multi‑output characteristics of l‑lysine fermentation process. then, important 
parameters ( γ , � , σ ) of MLSSVM model are optimized by using the improved cuckoo Search (icS) 
optimization algorithm. in the end, the hybrid icS‑MLSSVM soft‑sensor model is developed by using 
optimized model parameter values, and the key biochemical variables of the l‑lysine fermentation 
process are realized online. The simulation results confirm that the proposed regression model can 
accurately predict the key biochemical variables. furthermore, the hybrid icS‑MLSSVM soft‑sensor 
model is better than the MLSSVM soft‑sensor model based on standard cS (cS‑MLSSVM), particle 
swarm optimization (pSo) algorithm (pSo‑MLSSVM) and genetic algorithm (GA‑MLSSVM) in 
prediction accuracy and adaptability.

l-Lysine is the second most leading globally produced amino acids that is being used in animal feeds, pharma-
ceuticals, cosmetics, food industry and many other daily life applications. The estimated global market is 2.2 
million tons which is increasing at 10% rate per  year1. To meet the increased demand, researchers are looking 
for alternatives to increase the production instead of increasing the plant capacity which is time consuming and 
much expensive. One of the best ways to increase the productivity is to monitor and control product concentra-
tion (reflecting the most intuitive manifestation of fermentation quality, the higher the product concentration, 
the better the quality) in real time. An excess amount of accumulation of product in reactor causes catabolic 
repression or osmotic stress for  bacteria2. Similarly, cell concentration and substrate concentration are paramount 
variables to increase the output  yield3,4. Cell concentration reflects the number of bacterial cells and substrate 
concentration reflects the growth and reproduction status of the bacteria, which has a close relationship with fer-
mentation metabolism and directly affects the final formation of the product. Measurement of these key variables 
is necessary to control and optimize the fermentation process in real-time to enhance the productivity. However, 
it is hard to measure cell concentration, substrate concentration, product concentration during fermentation pro-
cess in real-time due to the highly time-varying, non-linear and uncertain nature of the fermentation  process5–7.

Many costly offline analysis methods are often used to measure these key biochemical variables such as dry 
weight method, direct staining method, optical density method and cell counting method. At the same time, 
there are some problems, such as large time delay, complex operations, large measurement errors and high 
infection rate, which cannot meet the requirement of real-time optimization control. Because, these classical 
methods cannot reflect the current state of the fermentation process in time, and it is difficult to meet the real-
time dynamics of l-lysine fermentation process. Soft-sensor technology is introduced to solve these  problems8–10 
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which constructs inferential mathematical models that can predict real-time values of unmeasurable variables 
by making use of those easily measurable  variables11. The results proved that the soft-sensors technology could 
effectively improve the process monitoring in real-time and fermentation product quality. The successful imple-
mentation of these virtual sensors to a larger extent have revolutionized the fermentation industry.

In soft-sensor modeling of the fermentation process, lab-scale data of inputs (easily measurable in real-time 
using physical sensors) and outputs (cannot be measured in real-time) is collected offline. A non-linear map-
ping function between inputs and outputs is constructed using some well known data-driven prediction models. 
Researchers have proposed many data-driven methods for the soft-sensor technology in fermentation. Liu et al. 
exploited artificial neural network (ANN) to build a soft-sensor for measuring the key variables of marine alka-
line protease MP fermentation  process12. Chong et al. used support vector machine (SVM) to model penicillin 
fermentation process and results proved that SVM is better than ANN modelling  methods13. Sang et al. have 
proposed a model based on least square SVM (LSSVM) to estimate biomass concentration to facilitate on-line 
 monitoring14. As computational time complexity of SVM increases with the increase of the size of the dataset, 
LSSVM solved the curse of dimensionality limitation and it is less dependent on the size of the dataset which 
has good generalization ability as compared to radial basis function (RBF) neural  network15,16.

