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pilot study of neurologic toxicity 
in mice after proton minibeam 
therapy
John G. eley1*, Awalpreet S. chadha2, caio Quini2, elisabeth G. Vichaya3, cancan Zhang4, 
James Davis5, narayan Sahoo6, Jaylyn Waddell7, Dominic Leiser4, f. Avraham Dilmanian8 & 
Sunil Krishnan9*

proton minibeams (MBs) comprised of parallel planar beamlets were evaluated for their ability to 
spare healthy brain compared to proton broad beams (BBs). Juvenile mice were given partial brain 
irradiation of 10 or 30 Gy integral dose using 100 MeV protons configured either as BBs or arrays of 0.3-
mm planar MBs spaced 1.0 mm apart on center. Neurologic toxicity was evaluated during an 8-month 
surveillance: no overt constitutional or neurologic dysfunction was noted for any study animals. Less 
acute epilation was observed in MB than BB mice. Persistent chronic inflammation was noted along 
the entire BB path in BB mice whereas inflammation was confined to just within the MB peak regions 
in MB mice. The potential neurologic sparing, possibly via reduced volume of chronic inflammation, 
offers a compelling rationale for clinical advancement of this proton technique.

The mechanisms of radiation-induced brain injury are pervasive and  include1–3: vascular-endothelial damage 
leading to cerebral ischemia and breakdown of the blood–brain barrier, cell death in oligodendrocytes and 
oligodendrocyte precursors leading to insufficient myelin, activation of astrocytes that cause gliosis and 
breakdown of the blood–brain barrier, activation of microglia, chronic oxidative stress, depletion of neural 
stem cells in hippocampus, and direct neural damage. Many of the above mechanisms together lead to severe 
quality of life issues for brain cancer survivors including: loss of vision or hearing, anxiety, depression, or chronic 
fatigue, cognitive impairment, low intelligence quotient (IQ) score, academic impairment, and impaired executive 
functioning.

Our research aims to mitigate these neurologic side effects by combining two distinct fields of radiation 
research: light-ion therapy and minibeam therapy. While particle therapy (e.g., using protons or carbon ions) 
in many cases offers dosimetric advantages compared with megavolt photon therapy, still, it does not generally 
spare healthy tissue in the beam entrance channel. While that problem can be mitigated by using multiple beam 
entrance angles, that solution leads to greater volumes of healthy tissue in the irradiated field. Our method 
undertakes a new conceptual direction, which builds on the early experience of synchrotron X-ray minibeams.

In that field of research, Zeman et al.4 initially demonstrated that the mouse cerebellum tolerated irradiation 
up to 10,000 Gy deuterons by single 25-micron beams without showing any histological lesion or cavitation. 
Later, Slatkin et al.5 showed that rat cerebellum tolerated parallel, thin planes (37 microns) of synchrotron 
X-ray radiation up to 250 Gy in-beam dose. The excitement produced by these findings led to the initiation of 
a larger number of studies with X-ray microbeams (< 300 microns) and minibeams (300–700 microns) at both 
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the NSLS and the European Synchrotron Research Facility (ESRF, Grenoble, France). Recently, the method’s 
tissue sparing has been confirmed also using carbon-nanotube X-rays turned into  minibeams6, by 20 MeV 
microchannel protons in the mouse  ear7, and by 100 MeV proton minibeams in the rat  brain8. A recent study 
by Dilmanian et al.9 experimentally demonstrated that the concepts of minibeam therapy and proton therapy 
could be combined in a manner to exploit both therapeutic strategies at once: A proton field can be delivered in 
a segmented array of unidirectional minibeams, which is expected to spare shallow tissues, but will itself scatter 
into a tumoricidal, broad-beam, due to multiple Coulomb scattering, before reaching a therapeutic target.

The purpose of this study was to test the hypothesis that proton minibeam therapy would show a difference in 
biologic damage to normal mouse brain compared to (conventional) proton broad-beam therapy while achieving 
identical dose at deeper depths where a tumor would hypothetically lie. To test our hypothesis, we irradiated mice 
using 100 MeV protons traversing laterally through the brain, configured as either broad beams or minibeam 
arrays. Animals were followed for 8 months and subjected to cognitive studies. At the study termination, brain 
tissue was analyzed to characterize the chronic neurologic changes produced.

