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the proofreading activity of pfprex 
from Plasmodium falciparum 
can prevent mutagenesis 
of the apicoplast genome 
by oxidized nucleotides
Minakshi Sharma1,2, Naveen Narayanan1,3 & Deepak t. nair1*

the DnA polymerase module of the pfprex enzyme (pfppol) is responsible for duplication of the 
genome of the apicoplast organelle in the malaria parasite. We show that pfppol can misincorporate 
oxidized nucleotides such as 8oxodGTP opposite dA. This event gives rise to transversion mutations 
that are known to lead to adverse physiological outcomes. the apicoplast genome is particularly 
vulnerable to the harmful effects of 8oxodGTP due to very high AT content (~ 87%). We show that 
the proofreading activity of pfppol has the unique ability to remove the oxidized nucleotide from 
the primer terminus. Due to this property, the proofreading domain of PfpPol is able to prevent 
mutagenesis of the AT-rich apicoplast genome and neutralize the deleterious genotoxic effects of 
RoS generated in the apicoplast due to normal metabolic processes. the proofreading activity of the 
Pfprex enzyme may, therefore, represent an attractive target for therapeutic intervention. Also, a 
survey of DnA repair pathways shows that the observed property of pfprex constitutes a novel form 
of dynamic error correction wherein the repair of promutagenic damaged nucleotides is concomitant 
with DnA replication.

Reactive Oxygen Species (ROS) arise in the cell due to impaired respiration or as natural byproducts of meta-
bolic pathways. ROS reacts with different biomolecules and can impair their function and thus have an adverse 
effect on cellular physiology. ROS are known to oxidize the nucleotide pool. Among the dNTPs, dGTP is espe-
cially vulnerable to oxidation and 8-Oxo-2′-deoxyguanosine-5′-triphosphate (8oxodGTP) represents the most 
frequently occurring damaged  nucleotide1,2. 8oxodGTP is frequently misincorporated opposite template dA 
in genomic DNA during replication and this event can lead to deleterious transversion mutations. 8oxodGTP 
misincorporation is known to be responsible for adverse physiological outcomes such as age-related degenerative 
disorders, cell death, or  cancer3–6. To avoid the transversion mutations, 8oxodGMP present in DNA is repaired 
by multiple redundant  pathways7,8.

ROS are naturally generated in organelles that are sites of metabolic processes such as the apicoplast in 
Plasmodium falciparum9,10. The apicoplast is an unusual plastid-like organelle essential for the survival of the 
malaria parasite. This organelle is the site of many important metabolic processes such as fatty acid synthesis, 
iron-sulfur cluster, isoprenoid and haem  biosynthesis9,10. The apicoplast harbors a circular genome (~ 35 kb), 
which is replicated by the enzyme named Pfprex (Plasmodium falciparum plastidic replication/repair enzyme 
complex). Pfprex polypeptide harbors polymerase, primase and helicase activities and is centrally involved in 
the replication of the apicoplast genome by a bidirectional theta  mechanism11–15. The pfprex gene is encoded in 
the nucleus, and the polypeptide is transported into the apicoplast due to a bipartite leader sequence (BLS) at 
the N-terminus12,13. Within the apicoplast, the Pfprex polypeptide fragments and the polymerase module sepa-
rates from the primase-helicase  activities13,14. The DNA polymerase activity of Pfprex is the primary enzyme 
responsible for duplication of the genome of this  organelle14,15. Pfprex plays an important role in the survival of 
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the parasite as any defect in the replication of the apicoplast genome results in the death of the  organism14,16,17. 
Also, since Pfprex is of bacterial origin having no known orthologues in humans, this enzyme is an attractive 
target for the generation of novel antimalarial  therapeutics11,14.

The polymerase module of Pfprex (named PfpPol) belongs to the A-family of polymerases and possesses 
5′-3′ polymerase and 3′-5′ exonuclease or proofreading  activity14,15,18. The PfpPol enzyme exhibits high fidelity 
of DNA  synthesis14 with reported error rates ranging from  10−4 to < 10−6. It is the only known DNA polymerase 
in the  apicoplast15,18 and, therefore, is more likely to encounter 8oxodGTP in the ROS-rich environment of the 
apicoplast, which can adversely affect replication. The majority of the A-family polymerases prefer to insert 
incoming 8oxodGTP opposite template dA except DNA polymerase I (E. coli), which incorporates the oxidized 
nucleotide opposite both dA and  dC19–23. The oxidized base of 8oxodGTP tends to adopt a syn conformation 
to prevent steric repulsion between the oxygen atom at the 8 position and the triphosphate moiety. As a result, 
it prefers to form an 8oxodGTP(syn): dA(anti) Hoogsteen base pair, which has the same C1′-C1′ distance as 
a canonical dTTP: dA Watson–Crick base  pair24–29. Consequently, the 8oxodGTP(syn): dA(anti) Hoogsteen 
base pair can be accommodated in the active site of DNA polymerases (dPols) without any distortion of DNA 
or enzyme structure and consequently a number of dPols tend to misincorporate 8oxodGTP opposite  dA24,30.