At present, the traditional LSSVM (multi-input single-output models) has proved its usefulness in many daily 
life applications but the standard formulation of this algorithm seems unable to efficiently handle multi-output 
regression problems. In general, it is assumed that outputs are mutually independent, and for each output a new 
model is constructed individually. As this traditional regression model can only predict a single output, so the 
useful information about the temporal correlation between different outputs is neglected which results in time 
consumption and low prediction accuracy. To solve these problems, researchers have designed many multi-output 
regression algorithms as multi-output least square support vector machine regressor models and proved the 
effectiveness of multi-output models as compared to single output  models17,18. In addition, multi-output models 
are also simple and computationally  inexpensive19.

Meanwhile, optimization algorithms are employed to optimize the important parameters of data-driven 
models to increase the prediction accuracy. Chen et al. have used Particle Swarm Optimization (PSO) to optimize 
the weights and threshold of ANN instead of Back Propagation (BP) because of its inherent  problems20. Robles 
et al. presented a method to choose the regularization and kernel parameters of SVM using  PSO21. Genetic 
Algorithm (GA) is introduced to optimize SVM  parameters22. Similarly, many other metaheuristic algorithms 
like Cuckoo Search (CS)23, Ant Colony Optimization (ACO)24, and Artificial Bee Colony (ABC)25 have been 
used in many industrial applications.

In this work, a novel multi-output least square support vector (MLSSVM) regressor model is introduced 
to construct the soft-sensor model of the l-lysine fermentation process. Single output LSSVM model is an 
improved form of SVM (which overcomes the problem of possible overfitting in ANN), has less time cost and 
provides efficient generalization  ability26,27. However, for multi-output problems, the utilization of correlation 
information among outputs is necessary for accurate modeling. Hence, MLSSVM is employed for multi-output 
soft-sensor model of l-lysine fermentation which utilizes the correlation information among outputs to find 
a non-linear mapping function between multi-inputs and multi-outputs. Furthermore, the selection of model 
parameters of MLSSVM is important for the effective results and prediction accuracy of model. Thus, a good 
metaheuristic optimization algorithm that has good local and global search ability with fast convergence should 
be selected to choose the best model parameters. In the process of multi-peak optimization, the CS algorithm 
has the best performance to obtain optimal solution as compared to the PSO, GA, Differential Evolution (DE) 
and ABC  algorithms28,29. However, the local search ability and convergence speed of CS needs improvement 
because of its fixed values of two parameters, probability ‘ pa ’ and step size ‘ α’30,31. To overcome these problems 
and improve the prediction ability, the optimum parameters of MLSSVM are selected by using an Improved 
Cuckoo Search (ICS) optimization algorithm which has successfully solved the above mentioned problems in 
CS optimization algorithm and provides optimum parameters of MLSSVM because of it’s improved local and 
global search ability. The proposed hybrid ICS-MLSSVM regression method is also compared with MLSSVM 
optimized by standard CS (CS-MLSSVM), PSO (PSO-MLSSVM) and GA (GA-MLSSVM) which shows that 
ICS-MLSSVM outperforms CS-MLSSVM, PSO-MLSSVM and GA-MLSSVM in terms of prediction accuracy 
and adaptability. Despite of the fact that, CS, PSO and GA have been very successful in many applications, but 
every optimization problem has a new unknown search space. According to “no free lunch” (NFL)  theorem32, 
an optimization algorithm successful in particular set of optimization problems may not be successful in some 
other optimization problems. ICS proved to be more competent in our case to avoid local optimal solution and 
provides best global optimal solution as compared to CS, PSO and GA.