Methods
experimental proton conditions and physical measurements. Irradiations were carried out using 
the experimental beamline at the UT MD Anderson Proton Therapy Center (Houston, TX). Monoenergetic, 
100-MeV proton pencil beams were used for all irradiations. The experimental setup is shown in Fig. 1. For 
both broad-beam and minibeam irradiations, a 2-cm-thick brass collimator having a 7-mm-diameter circular 
aperture was used to produce a solid radiation beam with circular cross section. For minibeams only, an 
additional multislit tungsten collimator (5-cm thick in the beam direction) was used to divide the beam into an 
array of planar minibeams with 0.3-mm width and 1.0-mm spacing (on center). Prior to animal irradiations, 
physical dosimetry was established using Gafchromic EBT3 radiochromic film (Ashland, Covington, KY), 
cross calibrated to ion chamber measurements using the PTW Advanced Markus Chamber (PTW, Freiburg, 
Germany) following the International Atomic Energy Agency TRS-398 dosimetry protocol (Vienna, 2000). For 
the broad-beam and minibeam irradiations; both methods were normalized to provide identical dose at a depth 
of 5 cm, where the minibeam array has fully merged into a broad beam (see Fig. 1). Peak-to-valley ratios were 

Figure 1.  Diagram (top left) of experimental setup indicating relative position of the proton beam, the 
broad-beam collimator, the multislit collimator, and the animal. Beam’s eye view (top right) of irradiation 
field boundary (black circle), defined by the circular broad-beam collimator, centered approximately on the 
midbrain/hippocampus (brain indicated in pink) for one mouse that was imaged using micro computed 
tomography. Radiochromic film measurements (bottom) of broad-beam (BB10) and minibeam (MB10) 
experimental conditions with approximate position of mouse brain indicated by the white contour; the small 
white circles at 50-mm depth indicate the dose normalization points, where BB and MB conditions provided the 
same mean dose.
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defined as the ratio of minibeam-peak dose at a certain depth to the local valley dose at the same depth, i.e., the 
valley refers to the local minimum dose between 2 adjacent minibeams in the array.

Mouse irradiations. Beams were designed to shoot through the mouse brain laterally. As shown in Fig. 1, 
beams were centered approximately on the hippocampus by its relation to relevant surface landmarks (namely 
the eye and top of the scalp) determined from a computed tomogram (CT) of one mouse. Thus, nearly 2/3 of the 
brain was irradiated, including the cortex and hippocampus, key regions for brain development and cognition. 
Juvenile, male mice (C57BL/6J, n = 24, post-natal day 28) were randomly assigned to 5 experimental arms: no 
radiation (Sham, n = 6), broad-beam 10 Gy (BB10, n = 6), minibeam 10 Gy (MB10, n = 6), broad-beam 30 Gy 
(BB30, n = 3), and minibeam 30 Gy (MB30, n = 3). Animal experiments were reviewed and approved by the UT 
MD Anderson Cancer Center Institutional Animal Care and Use Committee (Protocol #1163).

cognitive studies. The Novel Object  Task10,11 was performed at 1, 2, and 3 months after irradiation to assess 
perirhinal-cortex dependent declarative  memory10–12. Testing was carried out in a quiet room using a white 
empty testing arena of 20 × 20  cm2 floor size. We used 5 min exploration time for the two identical initial objects, 
a 5 min retention interval, and 5 min exploration time of the novel object, which was also placed in a novel 
location. Videos were recorded and interaction times were scored manually with a stopwatch by an investigator 
blind to the study conditions. The discrimination index (DI) was calculated using the interaction times (t) as

DI greater than 50% was interpreted to mean the mouse correctly remembered the initial object and was 
therefore more interested to explore the novel object in the novel place. In general, a lower score was interpreted 
to indicate impaired recognition memory.