There was no information available regarding the activity of PfpPol with respect to oxidized nucleotides 
such as 8oxodGTP. Our studies showed that PfpPol is able to incorporate 8oxodGTP into the growing end of 
the primer and there is no impediment to replication following the insertion of the oxidized nucleotide. Since 
the incorporation is opposite adenine in the template and is not desirable, the exonuclease activity of PfpPol 
was checked to remove the misincorporated 8oxodGTP. The exonuclease activity was successful in removing the 
damaged base and the amino acid residues responsible for this heightened exonuclease activity were identified.

Results
primer extension assays. The wild type (wt) PfpPol and a variant lacking exonuclease activity  (PfpPolexo−) 
were purified to high homogeneity (Fig. S1B). The identity of the purified proteins was confirmed using peptide 
fingerprinting of Mass Spectrometry.  PfpPolexo− was assessed for its ability to incorporate the oxidized nucleo-
tide 8oxodGTP into DNA. Primer extension assays show that  PfpPolexo− incorporates 8oxodGTP opposite dA 
and not dC in the template (Fig. 1A). The observed catalytic efficiency of incorporation of 8oxodGTP opposite 
dA is 0.15 μM−1 min−1. In comparison, the catalytic efficiencies for the addition of dGTP opposite dC and dTTP 
opposite dA are 19.54 and 11.61 μM−1 min−1, respectively (Fig. 1B). Therefore, the catalytic efficiency of incor-
poration of 8oxodGTP opposite dA is only 130- and 77-fold lesser than that for dGTP opposite dC and dTTP 
opposite dA, respectively (Fig. 1B). The frequency of incorporation of 8oxodGTP opposite dA in comparison 
to the addition of dTTP opposite dA (0.013) is nearly threefold higher than that for the error-prone DNA poly-
merase IV from E. coli (0.005)24. These experiments show that PfpPol has substantial ability to misincorporate 
8oxodGTP opposite dA and therefore, in the presence of ROS, there is a possibility of one 8oxodGTP incor-
poration opposite every 100 dA nucleotides in the AT-rich genome (35 kb) of the apicoplast of Plasmodium 
falciparum.

Extension post misincorporation of 8oxodGTP. The human telomerase has been shown to incorpo-
rate 8oxodGTP but cannot efficiently extend the 8oxodGMP terminated primer causing chain  termination31. To 
check whether  PfpPolexo− stalls or continues replication after adding 8oxodGTP to the growing primer chain, 
we used DNA substrate (dOG) terminating with 8oxodGMP in the primer strand (Table 1). On addition of all 
dNTPs, this primer was fully extended by  PfpPolexo− (Fig. 1C). Hence, as seen for Polγ (A-family) from humans, 
Klenow fragment (KF) from DNA polymerase I (A-family) from E. coli and Polα (B-family) from Bos taurus, the 
presence of 8oxodGMP in the primer at the 3′ end does not impede replication by the PfpPol  enzyme21,22. Due to 
the high frequency of incorporation of 8oxodGTP opposite dA by the polymerase activity  (PfpPolexo−) and its 
ability to extend from 8oxodGMP present opposite dA, the 8oxodGMP: dA mismatches can appear recurrently 
in the apicoplast genome. This raises the possibility that the exonuclease domain may remove such mismatches 
and thus prevent the appearance of transversion mutations that may adversely affect biochemical pathways that 
operate in the apicoplast.

Proofreading activity can remove 8oxodGMP misincorporated opposite template dA. As an 
A-family dPol, PfpPol in addition to 5′-3′ polymerase activity, has a 3′-5′ exonuclease activity. The polymerase 
incorporates 8oxodGTP opposite dA with high frequency and can extend past this mismatch also. As a result, 
the mismatch can get fixed in the apicoplast genome and lead to transversion mutations after another round of 
replication. It is possible that the proofreading activity removes this error and therefore, the effect of the 3′-5′ 
exonuclease activity on the misincorporated 8oxodGTP was assessed, and it was observed that 8oxodGMP was 
successfully removed by PfpPol (Fig. 2A). KF is one of the best-studied A-family dPols and is also the closest 
structural homolog of  PfpPol32 . The ability of the proofreading domain of the KF enzyme to remove 8oxodGMP 
was also evaluated. Even after a long incubation time of 90 min, the exonuclease activity of KF could not remove 
8oxodGMP from the primer end (Fig. 2B).  PfpPolexo− was assayed as the control enzyme unable to remove 
8oxodGMP from the primer end. (Fig. 2C). This observation suggests that the ability to remove misincorporated 
8oxodGMP is not a general property of A-family dPols but is a unique attribute of the PfpPol enzyme. The proof-
reading ability, therefore, can reduce the frequency of 8oxodGTP induced transversion mutations in the AT-rich 
apicoplast genome of Plasmodium falciparum.