Methods
Single‑output Least Squares Support Vector Machine (LSSVM). Suykens et al. proposed  LSSVM33 
by introducing an equality constraint instead of inequality constraint in  SVM34,35. The convex quadratic pro-
gramming (QP) problem is converted to a linear system of equations. The basic modeling principle is as follows:

Suppose there are l examples for training, {(xi , yi)| i = 1, 2, . . . , l}, xi ∈ Rn is an input vector and yi ∈ R is 
corresponding output. LSSVM learns a mapping function between inputs and outputs defined as:

The optimization problem for regression LS-SVM is as follows:

(1)y(xi) = ωTϕ(xi)+ b
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where ω is a weight vector; g ∈ R+ is penalty parameter; ξi is error variable; b is deviation; ϕ(·) is mapping to a 
high dimensional space. Lagrange method is used to optimize the above problems:

where αi is a Lagrange multiplier. According to KKT (Karush–Kuhn–Tucker) conditions, the transformation to 
the linear equation is as follows:

where y = [y1, y2, . . . , yl]
T ; 1l = [1, 1, . . . , 1]T ; Il is lth ordered unit matrix; α = [α1,α2, . . . ,αl]

T ; K  is the kernel 
function matrix to satisfy Mercer’s conditions:

This study utilizes RBF kernel function because of its supreme generalization ability and  performance36;

where σ is the kernel function width. Finally, the function of LSSVM is estimated as:

Multi‑output Least Squares Support Vector Machine (MLSSVM). The l-lysine fermentation pro-
cess is a complex system because the bacteria continue to ingest substances from the external environment into 
the cells, obtain energy for survival through a series of biochemical reactions, and expel metabolites from the 
body. During the fermentation process, the growth of bacteria and the formation of products are not parallel. 
In a specific bioreactor, the relationship between biological growth and process control, environmental impact, 
reactor characteristics, etc. is intricate. This forms a complex multi-input/multi-output nonlinear system. Con-
sidering the nonlinear multiple-input multiple-output (MIMO) characteristics in the fermentation process, 
the traditional LSSVM method needs to be improved for multi-output problems. At present, the single output 
regression LSSVM formulation can be easily extended to multiple output MLSSVM. Xu et al. have designed a 
MLSSVM model to exploit correlation information among  outputs37. MLSSVM aims at finding a mapping func-
tion between multi-input and multi-output space, thus considers the correlation information between different 
outputs. Given a set of examples {(xi , yi)| i = 1, 2, . . . , l}, xi ∈ Rn is an input vector and yi ∈ Rm is corresponding 
output vector. MLSSVM finds a non-linear mapping Rn → Rm . It find values of w = (w1,w2, . . . ,wm) ∈ Rnh×m 
and b = (b1, b2, . . . , bm) ∈ Rm by solving the following optimization problem:

where � = (ξ1, ξ2, . . . , ξm) ∈ Rl×m , z = (ϕ(x1),ϕ(x2), . . . ,ϕ(xm)) ∈ Rnh×l , ϕ : Rn → Rnh maps to a Hilbert space 
H (feature space), which is higher nh dimension space, trace(A) =

∑m
i=1 A(i,i) and repmatrix(A, m, n) creates a 

(m× n) block matrix tilling copies of a given matrix A, ‘ × ’ denotes a simple multiplication operator. It is assumed 
that all wi ∈ Rnh can be rewritten as wi = w0 + vi ; whereas (w0, vi) ∈ Rnh . If the outputs are similar, the vectors 
vi are small, and if outputs are different than each other, the mean vectors w0 are small. In other words, w0 bears 
the information of correlation and vi bears the contrast information. The objective function for solving w0 ∈ Rnh , 
v = (v1, v2, . . . , vm) ∈ Rnh×m , and b = (b1, b2, . . . , bm) ∈ Rm is as follows:

where w = (w0 + v1,w0 + v2, . . . ,w0 + vm, ) ∈ R(nh×m) , � = (ξ1, ξ2, . . . , ξm) ∈ Rl×m , z = (ϕ(x1),ϕ(x2), . . . ,

ϕ(xm)) ∈ R
nh×l and �, γ ∈ R are two real positive regularization penalty parameters. Lagrange method for opti-

mization is as follows:

(2)
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where AT = (α1,α2, . . . ,αm) ∈ Rl×m is the Lagrange multiplier matrix. By using KKT condition following set 
of equations is achieved:

