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Deep learning algorithms have recently been developed that utilize patient anatomy and raw imaging 
information to predict radiation dose, as a means to increase treatment planning efficiency and 
improve radiotherapy plan quality. Current state-of-the-art techniques rely on convolutional neural 
networks (CNNs) that use pixel-to-pixel loss to update network parameters. However, stereotactic 
body radiotherapy (SBRT) dose is often heterogeneous, making it difficult to model using pixel-level 
loss. Generative adversarial networks (GANs) utilize adversarial learning that incorporates image-level 
loss and is better suited to learn from heterogeneous labels. However, GANs are difficult to train and 
rely on compromised architectures to facilitate convergence. This study suggests an attention-gated 
generative adversarial network (DoseGAN) to improve learning, increase model complexity, and 
reduce network redundancy by focusing on relevant anatomy. DoseGAN was compared to alternative 
state-of-the-art dose prediction algorithms using heterogeneity index, conformity index, and various 
dosimetric parameters. All algorithms were trained, validated, and tested using 141 prostate SBRT 
patients. DoseGAN was able to predict more realistic volumetric dosimetry compared to all other 
algorithms and achieved statistically significant improvement compared to all alternative algorithms 
for the  V100 and  V120 of the PTV,  V60 of the rectum, and heterogeneity index.

Advanced treatment techniques such as intensity modulated radiation therapy (IMRT) and volumetrically modu-
lated arc therapy (VMAT) have become standard of care for many treatment  sites1,2. Creating clinically acceptable 
treatment plans using these advanced techniques requires extensive domain expertise and is exceedingly time 
 consuming3,4. To reduce the burden on clinical resources, the development of automated treatment planning 
technologies has accelerated in recent  years5–10.

Historically, automated treatment planning technologies relied on selecting handcrafted features, such as 
spatial relationships between planning volumes, overlapping volume histograms, planning volume shapes, plan-
ning volume and field intersections, field shapes, planning volume depths , and distance-to-target histograms 
(DTH)11–14. These techniques rely on machine learning algorithms such as gradient boosting, random forests, and 
support vector machines to find strong correlations between groups of weakly correlated predictive  features6,15–17. 
Such techniques achieve good performance on inherently structured data, but tend to struggle if the problem 
does not easily reduce to a structured format. Because of this, deep learning approaches have emerged that pre-
dict dose using fully connected  layers18. However, fully connected layers tend to not generalize well on highly 
dimensional data.

Convolutional neural networks (CNNs) have emerged to solve many image processing  tasks4,6,19–23. Recently, 
encoder-decoder CNNs have been used to predict radiation dose from arbitrary patient anatomy. These methods 
rely on voxel-voxel or pixel-pixel loss to update network parameters, since the objective function needs to be 
 differentiable24. Stylistic variations in human planner preferences make direct spatial loss functions prone to 
learning overly smooth dosimetric distributions. Additionally, stereotactic body radiation therapy (SBRT) and 
stereotactic radiation surgery (SRS) treatment modalities tend to produce random hotspots residing within the 

open

1Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA. 2These authors 
contributed equally: Vasant Kearney and Jason W. Chan. *email: vasantkearney@gmail.com

http://orcid.org/0000-0002-9240-5704
http://orcid.org/0000-0002-0779-7476
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-68062-7&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11073  | https://doi.org/10.1038/s41598-020-68062-7

www.nature.com/scientificreports/

gross tumor volume (GTV)25,26. Since conventional CNNs learn to predict the most probable dose, they are not 
well suited to model SBRT or SRS dose  distributions20,27,28.