The Social Recognition  Task13,14 was performed at 1, 2, and 3 months post-irradiation. Testing was carried 
out in the animal’s home cage. Each mouse was exposed to an initial juvenile conspecific for 5 min, allowed to 
rest for 1 h retention interval, and afterwards exposed to the initial conspecific and a novel conspecific for 5 min. 
The discrimination index was calculated and interpreted as described above.

The Morris Water Maze  Task15 was carried out at 3 months post-irradiation. A 1.5-m-diameter tank was used, 
filled with water with temperature of 22 ± 1 °C. Quadrants A, B, C, and D were demarcated using solid geometric 
figures (cues) (triangle, square, horizontal bars, and vertical bars) attached to the interior tank walls above the 
waterline. A transparent acrylic escape platform was submerged in the center of Quadrant D. Over the course 
of 2 days, 15 training trials were carried out to teach the mice to swim the tank and to find the escape platform 
and to learn its location. Escape latency was timed with a stopwatch. On day 3 of testing, an alternate-starting-
position trial was carried out to test spatial learning. Additionally, a 2-min probe trial was carried out with the 
hidden platform removed. Probe swim trials were analyzed using a software tool developed in MATLAB (Version 
R2018b, MathWorks, Natick, MA) that analyzed swim paths and scored the fraction of time spent searching in 
the target quadrant.

Histologic investigations. At 8 months after irradiation, brain tissues were harvested and fixed by cardiac 
injection-perfusion with 4% paraformaldehyde. 5-micron sagittal slide sections were taken 5-mm off midline 
(towards the beam entrance) for immunohistochemistry staining: haematoxylin and eosin (H&E), glial fibrillary 
acidic protein (GFAP), nerve/glial-antigen 2 (NG2), nestin, and cluster of differentiation 31 (CD31). Slides 
were scored by a blinded, board-certified neuropathologist using four categories: No immunoreactivity, Mild 
immunoreactivity, Moderate immunoreactivity, or Strong immunoreactivity. In addition, digital brightfield 
microscope images (Axio Imager M2, Carl Zeiss Microscopy GmbH, Jena, Germany) were acquired for each 
section for a hippocampal ROI as well as for the entire whole-brain sections. Image analysis was performed 
using Fiji (ImageJ, v1.51 u, 64 bit Windows) software. For quantification, images were processed in analogy to 
Andy’s Algorithms (Law, 2017): first a ROI inside the brain tissue and in the radiation beam path was selected. 
A Fiji color deconvolution with H&E DAB filter was applied. Next a Gaussian blur was used to reduce noise 
and the images were converted to an 8-bit image. A threshold was set over all ROIs using the ImageJ “default” 
threshold function. The images were then converted to a binary image and the percentage of stained area was 
determined. In addition, we performed sensitivity analysis of our histologic findings by varying the ROI size 
and by varying the scoring metric (fractional area versus mean signal intensity). These sensitivity analyses are 
included in Supplement 1.

Statistical analysis. For analysis of serial behavioral testing data, we used Repeated Measures ANOVA with 
Bonferroni Correction for Multiple Comparisons. For analysis of other endpoints, without repeated measures, 
we utilized the two-sample t-test to compare study arm MB10 against BB10 and to compare study arm MB30 
against BB30. All tests were two-sided with α = 0.05. p-values less than 0.05 were considered significant. All 
values are reported as means ± 95% confidence intervals.

ethical approval. All methods were carried out in accordance with relevant guidelines and regulations.