From the above equations, it is clear that w0 is a linear combination of vi as w0 =
�

m

∑m
i=1 vi . As it is assumed that 

wi = w0 + vi , so for the above optimization problem, the estimation function in terms of v and b is rewritten as:

In Eq. 8 it can be seen that it tries to find only small size vectors for decoupling between different parameters 
of outputs. However, in Eq. 12 change in the first term of expression results a problem that finds additionally 
a tradeoff between small size vectors, trace(vTv) and v1m1TmvT (closeness to an average vector of all vectors).

A linear system can be achieved similarly to LSSVM by using KKT condition, which yields the following 
equation of the Linear system:

where P = blockdiag(1l , 1l , . . . , 1l) ∈ Rml×m , blockdiag(x1, x2, . . . , xl) creates a block diagonal matrix with blocks  
of x1, x2, . . . , xl at diagonal positions and remaining entities as zero, 1m = [1, 1, . . . , 1]T ∈ Rm , 0m = [0, 0, . . . , 0]T ∈ Rm ,  
H = �+ γ−1Iml + (m

�
)Q ∈ Rml×ml , K = zTz ∈ Rl×l , Q = blockdiag(K ,K , . . . ,K) ∈ Rml×ml , � = repmat(K ,m,m) ∈

R
ml×ml , α = (αT

1 ,α
T
2 , . . . ,α

T
m)

T ∈ Rml , y = (yT1 , y
T
2 , . . . , y

T
m)

T ∈ Rml . This linear system consists of ((l + 1)×m) 
equations. Finally, the function of MLSSVM is estimated as:

The linear system in Eq. 13 is hard to solve because the coefficient matrix is not positive definite, so it can be 
converted to a positive definite linear system by small transformation as  follows37:

where S = PTH−1P ∈ Rm×m and it is a positive definite matrix. The following relation can easily find the solu-
tion for α and b:

where S = PTη , η and v can be calculated from Hη = P and Hv = y ; where H ∈ Rml×ml is a positive definite 
matrix.

The selection of the model parameters of MLSSVM (such as penalty factors � , γ and kernel width control 
factor σ ) has a critical role in building a soft sensor model. This work employed ICS optimization algorithm to 
optimize the MLSSVM parameters and replaced the traditional experience and trial-error based methods. The 
obtained optimal parameters are utilized to build a more accurate soft sensor model.

cuckoo search optimization algorithm. Optimization algorithms like GA, PSO and ACO have been 
proved more successful than conventional algorithms to solve real-world problems. The intuition of CS was 
taken from the reproduction style of Cuckoo bird that chooses nest of another specie for laying  eggs38. The host 
bird may discard an alien egg by identifying it, or abandon the nest to build a nest at a new position by utilizing 
the Lévy flight  idea39. The basic rules are: every cuckoo can lay only one egg and randomly selects a nest to hatch 
it; the optimal solution (best nest) will be preserved for the upcoming generation; there are a fixed number of 
nests, and the host bird with a chance pa ∈ (0, 1) may find out the new strange egg. The update in nest position 
using Lévy flight occurs according to following mathematical relation:

(10)L(w0, v, b,�,A) = J(w0, v,�)− trace(AT (zTw + repmat(bT , l, 1)+�− y))

(11)
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where x(t)i  , α and n refer to the current location of the nest, step size, and the total number of host nests respec-
tively. ⊕ stands for entry wise multiplication, L(µ) suit distributed from Lévy and is a random flight step, where 
(1 < µ < 3) . After updating the position, the probability pa is compared with a randomly generated number 
r ∈ (0, 1) . If pa > r the nest position remains the same and if pa < r , the nest location x(t+1)

i  is changed randomly.