Recently, generative adversarial networks have been used to facilitate realistic predictions, by training a sec-
ondary CNN to distinguish real from fake  predictions29–32. The generator CNN aims to create realistic predictions 
that fool a discriminator CNN, which attempts to classify realism. The two networks are trained adversarially 
until a Nash equilibrium is reached, which is the minimax loss of the aggregate training  protocol33. Since the 
two networks need to be trained in unison, the discriminator network is usually shallow with fewer parameters 
compared to stand-alone classification CNNs such as VGG-16, ResNet-151, or DenseNet-201  architectures29. 
However, conventional GANs rely on the discriminator’s ability to distinguish fake predictions from real predic-
tions, so the overall performance is limited by the discriminator’s ability decipher  realism34.

Attention gates have recently emerged to help networks highlight relevant anatomy and suppress irrelevant 
information by encouraging compatibility between the input, intermediate layers, and output function of the 
 network35,36. Additive self-attention gates have been proposed to encourage parsimonious feature propagation 
throughout a  network37–39. Spatial self-attention allows networks to selectively emphasis portions of the inter-
mediate convolutional layers as opposed to indiscriminately propagating information using conventional raster 
scanning.

This study suggests a novel attention-gated generative adversarial network (DoseGAN) as a superior alterna-
tive to current state-of-the-art dose prediction networks. DoseGAN offers deeper and more efficient discrimina-
tion, while simultaneously being efficient enough to train in unison with the generator network.

Methods and materials
Attention gated generation and discrimination. DoseGAN utilizes attention-gated generation and 
discrimination networks that selectively propagate information through a gating mechanism. The attention gates 
enable the networks to highlight relevant input features and help suppress redundant information propagation 
through the network. The gating mechanism also helps encourage compatibility between the output function 
and the extracted intermediate local feature vectors in each  network35,36. DoseGAN utilizes additive self-atten-
tion gates to modulate multi-scale level feature response propagation throughout each  network37–39.

The attention-gating mechanism applies a 1 × 1 × 1 convolutional kernel to a propagation signal  (z1) and a 
gating signal  (z2). Signals  z1 and  z2 are added together and the combined activations  (z1,2) are ReLU activated 
before being passed through a 1 × 1 × 1 convolutional kernel. The output is batch normalized and sigmoidally 
activated to form  x1,2. The final gated output signal  (zg) is formed by multiplying  z1 by  x1,2. Figure 1 depicts the 
attention gating mechanism used in the discriminator and generator networks.

DoseGAN utilizes an attention-aware 3D encoder-decoder variation of the pix2pix generator  network29. The 
generator network is five multi-scale levels deep and selectively propagates encoder information directly to the 
decoder stage through attention gated skip connections. All convolutional layers, except for those residing in the 
gating mechanism, use 4 × 4 × 4 convolutional kernels with synchronized batchnorm, and leaky ReLU activations. 
The last layer in the generator network uses hyperbolic tangent activation. The CT, planning target volume (PTV), 
and organs at risk (OARs) are concatenated and used by the generator network to predict synthetic dose volumes. 
The predicted synthetic dose and real dose volumes are fed into a densely-connected attention-gated discrimina-
tor network which utilizes “PatchGAN” classification to predict a realism matrix that selectively captures local 
style  characteristics40,41. The discriminator network is comprised of 8 convolutional layers with 3 convolutional 
downsampling layers that incrementally reduce the multi-scale resolution of the network. The first layer of 
each multi-scale level is concatenated to the last layer of each multi-scale level through attention-gated dense-
connections. The last convolutional layer of each multi-scale level is used as the gating signal for the attention 
gated skip connections. Figure 2 shows a schematic of the attention-gated discriminator and generator networks.

Ground truth. DoseGAN was trained and validated using 126 prostate cancer patients previously treated 
with SBRT using a CyberKnife (Accuray, Sunnyvale) machine. An additional 15 test patients were used to report 
final results, following Kaggle-style competition rules. All patients received a monotherapy dose regimen of 
38 Gy in 4 fractions, or a 19 Gy boost in 2 fractions and all treatment plans followed peer-reviewed acceptance 
 criteria42.