Results
The experimental irradiation conditions and corresponding film measurements are shown in Fig. 1. Film 
measurements indicated peak entrance doses to be 10.0 ± 0.1 Gy, 33.1 ± 0.5 Gy, 30.0 ± 0.3 Gy, and 99.3 ± 1.5 Gy 
for arms BB10, MB10, BB30, and MB30, respectively. For minibeam irradiations, the peak-to-valley ratio at the 

DI = 100%t(novel)
/

[t(novel)+ t(initial)].
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(skin) entrance was 72.0 ± 1.1. For both broad beams and minibeams, doses were equal at the normalization 
point at 5-cm depth in plastic: 14.2 Gy for BB10 and MB10 and 42.6 Gy for BB30 and MB30. A detailed analysis 
of the dose statistics at variable depths is included in Table 1 for BB and MB exposure conditions. Remarkably, 
over the 8-month study period, no animals in any arm showed signs of radiation illness or motor impairment, 
and all animals gained weight normally, despite the high single-fraction doses.

cognitive studies. Results from the Novel Object Task are shown in Fig. 2. No significant differences were 
seen between MB10 versus BB10 or between MB30 versus BB30. Results from the Social Recognition Task are 
shown in Fig. 3. No significant differences were seen in DI scores between MB10 and BB10 or between MB30 
and BB30. Figure 4 shows results from the Morris Water Maze Task. The mean escape latency, averaged over the 
15 training trials, was significantly lower for study arm BB10 compared with MB10 (p = 0.0246). Mean escape 
latencies over the 15 trials were 26.7 ± 10.9, 15.1 ± 2.7, 24.9 ± 6.0, 33.7 ± 16.5, and 33.7 ± 22.6 s for arms Sham, 
BB10, MB10, BB30, and MB30, respectively. For the alternate-starting-position trial, which aimed to explicitly 
test hippocampal-dependent spatial learning based on the visual cues, the escape latency was significantly lower 
for arm MB10 compared with BB10 (p = 0.0395). Mean escape latencies for the alternate-starting-position trial 
were 22.9 ± 16.9, 10.8 ± 5.9, 3.3 ± 2.0, 15.1 ± 13.7, and 17.0 ± 7.7 s for arms Sham, BB10, MB10, BB30, and MB30, 
respectively. For the probe trial, no significant differences were seen between any study arms compared.

Histologic investigations. GFAP stains revealed systematic variations in gliosis among study arms. Our 
neuropathologist observed Moderate immunoreactivity/gliosis in arms BB10, BB30, and MB30, while Mild 
immunoreactivity/gliosis was seen in arms Sham and MB10. The fractional area of brain showing GFAP-labeling 
was less on average in the MB conditions, compared to the BB conditions (cf. Figs. 5 and 6). While these average 
differences in GFAP-labeling across the irradiated region ROIs were not significant, MB animals consistently 

Table 1.  Dose statistics at variable depths for BB10 and MB10 experimental conditions, corresponding to 
radiochromic film measurements shown in Fig. 1. Mean and 95% confidence intervals given for each depth, 
averaged from five manual point-dose measurements at each depth. Peak-to-valley ratios (PVR) are the ratio of 
the peak dose and the valley dose (minimum dose between adjacent minibeams) at each depth. For reference, 
the mouse brain is approximately 1-cm in lateral width, thus the depths from 0 to 1 cm are representative 
of the animal exposure conditions. The Bragg Peak (BP) depth was approximately 6 cm. The dosimetric 
conditions for BB30 and MB30 can be derived by multiplying these dose values by a factor of 3.