improved cuckoo Search (icS) optimization algorithm. Although the CS optimization algorithm 
has excellent global search performance, yet its convergence speed and local search ability still suffers in finding 
the best optimum solution. The reason is that, the values of ‘ pa ’ and step size ‘ α ’ are fixed in standard Cuckoo 
Search algorithm. For larger α , the convergence speed decays at a swift rate, which results in the worst per-
formance of the algorithm. For small α , the algorithm require too many iterations to reach the best solution. 
Furthermore, small ‘ pa ’ increases the quality of the best solution (accuracy) in each generation but solution 
diversity decreases, whereas with a large value of pa , the solution diversity increases and leads to an immature 
 convergence40. In standard CS, ‘ pa ’ and ‘ α ’ are the key parameters and play an essential part in improving the 
global and local search ability of the algorithm. Therefore, in this paper, the values of ‘ pa ’ and ‘ α ’ are selected 
adaptively. In start the values are adjusted large enough to increase the diversity of solution and with each itera-
tion these values are decreased to increase the fine-tunning ability of solution in later generations. The originally 
fixed discovery probability is improved according to formula as  follows41:

where pamax , pamin , Nmax and Ni represent the maximum discovery probability, minimum discovery probability, 
maximum iterations and currently ongoing iteration respectively. The value of step size ‘ α ’ improved according 
to the following mathematical relation:

icS‑MLSSVM soft‑sensor modeling method. The model parameters of MLSSVM are penalty factors 
γ , � and kernel width control factor σ , that play an important role in its performance. As in SVM and LSSVM, 
a very large value of γ would lead to remarkably high accuracy on training data but less accuracy on test data, 
while lower value makes the model less functional and shows poor  performance21. In addition, an excessively 
large value of kernel factor σ inflicts overfitting problem and small value results under-learning problem. The 
kernel factor σ defines the effect of a single training example on other examples. Therefore, there is a need to 
choose the values of MLSSVM model parameters γ , � and σ carefully. Researchers have used different optimiza-
tion algorithms to select the optimum values of critical parameters of regression models. Zhu et al. have used 
PSO to optimize LSSVM  parameters15. Based on the above references, we propose to use an “Improved Cuckoo 
Search” algorithm to find optimum values of MLSSVM parameters. Figure 1, depicts the ICS algorithm in steps. 
The steps of ICS-MLSSVM are as follows: 

Step 1: Prepare train, cross-validation, test dataset and perform normalization.
Step 2: Define pamax , pamin , αmax , αmin , Nmax (maximum iterations) and generate initial population n (total 

host nests) randomly.
Step 3: Define an objective function. In our work we have used formula 23, where y(i) and y′(i) are actual and 

the predicted values respectively. For the current generation, according to the objective function, the optimal 
solution fmin is calculated and reserved for the next generations.

Step 4: For every new iteration, update the values of pa , α and k using Eqs. 18, 19 and 20.
Step 5: Randomly select a cuckoo xi by using Lévy flight with fitness f (xi) and calculate fitness function at any 

other randomly selected host nest. If f (xi) is less than previously stored fitness value, replace that solution 
(host nest) with a new solution (newly selected nest). Otherwise, leave the same solution for next iterations.

Step 6: Generate a random number r ∈ (0, 1) following uniform distribution and compare it with updated 
probability pa . If r > pa , randomly change the bird’s nest position and if r < pa , the nest remains unchanged 
(good quality solution).

Step 7: Test new generation’s nests and keep the best quality solution for the next generation. Finally, the best 
quality solution x(t)b  (global optimum solution) is selected from a group of bird’s nests with better results 
and meets the precision requirement fmin . If it does not fit, repeat from step (4), till Nmax reaches or meets 
the precision requirement.

Figure 2 shows the proposed hybrid ICS-MLSSVM soft sensor model.