Figure 1.  The attention gating mechanism is shown for the propagation signal  z1, gating signal  z2, and final 
gated output signal  zg for the discriminator and generator networks.
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Training DoseGAN. The discriminator network aims to classify real dose volumes (D Real) as 1 and 
simultaneously classify predicted dose volumes (D Fake) as 0. DoseGAN uses mean aggregate categorical cross 
entropy loss from the discriminator and voxel-to-voxel (L1) loss from the generator to update network param-
eters during training. Introducing L1 loss helps facilitate convergence and enforce spatial congruence in the 
conditional GAN context.

To avoid multiple hypothesis testing, patients were separated into training, validation, and testing groups, 
prior to training. In order to mimic the planning environment of the dosimetrist, the model was agnostic to 
demographic information, and only considered the raw CT image, PTV, OARs, and prescription.

DoseGAN was implemented on a Nvidia V100 graphics processor unit (GPU). Data augmentation was con-
ducted on the fly with the PyTorch data loader using random rigid shifts, rotations, noise, and histogram intensity 
re-distribution. DoseGAN inferencing took 0.31 s to predict a 128 × 128 × 64 voxel synthetic dose volume and 
rescale it to its original resolution. The output and input resolutions of DoseGAN were 3 mm  ×  3 mm  ×  3 mm. 
The data used for this study is not publicly available due to sensitive medical information, but is available from 
the corresponding author on reasonable request. All patient data has been approved by the Institutional Review 
Board (IRB) and has been fully anonymized. The methods used in this study were performed in accordance 
with the University of California San Francisco institutional guidelines. IRB number 14-15452 allowed us to 
retrospectively collect and analyze our patient dataset. Since this study used retrospective data, informed consent 
was not required.

Dosimetric evaluation. DoseGAN was compared to a fully-connected neural network that uses relative 
distance map information of neighboring input structures (FC), U-Net (UNet), DoseNet, and a 3D GAN archi-
tecture (GAN)18,29,43–45.

All algorithms were hyperparameter tuned and the model with the best validation performance was saved 
and used for inferencing on the final test set to report final results. The FC model followed the original model 
architecture reported in Shiraishi et al., and was trained with 0.45 dropout, a batch size of 4, and a learning rate 
of 0.01 using Adam  optimization18. U-Net followed the implementation of the Unet architecture reported in 
Kearney et al. and was trained with a 0.2 dropout, a batch size of 4, and a learning rate of 0.005 using Adam 
 optimization21. DoseNet followed the original implementation reported in Kearney et al. and was trained with 
a dropout of 0.35, a batch size of 2, and a learning rate of 0.001. For our GAN architecture we used a 3D pix-to-
pix implementation by Isola et al. and trained it with a dropout of 0.0, a batch size of 2, and an adaptive learn-
ing rate  scheduler26. It is important to note that we kept the architectures the same or as similar as possible to 
not detract from their original successful form, however, we conducted a rigorous hyperparameter search to 
ensure optimal performance on our dataset and a fair comparison. Each algorithm was allowed to max out the 
memory of the GPU. All models automatically picked the maximum number of parameters before exceeding 
the memory threshold.

The heterogeneity index (HI), conformity index (CI), and several dose volume objectives were used to evalu-
ate the dosimetric congruence between the synthetic dose predictions and the real ground truth dose. The HI 
formalism is defined as,

HI = Dmax

Dp
,

where  Dp denotes the prescription and  Dmax denotes the maximum dose  value46. CI is defined as,

Figure 2.  The generator network (left) and discriminator network (right) are shown. The CT, PTV, and OARs 
are concatenated and fed into the generator network. The discriminator network predicts a realism matrix that 
attempts to decipher synthetic dose predictions from real dose volumes.
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CI = (TVPIV )
2

(TV)(PIV)
,

where TV is the target volume,  TVPIV is the intersection of the target volume and the prescription isodose volume, 
and PIV is the prescription isodose  volume47.