Depth (cm) BB10 dose (Gy) MB10 peak dose (Gy) PVR

0.0 10.0 ± 0.1 33.1 ± 0.5 72.0 ± 1.1

0.5 10.9 ± 0.3 30.9 ± 1.3 67.3 ± 2.9

1.0 9.7 ± 0.3 21.9 ± 0.7 47.7 ± 1.5

1.5 9.0 ± 0.2 16.8 ± 0.4 36.6 ± 1.0

2.0 9.4 ± 0.3 15.7 ± 0.6 6.1 ± 0.7

3.0 12.1 ± 0.2 14.3 ± 0.4 1.7 ± 0.1

4.0 14.2 ± 0.7 13.8 ± 0.6 1.1 ± 0.2

5.0 17.8 ± 0.4 16.0 ± 0.7 1.0 ± 0.0

BP 36.2 ± 1.0 27.4 ± 0.8 1.0 ± 0.0
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Figure 2.  Discrimination Index scores for the Novel Object Task for each experimental group, for sessions 
S1, S2, and S3 at 1, 2, and 3 months after irradiation, respectively. Bars and error bars show means and 95% 
confidence intervals. No indications of cognitive impairment were observed.
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showed spatial confinement of gliosis to the minibeam pattern (cf. Fig. 5 and Supplement 1), with regions of 
tissue sparing between minibeams, whereas BB animals had a diffuse pattern of gliosis without tissue sparing. 
This implies the volume of neuroinflammation induced by radiation may be reduced with proton minibeams 
compared to proton broad beams. Analysis for NG2 showed a lower mean value for MB10 than for BB10 
(p = 0.0385); however, no significant differences were observed between MB30 and BB30. CD31 and Nestin 
labeling in the dentate gyrus (DG) did not reveal significant differences in vascularity/neurogenic status among 
study arms. Microscope images for each sample are included in Supplement 1. Sensitivity testing (Supplement 
1) revealed that GFAP, NG2, and Nestin DG were minimally sensitive to ROI choice or metric (fractional area 
versus mean intensity), while CD31 and Nestin CA1 findings were more sensitive to ROI choice and metric.

Skin damage. An ad hoc categorical scale was defined to score epilation into 4 categories: None (Level 
0), Mild (Level 1), Moderate (Level 2), and Severe (Level 3), corresponding to visible levels of epilation of 
< 5%, 5–30%, 30–70%, and > 70%, respectively. Despite the coarseness of the scale, the epilation trends were 
unanimous within study arms. Severe (Level 3) epilation was seen in arm BB30. Moderate (Level 2) epilation 
was seen in arms BB10 and MB30. Mild (Level 1) epilation was seen in arm MB10, and no (Level 0) epilation 
was seen in arm Sham. Figure 7 shows photographs of epilation for a representative animal for each study group 
at 3 months after irradiation.

Discussion
While the behavioral studies, taken as a whole, were not conclusive regarding the difference in cognitive side 
effects after proton minibeam therapy compared to proton broad-beam therapy, the pathologic findings in brain 
revealed confinement of reactive gliosis to the minibeam spatial pattern. With regard to toxicity, we found that 
all animals survived all study arms without apparent motor deficits and gained weight normally, including the 
group MB30, which had peak entrance doses of 99.3 ± 1.5 Gy in single fraction exposures traversing the cortex 
and hippocampus. Although skin damage was not the primary focus of this study, we found clear evidence 
of advantage for proton minibeams over proton broad beams. This finding is in agreement with the recent 
results from Girst et al.7. In our study, the reduced skin damage also implies that a physical collimator might be 
acceptable for clinical use, even if magnetically focused minibeams are theoretically preferable.

For the behavioral tests with the water maze, the neural substrates used to successfully locate the hidden 
platform depend on the training procedure used. Initial training was conducted using a consistent starting point. 
Performance was faster in mice irradiated with BB. However, when the start location was varied, it was revealed 
that MB mice were faster to locate the escape platform. We speculate one hypothesis that might explain these 
findings is that disruption of the hippocampus by radiation exposure could lead to a striatal-based learning 
 strategy16–18 that might be effective and faster than other groups to learn the location of an escape platform 
in relation to a fixed starting position, whereas an intact hippocampus would acquire encoding of spatial cue 
information that would lead to faster escape when the starting position was varied. However, due to the small 
number of animals studied in this pilot, we cannot rule out the possibility that these behavioral findings will 
prove to be irreproducible.