Identification of residues that aid removal of 8oxodGTP. To identify the amino acid residues 
responsible for this unique activity of PfpPol, a computational model of the complex of the exonuclease domain 
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(kcat/KM )

8oxodGTP :dA 10.32 ± 0.72 1.51 ± 0.12 0.15 1

dTTP :dA 0.14 ± 0.01 1.69 ± 0.21 11.61 77.4

dGTP: dC 0.17 ± 0.005 3.39 ± 0.35 19.54 130.3

C

A              T              C             G              P* A            T              C              G     

dGTP 8oxodGTP

Time (min)     0               30             60   

PfpPolexo- - +              +
dOG                     +                +              +

Time (min)       0             30           60

PfpPolexo- - +              +
dA                       +               +              + 

Figure 1.  Activity of Pfprex vis-a-vis 8oxodGTP. (A) The ability of  PfpPolexo− to incorporate dGTP and 
8oxodGTP opposite all four template nucleotides was compared. 30 nM  PfpPolexo− was incubated for 30 min 
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with single-stranded DNA bearing 8oxodGMP at the 3′ end was prepared. For the computational model, the 
structure of the apo-PfpPol (5DKT) and the complex of KF with DNA (1KSP) were utilized. The model of the 
complex is composed of the exonuclease domain of PfpPol and a trinucleotide with 8oxodGMP present at the 
3′ end (Fig. 3A). The energy of the complex converged to a minimum of − 14,515.3 kJ/mol after 3,000 steps of 
minimization. The energy-minimized model was analyzed to identify residues of the exonuclease domain that 
interact with 8oxodG residue at the 3′ end of the substrate DNA. The phosphodiester bond between 8oxodGMP 
at the 3′ end and the next nucleotide is located close to the catalytic residues. The model showed that the resi-
dues of the stretch 1582QQNS1585 in PfpPol interact with base moiety of 8oxodGMP to stabilize the damaged 
nucleotide in the exonuclease active site (Fig. 3A,B). Since these residues are unique to PfpPol, they might be 
responsible for the heightened exonuclease activity exhibited by PfpPol against 8oxodGMP. To test this hypoth-
esis, the residues Q1582, 1582QQN1584, and S1585 were mutated to alanine by site-directed mutagenesis, and the 
corresponding proteins were purified to high homogeneity.

Enhanced exonuclease activity of PfpPol enables excision of 8oxodGMP from primer ter-
minus. The proteins PfpPol, KF, QQN-3A, Q1582A and S1585A were checked for their ability to remove 
8oxodGMP from the primer end (Fig. 4A). The triple mutant QQN-3A showed a substantial decrease in the 
ability to remove 8oxodGMP from the 3′ end of the primer, and this observation highlights the importance of 
these unique residues of PfpPol (Fig. 4B). In the model, S1585 forms interactions with the 3′ –OH of the terminal 
primer nucleotide and therefore, may stabilize the terminal nucleotide in the correct orientation for produc-
tive catalysis (Fig. 3B). In line with this observation, the mutant protein S1585A showed more than a threefold 
reduction in excision activity as compared to wt-enzyme (Fig. 4C,D). Q1582 residue interacts with the oxidized 
base, but the mutant protein Q1582A exhibited only about 20% reduction in activity as the wt-enzyme (Figs. 3B, 
4D). This may be because the flexibility in the unstructured polypeptide backbone in this region allows Q1583 

with 100 nM of 5′ FAM labeled DNA and 5 µM of either dGTP or 8oxodGTP. P* represents only DNA. A, 
T, C and G denote templates dA, dT, dC and dG, respectively. It was observed that  PfpPolexo− incorporates 
8oxodGTP opposite dA and not dC. (B) Kinetics parameters are displayed for the incorporation of 8oxodGTP 
opposite dA, dTTP opposite dA and dGTP opposite dC by  PfpPolexo−. (C)  PfpPolexo− can extend from 
8oxodGMP present at the primer terminus to the same extent as from dA and, therefore, the presence of the 
oxidized nucleotide at the primer terminus does not impede DNA synthesis.

Table 1.  List of DNA substrates. The template (1–4) and primer (5–7) oligonucleotides used and their 
corresponding DNA duplexes (8–13) are displayed. "s" denotes the phosphorothioate linkage between the 
nucleotides. For each of the template-primer duplexes, the templating nucleotides are underlined. In the case 
of the DNA duplexes utilized to asses exonuclease activity, the nucleotide present at the 3′ end is highlighted in 
italics and the corresponding nucleotide on the template strand is show in bold.