DoseGAN predicts the most realistic dose volume given a set of arbitrary input anatomy, as opposed to the 
best possible dose distribution. Comparator p-values, from a one-sided two-sample Mann–Whitney U test, were 
used to test if DoseGAN was statistically superior to each alternative dose prediction algorithm. P-values less 
than 0.05 were considered significant.

Results
Tables 1 and 2 show the mean values, mean absolute differences between the real dose and each algorithm, and 
the comparator p-values between DoseGAN and each alternative algorithm. Table 1 shows the PTV  V95,  V100, 
 V120, and HI for all dose volumes. DoseGAN achieved a statistically significant improvement compared to all 
alternative algorithms for the  V100 and  V120 of the PTV the HI.

Table 2 shows the CI,  V60 of the bladder,  V60 of the rectum, and mean dose of the penile bulb for all dose 
volumes. DoseGAN achieved a statistically significant improvement compared to all alternative algorithms for 
the  V60 of the rectum.

Figure 3 shows the real dose, DoseGAN predicted synthetic dose, and dose difference for two patients. 
DoseGAN was able to achieve realistic synthetic dose predictions compared to the original real plans, as seen 
in Fig. 3.

Figure 4 shows the dose volume histograms (DVHs) and DVH differences between the real dose distributions 
and DoseGAN synthetic dose distributions for the PTV, urethra, bladder, rectum, and penile bulb for 38 Gy plan. 
DVHs represent the radiation dose to tissue volume and the DVH differences represent the difference between 
the planned DVH of the predicted DVH.

Figure 5 depicts the loss at each epoch for the DoseGAN algorithm. The L1 loss from the generator and the 
discriminator losses can be seen progressing in unison during model training.

Discussion
This study demonstrates the superiority of a novel conditional generative adversarial attention-gated network for 
SBRT synthetic dose prediction. This is the first ever implementation of generative adversarial attention-gated 
networks to this problem space.

On average DoseGAN was able achieve more realistic dose predictions compared to all other algorithms 
by learning a realism matrix that helped mimic the dosimetric nuances of real clinical SBRT plans. DoseGAN 
achieved statistically significant improvement compared to all alternative algorithms for the  V100 and  V120 of the 
PTV, HI, and  V60 of the rectum.

Table 1.  The mean values, mean absolute differences between the real dose and each algorithm, and the 
comparator p-values between DoseGAN and each alternative algorithm are shown for the  V95,  V100, and  V120 
of the PTV as well as the HI. Bold font indicates the least difference between the real and predicted dose and 
statistically significant p-values.