(17)x
(t+1)
i = x

(t)
i + α ⊕ L(µ), i = 1, 2, . . . , n

(18)pa(Ni) = pamax −
Ni

Nmax
× (pamax − pamin)

(19)α(Ni) = αmax × exp(k × Ni)

(20)k =
1

Nmax
× ln

αmax

αmin

(21)f =

n
∑

i=1

(y(i)− y′(i))2
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Results and discussion
experimental setup. The experiment of l-lysine fed-batch fermentation was carried out at the control 
system platform of Jiangsu University. The RT-100L-Y fermenter model was used to perform this experiment. To 
make the experiment close to the actual production process, the experimental process was designed as follows:

• The time period for every batch was 72 h and the sampling time period t was 15 min. The auxiliary inputs 
(such as temperature T, pH, speed of stirring motor r, dissolved oxygen Do , acceleration rate of glucose flow 
u1 , acceleration rate of ammonia flow u2 and air flow rate u3 ) were collected in real-time by testing instrument. 
The key biochemical variables (cell concentration ‘X’, substrate concentration ‘S’ and product concentration 
‘P’) were sampled after every 2-h and tested in laboratory offline. After this, the key biochemical parameters 
were transformed from 2-h sampled data to 15 min sampled data (consistent with the number of auxiliary 
inputs data) in MATLAB using the “spline” interpolation function interp1 (https ://www.mathw orks.com/help/
matla b/ref/inter p1.html). The cell concentration was achieved after performing some computations using the 

Figure 1.  Improved Cuckoo search optimization algorithm.

https://www.mathworks.com/help/matlab/ref/interp1.html
https://www.mathworks.com/help/matlab/ref/interp1.html
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method of cell dry weight i.e. centrifuge tube was filled with 10 ml liquor of fermentation, the operation of 
centrifuge was carried out for 5 min at 3000 r/min, supernatant was set aside, and washed by distilled water 
twice and after that it was dried at 105 ◦C until its weight became constant, then calculated its weight. S was 
measured by SBA-40C multi-function biosensor. P was determined by the modified ninhydrin colorimetric 
method i.e. 2 ml of the supernatant and 4 ml of the ninhydrin reagent were mixed and heated in boiling water 
for 20 min. The absorbance at 475 mm was measured by a spectrophotometer after cooling and obtained by 
checking the standard l-lysine curve.

• 10 batches were used for testing the modeling competence of the hybrid ICS-MLSSVM method. The initial 
conditions between batches were set differently and the feeding strategy was also changed to enhance the 
differences between batches. The pressure of the fermentation tank was set to 0.1 MPa, the temperature of 
fermentation was adjusted at 30 ◦C± 10 ◦C and the dissolved oxygen electrode was calibrated for the refer-
ence reading when the stirring motor was rotating at 400 r/min.

evaluation metrics. In addition, to assess the prediction accuracy, Root mean square error (RMSE) and 
Mean absolute error (MAE) are used.

(22)RMSE(y, y′) =

√

√

√

√

1

m

m
∑

i=1

(y(i)− y′(i))2

(23)MAE(y, y′) =
1

m

n
∑

i=1

|y(i)− y′(i)|

Figure 2.  ICS-MLSSVM soft sensor model.
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where y and y′ refer to the actual and the predicted value, respectively, and m is the total number of points. Fur-
thermore, difference between actual data and predicted data is plotted to visualize the clear difference.