Templates

1 AT: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCT CGCT AATG CCT ACG AGT ACG 3′

2 TT: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCA CACA TATG CCT ACG AGT ACG 3′

3 CT: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCA TAGT CATG CCT ACG AGT ACG 3′

4 GT: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCA CATA GATG CCT ACG AGT ACG 3′

Primers

5 P15: FAM 5′ CGT ACT CGT AGG CAT 3′

6 POG: FAM 5′ CGT ACT CGT AGG CsAsTX 3′ X = 8oxodGMP

7 PG’: FAM 5′ CGT ACT CGT AGG CsAsTG 3′

Template- primer DNA substrates:

8
dG: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCA CATA GATG CCT ACG AGT ACG 3′

3′ TAC GGA TGC TCA TGC 5′

9
dT: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCA CACA TATG CCT ACG AGT ACG 3′

3′ TAC GGA TGC TCA TGC 5′

10
dC: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCA TAGT CATG CCT ACG AGT ACG 3′

3′ TAC GGA TGC TCA TGC 5′

11
dA: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCT CGCT AATG CCT ACG AGT ACG 3′

3′ TAC GGA TGC TCA TGC 5′

12
dG′: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCT CGCT AA T GCC TAC GAG TAC G 3′

3′ GTsAsCGG ATG CTC ATG C 5′

13
dOG: 5′ TCC TAC CGT GCC TAC CTG AAC AGC TGG TCT CGCT AA T GCC TAC GAG TAC G 3′

3′XTsAsCGG ATG CTC ATG C 5′

X = 8oxodGMP
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dOG:             5’ TCCTACCGTGCCTACCTGAACAGCTGGTCTCGCTAATGCCTACGAGTACG 3’
X=8oxodGMP 3’XTsAsCGGATGCTCATGC 5’
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KF

dOG
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PfpPolexo-

Time(min)        0         5        10     12.5    15     20       30      40     50       60       75      90      

C

Figure 2.  Excision activity on substrate bearing 8oxodGMP at the 3′ end. (A) 10 nM of PfpPol was incubated 
with 100 nM of dOG DNA substrate without dNTPs for different time points (0 to 90 min).The exonuclease 
activity of PfpPol can excise out 8oxodGMP present at the 3′ end of the primer opposite template dA. (B) 10 nM 
of KF was incubated with 100 nM of dOG DNA substrate without dNTPs for different time points (0 to 90 min). 
Unlike PfpPol, the KF enzyme is unable to excise the oxidized nucleotide present at the 3′ end of the primer. 
LC and dOG denote loading control and the DNA substrate with 8oxodGMP at the 3′ end, respectively. (C) 
 PfpPolexo− was used as a control, and as expected the exonuclease deficient version does not excise 8oxodGMP 
present at the 3′ end.
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to substitute for Q1582 (Fig. 3B). Overall, the analysis shows that the triple mutant and S1585A exhibit a twofold 
and threefold reduction in the ability to excise out 8oxodGMP while that of Q1582A mutant decreases by about 
20% compared to wt- enzyme (Fig. 4C,D).

The exonuclease activity of the wt- and mutant PfpPol along with KF was also checked on mismatched 
DNA template primer duplex (dG’) with a dA: dG mismatch at the primer 3′ terminus (Table 1). The ability of 
wt- and mutant versions of PfpPol to excise out dGMP from the primer terminus was assessed (Fig. 5A,B ). A 

Q1582

Q1583

N1584

S1585

8oxodGMP

Q72
N70

5’

3’

A

B
Q1582

S1585

8oxodGMP

Q1583

N1584

Q1472 N1470

Figure 3.  Model of the PfpPol exonuclease domain in complex with 8oxodGMP terminated single stranded 
DNA. (A) A computational model of PfpPol exonuclease domain in complex with DNA is displayed. The 
secondary structure elements and the residues are shown in cartoon and stick representation, respectively. 
The residues of the stretch 1582QQNS1585 were found close to 8oxodGMP. N1470 and Q1472 represent mutant 
versions of the catalytic residues, which are present close to the target phosphodiester bond. (B) The possible 
hydrogen bonds formed between S1585 and Q1582 with the 3′ end of the primer and the oxidized base, 
respectively, are displayed as dotted lines.
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dOG:             5’ TCCTACCGTGCCTACCTGAACAGCTGGTCTCGCTAATGCCTACGAGTACG 3’
X=8oxodGMP 3’XTsAsCGGATGCTCATGC 5’