Mean values

V100-PTV V95-PTV V120 HI

Real 97.49 ± 1.06 99.18 ± 0.59 36.88 ± 16.14 1.44 ± 0.12

DoseGAN 97.77 ± 0.77 99.27 ± 0.44 37.5 ± 18.15 1.41 ± 0.1

GAN 97.88 ± 0.67 99.33 ± 0.44 31.86 ± 16.5 1.36 ± 0.11

DoseNet 97.86 ± 0.78 99.23 ± 0.38 30.77 ± 13.23 1.37 ± 0.09

Unet 96.36 ± 1.03 98.88 ± 0.49 20.35 ± 12.89 1.3 ± 0.1

FCN 96.34 ± 1.13 98.48 ± 0.63 29.12 ± 20.21 1.3 ± 0.17

Mean absolute difference

V100-PTV V95-PTV V120 HI

DoseGAN 0.46 0.22 2.91 0.03

GAN 0.78 0.41 11.4 0.09

DoseNet 0.79 0.35 9.27 0.09

Unet 1.21 0.42 16.54 0.14

FCN 1.17 0.72 12.9 0.15

P-Values

V100-PTV V95-PTV V120 HI

GAN 0.03098481 0.099253 0.001845 0.003095

DoseNet 0.040747324 0.294869 0.033998 0.013963

Unet 0.009033311 0.019044 5.73E−05 0.003508

FCN 0.028196182 0.012551 2.4E−05 0.001073
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The conventional GAN algorithm achieved good results for the  V95 of the PTV, CI, and  V60 of the bladder, 
but did not perform as well as DoseGAN for the  V100 and  V120 of the PTV, and  V60 of the rectum. Similarly, 
DoseNet achieved good results for the  V95 of the PTV, mean dose of the penile bulb, and  V60 of the bladder, but 
did not perform as well as DoseGAN for the  V100 and  V120 of the PTV, HI,  V60 of the rectum, and mean dose of 
the penile bulb.

Table 1 shows that DoseGAN performs much better than the alternative algorithms for the target  V120 and 
HI. While conventionally fractionated dose regimens tend to have much smoother dose distributions, SBRT 

Table 2.  The mean values, mean absolute differences between the real dose and each algorithm, and the 
comparator p-values between DoseGAN and each alternative algorithm are shown for the CI,  V60 of the 
bladder,  V60 of the rectum, and mean dose of the bulb. Bold font indicates the least difference between the real 
and predicted dose and statistically significant p-values.

Mean values

CI V60-Bladder V60-Rectum Mean-bulb

Real 0.81 ± 0.07 5.71 ± 3.68 6.59 ± 3.93 4.13 ± 2.78

DoseGAN 0.79 ± 0.06 6.42 ± 4.06 8.13 ± 4.79 4.79 ± 2.93

GAN 0.79 ± 0.06 7.25 ± 4.35 4.1 ± 3.85 5.04 ± 3.09

DoseNet 0.8 ± 0.06 8.64 ± 3.76 5.88 ± 4.37 5.13 ± 2.49

Unet 0.77 ± 0.07 7.99 ± 3.83 9.15 ± 4.12 3.94 ± 2.88

FCN 0.74 ± 0.1 6.51 ± 4.93 6.55 ± 6.85 3.08 ± 2.53

Mean absolute difference

CI V60-Bladder V60-Rectum Mean-bulb

DoseGAN 0.03 1.55 1.67 1.16

GAN 0.04 3.06 3.19 1.76

DoseNet 0.05 3.36 2.71 1.43

Unet 0.06 3.04 3.36 1.66

FCN 0.08 3.44 3.24 1.65

P-Values

CI V60-Bladder V60-Rectum Mean-bulb

GAN 0.131377 0.033998 0.023243 0.040747

DoseNet 0.033998 0.073288 0.037248 0.565887

Unet 0.02562 0.028196 0.019044 0.073288

FCN 0.02562 0.015508 0.033998 0.370011

Figure 3.  The original real dose (top), DoseGAN synthetic dose (middle), and dose difference (bottom) are 
shown for patients 7 (left) and 20 (right). The PTV, rectum, bladder, and penile bulb are shown in the red, 
brown, yellow, and orange contours, respectively. Axial, sagittal and coronal slices are shown from left to right.
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plans tend to have intentional hotspots within the main tumor volume. The alternative algorithms consistently 
predicted lower target  V120 and HI values, meaning that the plans have less dose escalation within the target 
volume and implying a loss in clinical efficacy.

Table 2 shows that DoseGAN performed better at predicting the dose to the  V60 of the rectum and  V60 of 
the bladder, which is partially due to the stochastic nature of SBRT plans. Pure spatial loss algorithms failed to 
model the hot or cold spots within the sensitive organs. All algorithms performed well for the mean bulb since 
this metric takes the average dose to the structure and is more forgiving than structures that are more sensitive 
to hot spots. All algorithms also performed well for the CI, since the CI is a measurement of the target coverage 
and our dataset of dose volumes were fairly consistent with regards to this metric.