One strength of this study was that we demonstrated that a peak-to-valley ratio of 72:1 could be attained 
using protons at therapeutic energies relevant for human brain tumors using a metallic, multislit collimator. This 
approach can thus likely be easily implemented at other proton therapy facilities. Another advantage of this work 
was that our method avoids the tremendous technical hurdle of the interleaved carbon minibeam method of 
Dilmanian et al.19, which requires interleaving of the minibeam treatment fields with a precision of 100 microns 
or better and allows no body motion between subsequent beams. Compared with previous minibeam studies, in 
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Figure 3.  Discrimination Index scores for the Social Recognition Task for each experimental group, for sessions 
S1, S2, and S3 at 1, 2, and 3 months after irradiation, respectively. Bars and error bars show means and 95% 
confidence intervals. At later timepoints S2 and S3, higher-dose groups BB30 and MB30 showed slightly lower 
mean scores than other groups (not significant).
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Figure 4.  Results from the Morris Water Maze Task. For each study arm, (top left) escape latencies are seen 
to decrease over the 15 training trials. Mean escape latencies over all 15 trials are shown at top right, lower 
for BB10 than MB10 (p = 0.0246). Escape latency for the Alternate Starting Position Trial (bottom left), which 
required spatial navigation, is seen to be lower for MB10 than for BB10 (p = 0.0395). Probe trial results (bottom 
right) show the fraction of time each mouse spent swimming in the Target Quadrant, where the hidden platform 
was normally located; no significant differences were noted in the Probe Trial. Bars and error bars show means 
and 95% confidence intervals.

Figure 5.  GFAP stains for Sham, BB30, and MB30. Patterned, moderate gliosis corresponding to the minibeam 
dose pattern is seen for MB30 versus a diffuse region of moderate gliosis seen for BB30. Comparably mild gliosis 
is seen for Sham and in the gaps between minibeams in MB30.
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Figure 6.  Fraction of stained area in regions of interest (ROI) for GFAP, NG2, CD31, and Nestin. The ROI for 
GFAP analysis was placed in the center of the irradiated brain region and showed a higher mean value for BB10 
than MB10 (not significant) and higher mean value for BB30 than MB30 (not significant), which we interpret to 
indicate a larger area of activated astrocytes (gliosis) for BB versus MB mice, as seen in Fig. 5. The ROI for NG2 
analysis was identical to that of GFAP. Analysis for NG2 showed a lower mean value for MB10 than for BB10 
(p = 0.0385); however, no significant differences were observed between MB30 and BB30. Differences between 
study arms after CD31 and Nestin labeling were not significant. Bars and error bars show means and 95% 
confidence intervals.

Figure 7.  Photographs of epilation at 3 months post irradiation for different study arms. For every animal, 
epilation was higher for mice exposed to broad beams (BB10 and BB30) compared to those exposed to 
minibeams (MB10 and MB30, respectively).
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this study, testing was performed with doses of radiation that are similar to those used in clinical radiosurgery. 
In addition, we used an immune-intact, general mouse model and followed animals for 8 months, allowing 
observation for late effects and full realization of the phenotypic response.

Our study had several limitations. First, due to its pilot nature, the number of animals was kept small. This 
was intended by design, as no previous publications could be used to estimate expected sample means and 
variances. Second, the study only investigated CNS damage in the shallow part of the proton field, where proton 
minibeams remained spatially distinct. Thus, no evidence other than physical (film) measurements is presented to 
imply equal tumor control of the methods. Third, we did not investigate the method in comparison with photon 
therapy. We intentionally chose broad-beam proton exposures as our control rather than photon exposures to 
limit the number of free variables in the study and to avoid potential confounds.

Looking forward, the next steps will likely be to confirm the findings in a higher number of animals and 
in multiple species. As shown computationally by Dilmanian et al.9, other ions such as 4He, 7Li, and 12C might 
also be valuable to extend the depths of sparing beyond that of protons, due to less elastic scattering. Also, our 
method is theoretically compatible with intensity modulated particle therapy, since the beams can be modulated 
upstream of a multislit collimator, though simulations and experiments are needed to establish that next step.

In conclusion, our findings indicate that proton minibeam therapy can offer reduced volumes of 
neuroinflammation in mouse brain compared to proton broad-beam therapy. The spectrum of behavioral tests 
showed no conclusive differences in cognitive function despite a factor of roughly 3.3 increase of the in-beam 
dose using minibeams. These findings, together with our secondary finding of reduced skin damage using 
proton minibeam therapy instead of proton broad-beam therapy, inspire that continued investigation of this 
novel therapy is warranted.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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