Q1582A

PfpPol

Figure 4.  Proofreading activity of PfpPol and the mutant enzymes on dOG DNA substrate. (A) 10 nM of 
protein was incubated with 100 nM DNA (dOG) substrate without dNTPs for 1 h at 37 °C. PfpPol is able to 
remove 8oxodGMP from the primer end, in comparison the KF shows no excision activity. The  PfpPolexo− 
enzyme was used as a negative control. (B) Denaturing PAGE gels showing excision of 8oxodGMP from 0 to 
90 min. LC and dOG denote loading control and the DNA substrate with 8oxodGMP at the 3′ end, respectively. 
Protein to DNA ratio was maintained at 1:10. S1585A and QQN-3A show reduction in their exonuclease activity 
as compared to PfpPol. (C) Percentage of the substrate (dOG) remaining plotted against time of incubation (0′ 
to 90′) for PfpPol, KF, QQN-3A, Q1582A and S1585A.The error bars denote standard deviation values (n = 3). 
(D) The rate of excision of 8oxodGMP was determined by incubating each of the proteins (10 nM) with DNA 
(100 nM) for 0 min and 15 min. In comparison to PfpPol, QQN-3A and S1585A showed two and three-fold 
reduction in excision activity, respectively.
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Figure 5.  Proofreading activity of PfpPol and the mutant enzymes on dG′ DNA substrate. (A) 10 nM of each 
of the protein was incubated with 100 nM DNA (dG′) substrate without dNTPs for 1 h at 37 °C. S1585A and 
QQN-3A show reduction in their exonuclease activity on dGMP terminated primers as compared to PfpPol. 
 PfpPolexo− enzyme was used as a negative control. (B) Denaturing PAGE gels showing excision of dGMP from 
0 to 90 min. LC and dG’ denote loading control and the DNA substrate with dGMP at the 3′ end, respectively. 
Protein to DNA ratio was maintained at 1:10. (C) Percentage of the substrate (dG′) remaining plotted against 
time of incubation (0′ to 90′) for PfpPol, KF, QQN-3A, Q1582A and S1585A.The error bars denote standard 
deviation values (n = 3). (D) Exonuclease rate of excision of dGMP was determined by incubating each of the 
protein (10 nM) with DNA (100 nM) for 0 min and 10 min. In comparison to PfpPol, QQN-3A and S1585A 
showed two and three-fold reduction in excision activity, respectively.
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comparison of the rate of reaction showed that there was a reduction in the activity of S1585A (~ threefold) and 
QQN3A mutant (twofold) as compared to PfpPol (Fig. 5C,D). The Q1582A mutant also showed a 27% reduc-
tion in excision activity.

A comparison between PfpPol and KF regarding the ability to process mismatched termini showed the activ-
ity of PfpPol is nearly double that of KF (Fig. 5D). These results suggest that the proofreading domain of the 
PfpPol enzyme is endowed with heightened exonuclease activity. As a result, the PfpPol enzyme has the unique 
ability to excise out oxidized nucleotides that have been misincorporated into the primer and thus prevent the 
appearance of ROS-induced transversion mutations.

To check whether the polymerization ability of all the mutants (Q1582A, QQN-3A, and S1585A ) was intact, 
these proteins were incubated with substrate DNA (dA) and 5 µM of dNTPs. It was observed that all three 
mutant proteins (Q1582A, QQN-3A, and S1585A) were able to carry out 5′ to 3′ polymerase activity similar to 
wt-PfpPol (Fig. 6). The mutations in the exonuclease domain do not have any effect on the DNA polymerase 
activity of PfpPol.

dA:    5’ TCCTACCGTGCCTACCTGAACAGCTGGTCTCGCTAATGCCTACGAGTACG 3’
3’ TACGGATGCTCATGC 5’

P             PfpPol        S1585A        QQN-3A       Q1582A

Figure 6.  Primer extension activity. The DNA polymerase activity of S1585A, QQN-3A, and Q1582A were 
compared to that of PfpPol using primer extension assay. 20 nM of each of the protein was incubated with 
100 nM of dA DNA substrate and 5 µM of dNTPs for 2 h at 37 °C and resolved on denaturing urea PAGE gel. 
S1585A, QQN-3A, and Q1582A were able to extend the primer to the same extent as PfpPol. P represents the 
DNA substrate alone. dA denotes the DNA substrate used in the experiment.
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Discussion
The A-family polymerases such as human Polymerase γ and T7 Polymerase exhibit inefficient excision of 
 8oxodGMP21,33 . T7 polymerase poorly excises out 8oxodGMP base-paired to template dA; however, it is efficient 
in removing dG incorrectly paired to  dA33. Polymerase γ has also been shown to be more effective in extending 
the incorporated 8oxodGMP base-paired to dA rather than excising the  mispair3,21. In our study, 8oxodGMP 
terminated primers were successfully excised by PfpPol and not by KF of DNA polymerase I (E. coli), another 
A-family polymerase with 3′-5′ exonuclease activity. The amino acid residues responsible for the exonuclease 
activity, Asp and Glu, are conserved in PfpPol and  KF32,34. PfpPol possesses a unique stretch of amino acids in the 
exonuclease domain (QQNS) that substantially increases the proofreading ability of the exonuclease domain and 
this enhancement enables the enzyme to excise out oxidized nucleotides misincorporated into the primer. This 
stretch of residues is conserved in orthologues present in other members of the Plasmodium genera (Fig. 7). The 
second Q and the serine residue are conserved in many apicomplexans and therefore, the enhanced proofreading 
capacity and the ability to remove oxidized nucleotides may be a general feature of the plastidic dPol present in 
these organisms. Also, the polymerase activity of the PfpPol enzyme has the ability to prevent the incorporation 
of 8oxodGTP opposite dC. Therefore, the polymerase and proofreading activities of the enzyme act in concert 
to ensure that the damaged nucleotide is not added to the genome, neither opposite dC nor dA.