Results analysis. Six batches of fermentation data are selected randomly and used for training of model, 
and the initial fermentation process model is constructed by offline training. To ensure effectiveness, Leave-
one-out (LOO), a cross-validation method is used to achieve the best values of model parameters before the 
testing process. Then two batches fermentation data from remaining four batches are selected randomly and 
used to correct the model (cross-validation test) offline. Finally, hybrid ICS-MLSSVM is designed by using the 
best optimum model parameters of MLSSVM obtained through the training and cross-validation phase. The 
last two batches are used to estimate the key biochemical variables (‘X’ cell concentration, ‘S’ substrate concen-
tration, ‘P’ product concentration) of l-lysine fermentation to verify the online identification accuracy of the 
model. To find the optimum parameter values of MLSSVM, the range for selection of parameters is defined as 
γ ∈ [2−5, 2−3, . . . , 215] , � ∈ [2−10, 2−8, . . . , 210] , σ ∈ [2−15, 2−13, . . . , 23] . The parameters of ICS optimization 
algorithm are set to as Nmax = 150 , dimension dim = 3 (number of MLSSVM parameters to be optimized), 
pamax = 0.5 , pamin = 0.5 , αmax = 0.5 , αmin = 0.01 , µ = 1.5 and population size is set to n = 24 . These optimal 
parameter values that produced best results are selected after extensive simulations and employing different 
combinations. For example, different population size values are applied in range [10, . . . , 50] . At n = 24 , we got 
best results and further increase in value has no significant improvement in results. Initially, pamax is adjusted 
to 0.9 and different values are used in range [0.1, . . . , 0.9] . pamin value is selected in range [0.01, . . . , 0.5] such 
that pamin < pamax . As step size is fixed in standard CS, this work employs adaptive strategy to use variable step 
size. The values of αmax and αmin are selected after employing different values in range [0.01, . . . , 1] such that 
αmax > αmin . Default value of µ in standard CS provides best performance in ICS. The data is normalized within 
the range [0, 1] before training.

The prediction curves are shown in Figs. 3, 4, 5, 6, 7 and 8. ICS-MLSSVM is compared with standard CS to 
show the improved performance of ICS in Figs. 3, 4 and 5. Furthermore, the proposed method ICS-MLSSVM 
is compared with the MLSSVM based on well known optimization algorithms PSO (PSO-MLSSVM) and GA 
(GA-MLSSVM) to verify the effectiveness of ICS optimization algorithm in Figs. 6, 7 and 8. As it can be seen from 
these Figures that ICS-MLSSVM results are much closer to actual value than the CS-MLSSVM, PSO-MLSSVM 
and GA-MLSSVM.

Figure 3.  Prediction and error curves of ICS and CS based multi-output MLSSVM (cell concentration).
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Furthermore, error plots on right-hand side of Figs. 3, 4, 5, 6, 7 and 8 provide a clear difference between 
ICS-MLSSVM and corresponding comparitive methods. As the y-axis (output concentrations) is much bigger 
as compared to error exists between actual and predicted curves, so it is difficult to visualize it. Thus, these error 
values in plots are determined by calculating difference between actual and predicted values (y − y′) to visual-
ize error between actual (y) and predicted values (y′) . A significant difference can be observed in error analysis 
presented in these plots. All outputs (cell, substrate, product concentration) in such batch fermentation data set 
are correlated with each other. For example, if the substrate is consumed (concentration decreases), the cell and 
product concentrations will increase at the same time. However, traditional single output LSSVM can predict 
only one output at a time, so correlation among all outputs is not considered in the training process which 
affects the prediction accuracy of the model. The proposed MLSSVM regression model exploits correlation and 
contrast information among all outputs to find an accurate mapping function between multivariate input space 
and multivariate output space.

Table 1, illustrates the Root mean square error (RMSE) value comparison, and Table 2, compares Mean 
absolute error (MAE). Evaluating both tables reveals the significance of the proposed method for Multi-output 
regression problems. The RMSE and MAE values show that a major difference exist between ICS-MLSSVM, 
CS-MLSSVM, PSO-MLSSVM and GA-MLSSVM. The notable observation after comparing with CS-MLSSVM, 
PSO-MLSSVM and GA-MLSSVM is that the proposed ICS-MLSSVM method learns the correlation information 
that exists between outputs and predict all outputs variation trend with negligible error. The reason is that the 
selection of model parameters of MLSSVM has a very significant part in learning an accurate mapping between 
inputs and outputs and prediction accuracy. ICS works well in our case to avoid local minimum and success-
fully finds a global minimum as a solution. However, CS, PSO and GA are not successful in finding a global 
minimum in a three dimensional unknown search space. To visualize error plots of proposed ICS-MLSSVM 
clearly, the error curves are plotted separately for ICS-MLSSVM and PSO-MLSSVM , GA-MLSSVM as shown 
in Figs. 9, 10 and 11. The fitting degree of ICS-MLSSVM is much higher than CS-MLSSVM, PSO-MLSSVM and 
GA-MLSSVM. It can be seen from these figures that outputs are well predicted by ICS-MLSSVM and magnitude 
of error spikes is much lower than that of CS-MLSSVM, PSO-MLSSVM and GA-MLSSVM.