The models with pure spatial loss tended to produce overly smooth synthetic dose distributions and were 
not able to capture the heterogeneous hotspots and cold spots that are endemic to SBRT dose volumes. Pure 
spatial loss, such as mean squared error between the dose volumes, will produce the most likely dose at each 
voxel given a set of inputs. However, in the presence of dose heterogeneity or inconsistent planner preferences, 
conventional CNNs will learn to predict a best approximation of the dose in order to reconcile the inconsistent 
dose targets with respect to the input variables. Since conventional CNNs reach a compromise with respect to 
varied learning objectives, they are inherently disadvantaged compared to architectures that do not rely on pure 
spatial loss, such as GANs.

Since GANs are difficult to train, the number of network parameters needs to be kept as low as possible to 
facilitate adversarial training. Attention gates were used to reduce redundancy within the network, improve 

Figure 4.  The real DVHs (solid line) (left), DoseGAN DVHs (dashed line) (left) and the DVH differences 
(right) are shown for a 38 Gy plan. The PTV, urethra, bladder, rectum, and penile bulb are shown in orange, 
yellow, green, teal, and blue respectively.

Figure 5.  The L1 loss from the generator (left) is shown in purple and the D Fake and D real losses from the 
discriminator (right) are shown in blue and orange respectively for all epochs during training for the DoseGAN 
model.
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efficiency, and facilitate model convergence, which enabled a deeper discriminator architecture. The realism 
matrix was able to incorporate broader dosimetric information, since it uses a deeper discriminator which allows 
for a wider receptive field.

The model architecture of all algorithms, such as the depth, number of filters at each layer, and other hyper-
parameters, were determined using the validation set and were designed to stay within the memory limitations 
of the GPU hardware used in this study. Since GANs are notoriously difficult to train, DoseGAN borrowed many 
architectural design elements form the original pix2pix network, such as the size of each convolutional kernel, 
and relative location and type of various network activations.

This study has some limitations. Since this study was only conducted on SBRT prostate patients, it is not clear 
if this approach would work non-SBRT plans. Also, DoseGAN was trained to predict dose volumes with a 3 × 3 
× 3  mm3 voxel resolution. Although this resolution is clinically acceptable, typical SBRT dose calculations tend 
to use 1 × 1 × 1  m3 or 2 × 2 × 2  mm3 voxel resolutions. Increasing the resolution of DoseGAN would increase the 
number of parameters, change the receptive field of the model, and require more GPU memory. More extensive 
hyperparameter tuning and greater hardware resources would also be necessary to determine the viability of finer 
resolution dose prediction. Also, the number of parameters for each model was restricted by the GPU memory 
since only one GPU was used in this study. Also, the number of parameters is not the only determining factor in 
memory allocation. Each intermediary output layer is held in GPU memory, so networks that have more layers 
at higher resolutions will be more memory intensive. Hyperparameter tuning assured a balance between memory 
utilization at the upper multi-scale levels and lower-multi levels. Since the hyperparameter tuning stage auto-
matically picked the upper memory limit for each model, we can assume that each model would have achieved 
better results with a bigger batch size and more  parameters48. Furthermore, DoseGAN was only evaluated on 
abdominal anatomy, so it can not be assumed that DoseGAN will work on other anatomical regions.

In spite of these limitations, dose prediction using attention-aware generative adversarial networks presents 
a viable solution to dose prediction for prostate SBRT patients. Clinically incorporating DoseGAN would help 
conserve hospital resources by determining achievable plan dosimetry at the time of CT simulation as opposed 
to after the entire treatment planning process. Furthermore, DoseGAN could be used as a clinical decision sup-
port tool or be incorporated into the plan optimization process, to help improve plan quality and reduce the 
strain on clinical resources.

conclusions
We have developed a novel attention-aware generative adversarial network for synthetic dose prediction that 
was able to achieve superior dose prediction accuracy compared to current alternative state-of-the-art methods. 
DoseGAN presents a solution to overcome the challenges of realistic volumetric dose prediction in the presence 
of diverse patient anatomy.
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