The nucleotide pool in the apicoplast is under constant oxidative stress as it is exposed to reactive oxygen 
species (ROS) produced during various metabolic processes that occur in this unique  organelle14,35,36. The pres-
ence of ROS will lead to the generation of oxidized nucleotides such as 8oxodGTP that can lead to transversion 
mutations in the apicoplast  genome24,35–37. In the mitochondria, even trace amounts of 8oxodGTP can substan-
tially reduce the fidelity of replication of the mitochondrial  genome3. Since the apicoplast genome of P. falcipa-
rum is highly AT-rich (~ 87%), the probability and frequency of 8oxodGTP: dA misincorporations will be high 
and therefore, the apicoplast genome is particularly vulnerable to mutagenesis by  8oxodGTP38. The apicoplast 
genome is known to code for about 30 genes and mutations in the apicoplast genome will lead to the altered 
proteins and RNA that cannot function properly and also lead to dysregulation of gene  expression39. Overall, 
due to persistent oxidative stress, the AT-rich genome in the apicoplast is under constant threat and the unique 
attributes of the exonuclease domain of Pfprex may play an important role in protecting the apicoplast genome 
from the deleterious effects of ROS.

Previously, it has been shown that the Base excision repair, Mismatch repair, and Nucleotide excision repair 
pathways can detect and remove  8oxodGMP40–44. The present study shows that in the apicoplast, misincorporated 
8oxodGMP present opposite template dA may be removed primarily by the proofreading activity of the replica-
tive DNA polymerase. This property represents a new form of DNA repair wherein the proofreading activity 
resident in the DNA polymerase is the first enzyme to excise out promutagenic damaged nucleotides from the 
primer strand. The removal of damaged nucleotides is generally post-DNA  synthesis45 and involves unloading of 
the DNA polymerase from the primer-template junction site. The observed activity of the exonuclease domain 
of Pfprex represents the first example of real-time dynamic error correction of damaged nucleotides wherein 
repair is concomittant with replication.

Figure 7.  Sequence alignment of DNA Polymerases from different members of apicomplexa. The stretch 
1582QQNS1585 is highlighted in cyan and the residues marked with an asterisk are conserved across different 
members of the apicomplexans. The QQNS motif is conserved across different members of the Plasmodium 
genera. The second Q and the S residues are conserved in many apicomplexans.
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The perturbation of metabolic activities in the apicoplast has been shown to lead to a delayed death phenotype 
in apicomplexans such as Plasmodium and Toxoplasma10,16,46,47. These organisms are responsible for diseases 
in humans and the former is responsible for malaria, which causes a large number of fatalities in the tropical 
regions of the  world48. According to WHO, there were approximately 4,05,000 deaths worldwide due to malaria 
in 2018, with nearly 85% of the fatal cases reported from 20 countries belonging to African and Indian  region49. 
Despite the number of efforts to eradicate the disease, the mortality rate has not declined as expected, with 
nearly 435,000 deaths in 2017 and 451,000 in  201650. This is partly because of the increased resistance to avail-
able drugs, including the present frontline artemisinin-based combination  therapy51–54. This calls for an urgent 
need to devise better strategies and find new targets for drug development. The inhibition of the exonuclease 
activity of Pfprex may lead to deleterious transversion mutations in the apicoplast genome, which will decrease 
the overall viability of the parasite. The proofreading domain of Pfprex bears low homology to that of the only 
A-family dPols in humans with a functional proofreading activity such as Polγ. Hence, the exonuclease activity 
of Pfprex represents an attractive target for therapeutic intervention. The inhibitors of the proofreading activity 
may serve as effective adjuvants that potentiate the antimalarial activity of available therapeutics.