Figure 4.  Prediction and error curves of ICS and CS based multi-output MLSSVM (substrate concentration).
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Figure 5.  Prediction and error curves of ICS and CS based multi-output MLSSVM (product concentration).

Figure 6.  Prediction and error curves of ICS, PSO and GA based multi-output MLSSVM (Cell Concentration).
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Figure 7.  Prediction and error curves of ICS, PSO and GA based multi-output MLSSVM (substrate 
concentration).

Figure 8.  Prediction and error curves of ICS, PSO and GA based multi-output MLSSVM (product 
concentration).
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Figure 9.  Error curves of ICS, PSO and GA based multi-output MLSSVM (cell concentration).

Figure 10.  Error curves of ICS, PSO and GA based multi-output MLSSVM (substrate concentration).
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conclusion
In this paper, a hybrid ICS-MLSSVM soft-sensor modeling method is proposed for measuring crucial param-
eters of the l-lysine fermentation process. According to the characteristics of multi-input and multi-output in 
the fermentation process, this paper constructs a multi-output MLSSVM model of the fermentation process to 
measure the key parameters. The proposed MLSSVM method predicts all outputs simultaneously, exploits the 
useful correlation information among different outputs and designs only a single model for all outputs. In this 
way, it also decreases computational time as compared to single output LSSVM in which a new model is designed 
for each output separately because it can only predict a single output independently. Furthermore, consider-
ing the importance of the three crucial model parameters (penalty factors γ , � and kernel width control factor 
σ ) of the multi-output MLSSVM regression model to the performance of the soft-sensor model, these model 
parameter values are selected by utilizing a novel ICS optimization algorithm. ICS replace the traditional meth-
ods based on experience and trial-error to choose the model parameters and find optimal values of MLSSVM 

Figure 11.  Error curves of ICS, PSO and GA based multi-output MLSSVM (product concentration).

Table 1.  Root Mean Square Error (RMSE) comparison.

MODEL RMSE-X ( g l−1) RMSE-S(g l−1) RMSE-P(g l−1)

ICS-MLSSVM 0.00023997 0.00332239 0.00131493

CS-MLSSVM 0.00594054 0.14433584 0.06334809

PSO-MLSSVM 0.02089268 0.57327379 0.22893520

GA-MLSSVM 0.03749970 0.98317813 0.34545799

Table 2.  Mean absolute error (MAE) comparison

MODEL MAE-X(g l−1) MAE-S(g l−1) MAE-P(g l−1)

ICS-MLSSVM 0.00013668 0.00191516 0.00074509

CS-MLSSVM 0.00334472 0.07068850 0.03040805

PSO-MLSSVM 0.01063935 0.26730779 0.08828116

GA-MLSSVM 0.01906414 0.50458959 0.14683407
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model parameters, which results in a more accurate soft sensor model, and results show the superiority of ICS 
as compared to CS, PSO and GA. Simulation results show that the prediction accuracy and adaptability of ICS-
MLSSVM outperforms the CS-MLSSVM, PSO-MLSSVM and GA-MLSSVM. The model achieves real-time 
identification effect based on a few input/output data, thus eliminates the need for an exact kinetics model of 
the fermentation process. In future, this algorithm can be used to solve complex, non-linear, time-varying, and 
strongly coupled fermentation problems of industry. In our future work, we are interested to extend this work 
further and use this model in Model Predictive Control to control the fermentation process and maintain the 
desired conditions to increase the yield.
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