Materials and methods
Cloning, expression, and purification. The codon-optimized gene construct corresponding to Pfprex 
(Uniprot ID: Q8ILY1_PLAF7) was obtained from Genscript Inc and the gene segment corresponding to Pfp-
Pol (1,361–2016 aa residues, supplementary figure S1A) was cloned into the pGEX-6P-1 vector. The gene con-
struct corresponding to the Klenow fragment of DNA polymerase I ((Uniprot ID: DPO1_ECOLI) was amplified 
from E. coli genomic DNA and cloned into the pGEX-6P-1 vector. All the mutants, namely D1470N + E1472Q 
 (PfpPolexo−)14, Q1582A, S1585A and triple mutant QQN-3A(Q1582A + Q1583A + N1584A) were generated 
using QuikChange Lightning Site-Directed Mutagenesis Kit from Agilent. The cloned genes and the mutants 
were transformed into freshly prepared competent cells of the C41(DE3) strain of E. coli.

The cells were grown in LB media containing 100 µg/ml of ampicillin at 37 °C and continuous shaking at 
180 rpm till  OD600 was 0.7. Induction was done with 0.3 mM IPTG and cells were further grown for 16 h at 18 °C. 
The cells were pelleted down by centrifugation and resuspended in lysis buffer (500 mM NaCl, 5% Glycerol, 
100 mM phosphate buffer (pH-7.5), 5 mM β-Mercaptoethanol, 0.01% IGEPAL and 1 mM phenylmethylsulfonyl 
fluoride). The cell lysate was sonicated and centrifuged at 17,800g for 50 min to obtain clear supernatant, which 
was subjected to purification by GST affinity chromatography. Briefly, the GST-sepharose beads (GE Healthcare 
Inc.) were equilibrated with buffer A (500 mM NaCl, 5% glycerol, 50 mM phosphate buffer (pH-7.5), 2 mM 
dithiothreitol (DTT), and 0.01% IGEPAL). The supernatant was then loaded on to the column and washed with 
buffer A, followed by buffer B (1 M NaCl, 5% glycerol, 50 mM phosphate buffer (pH-7.5), 2 mM DTT, and 0.01% 
IGEPAL). Protein was eluted after on-column cleavage with PreScission protease, which cleaves the GST tag of 
the protein. The eluted protein was concentrated and further purified by gel filtration chromatography using a 
Superdex-200 column (GE Healthcare Inc.). The protein was finally eluted in buffer containing 25 mM HEPES 
(pH 7.5), 500 mM NaCl, 5% glycerol and 2 mM DTT, concentrated and flash frozen.

primer extension assays. Primer extension assays were performed by annealing 5′ 6-FAM labeled primer 
 P15 with four different templates  AT,  TT,  CT and  GT giving rise to DNA substrates dA, dT, dC and dG having 
dA, dT, dC and dG respectively at the templating position (Table 1). 30 nM  PfpPolexo− and 5 µM of either 
8oxodGTP or dGTP were added to the reaction mixture consisting of 100 nM DNA substrate (Table 1) with 
25 mM Tris–HCl (pH-7.5), 0.1 mM (NH4)2SO4, 0.1 mg/ml BSA, 10 mM  MgCl2, and 1 mM DTT. The reaction 
was carried out for 30 min at 37 °C and terminated with stop solution consisting of 80% formamide, 1 mg/mL 
Xylene C, 1 mg/mL bromophenol blue, and 20 mM EDTA. This was followed by incubation at 95 °C for 4 min 
and quickly transferring to ice for 10 min. The mixture was loaded onto a 20% polyacrylamide gel containing 
8 M urea and 1× TBE. Visualization of the products was carried out by excitation of the 5′ 6-FAM label at 488 nM 
using Typhoon scanner (GE healthcare). The amount of primer extended was calculated using the  equation55:

where  IE is the intensity of the extended band (n + 1) and  IU is the intensity of the unextended band (n) in 
the same lane.

For steady-state enzyme kinetics, 5 nM of  PfpPolexo− and 1 µM of DNA substrate were used for reactions. 
The time point at which 20% of the primer has been extended was chosen and increasing concentrations of either 
8oxodGTP, dGTP, or dTTP were used to carry out reactions. Using Lineweaver-Burke plot, apparent Km, Vmax 
and the catalytic efficiencies were calculated (Fig. 1B) with the help of standard  protocols24,56,57.

To check complete polymerization of DNA by PfpPol and the mutants (Q1582A, S1585A and QQN-3A), 
100 nM of DNA substrate, dA (Table 1) was used along with 5 µM of all dNTPs in a reaction mix consisting 
of 25 mM Tris–HCl (pH-7.5), 0.1 mM (NH4)2SO4, 0.1 mg/ml BSA, 10 mM  MgCl2, and 1 mM DTT. 20 nM of 
each of the protein was added and the reaction was stopped after 2 h at 37˚C by the method described above.

Extension post misincorporation of 8oxodGTP. Primer extension after incorporation of 8oxodGTP 
at the 3′ primer terminus was checked by polymerization reactions on the dOG DNA substrate. dOG was made 
by annealing template  AT with primer  POG;  POG has 8oxodGMP at the 3′ terminus (Table 1). For comparison, 
polymerization was also checked on dA DNA substrate that was made by annealing  P15 to template  AT.  P15 has 
dTMP at the 3′ terminus. 10 nM of  PfpPolexo− and 100 nM of DNA substrate (dOG) were used in reaction mix 

Percentage of primer extended =
IE

IE + IU
× 100
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containing 5 µM of all dNTPs, 0.1 mM Ammonium sulfate, 0.1 mg/ml BSA, 10 mM  MgCl2 , 1× of 5× assay buffer 
consisting of 125 mM Tris–HCl (pH-7.5) and 5 mM DTT. After 30 min and 1 h, the reaction was stopped as 
described above and extended bands visualized by excitation at 488 nM on Typhoon scanner (GE healthcare).

proofreading activity. 3′ to 5′ exonuclease activity of PfpPol, KF, Q1582A, S1585A and QQN-3A was 
checked on dOG DNA substrate. The dOG substrate has 8oxodGMP already present at the 3′ primer terminus 
with non-hydrolyzable phosphorothioate linkages instead of phosphodiester linkages present at the penultimate 
and antepenultimate bonds linkages. Phosphorothioate linkages, which have sulfur in place of one of the oxy-
gen atoms of a phosphate, prevented the exonuclease activity from degrading the DNA base pairs following the 
misincorporated oxidized base owing to long incubation times with the protein. The reaction mixture contained 
10 nM of the proteins, 100 nM of DNA substrate, 0.1 mM Ammonium sulfate, 0.1 mg/ml BSA, 10 mM  MgCl2, 
25  mM Tris–HCl (pH-7.5) and 1  mM DTT. The reaction was stopped after an incubation of 1  h. Similarly, 
exonuclease activity was checked on dG’ substrate that has dGMP at the 3′ primer terminus. For quantitative 
analysis, the reaction mix was incubated for different time points till 90 min to generate curves with the percent-
age of substrate remaining plotted against time. Two time points; 0 and 10 min and 0 and 15 min were chosen 
to estimate reaction rates for excision of dGMP and 8oxodGMP, respectively, as has been described  previously14. 
To avoid errors due to loading, 100 nM of loading control was used in the reaction.

The percentage of substrate remaining was calculated using the equation:

where  Si = ISRi/ILCi;  ISRi is the intensity of the undigested primer band at time point i and  ILCi is the intensity 
of the loading control band at time point i with i ranging from time point 0 min to 90 min.  S0 = ISR0/ILC0;  ISR0 is 
the intensity of the undigested primer at time point 0 min and  ILC0 is the intensity of the loading control at time 
point 0 min.

Modeling studies. The structure of the exonuclease domain of KF bound to DNA (1KSP)58 was processed 
to isolate the exonuclease domain bound to three nucleotides. The complex of the KF exonuclease domain in 
complex with DNA and the apo structure of the exonuclease domain of PfpPol (5DKT)32,58 were superimposed 
onto each other. The DNA substrate was transferred from KF to PfpPol and the terminal nucleotide at the 3′ 
end was changed to 8oxodGMP. The model generated in this manner was subjected to energy minimization 
in Discovery Studio (Discngine SAS) using CHARMM force  field59–61. The modeled structure of the PfpPol-
exonuclease domain: DNA complex was analyzed using the CONTACT program of the CCP4  suite62 and all 
figures were prepared using the PyMOL program (Schrodinger Inc.).

Sequence analysis. The fasta sequences of orthologs of Pfprex from different apicomplexans were 
obtained from NCBI  website63. The sequences corresponding to the following organisms were used: P. vivax 
(SCO69476.1), P. reichenowi (XP_012765178.2), P. malariae (SBT72451.1), P. ovale (SCP06297.1), P. knowlesi 
(XP_002260883.1), P. yoelii (ETB59497.1), P. berghei (XP_022714368.1), P. chabaudi (SCM11163.1), B. ovata 
(XP_028865888.1), T. gondii (ACN59873.1), C. cayetanensis (OEH77393.1), C. suis (PHJ24259.1), T. annulata 
(XP_954352.1) and N. caninum (CEL66763.1). All the obtained sequences were then aligned with the exonu-
clease domain of Pfprex using the multiple sequence alignment tool, Clustal Omega, available at the EMBL-EBI 
 website64.

Accession numbers. UNIPROT: Q8ILY1_PLAF7 (Pfprex) and DPO1_ECOLI (DNA polymerase I) PDB: 
1KSP (DNA polymerase I) and 5DKT (Pfprex) were used to model DNA in the exonuclease domain of PfpPol.
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