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The sample size effect in metallic 
glass deformation
Yannick Champion1* & Nicolas Thurieau2

The sample size effect on deformation mode of glasses is one of the most misunderstood properties 
of this class of material. This effect is intriguing, since materials deemed macroscopically brittle 
become plastic at small size. We propose an explanation of this phenomenon for metallic glasses. 
A thermodynamic description of the local rearrangement zones activated under an applied stress is 
proposed. Using the Poisson distribution to describe the statistics of these zones and the statistical 
physics to associate entropy, we define a critical sample size for the change in the deformation mode. 
Predictions are in agreement with experimental observations and reveal hidden structural parameters 
describing the glassy state.

As is well known for millenaries, oxide glass flows at high temperature, which allows forming bottles, window 
glasses and so on, but are extremely brittle below the so-called glass transition temperature. Less common mate-
rials, metallic glasses behave in the same way at the macroscopic level. Of course, fundamental mechanisms for 
absence of macroscopic plastic deformation are distinct between oxides and metals due to their difference in 
atomic bonds. However, in both these cases the brittleness stems from a same effect that is stress localization 
leading to formation of a crack in oxides and a shear band in metallic glasses. It is then very intriguing to observe 
homogenous plastic deformation when glass sample is getting sufficiently small. The first evidence was reported 
by Taylor in 1949 using indentation on a borosilicate optical  glass1. Since, mechanical tests on micro pillars reveal 
plasticity for diameter of sample of few  micrometers2. For metallic glasses, the first evidence was reported by 
Volkert and collaborators on a PdSi alloy nano-pillars with diameter of 440 nm3. So far, an explanation has been 
based on a necessary critical volume for crack or shear band formation and  propagation3,4. With analogy to the 
Griffith criterion, the critical size is estimated from the balance between elastic energy stored under the applied 
stress σ and the crack or shear band energy, � ∝ ŴE/σ 2 where Ŵ is the energy per unit area of crack or shear 
band and E is the Young modulus. In addition to change in a deformation mode from brittle to ductile, increase 
of strength with decreasing size is observed. This has been associated to shear bands  inhibition5 or explained 
by a shear banding mediated process which takes into account the stochasticity observed at the critical  size6. 
Origin and mechanism for the change in the deformation mode from brittle to ductile in glasses is still debat-
ing. In their work, Guo and  collaborators7 observed in situ at the microscopic scale, using transmission electron 
microscopy, the homogenous deformation of a metallic glass followed by instability leading to necking similar 
to deformation in crystals. Evidence of shear band inhibition was interpreted through several angles. With the 
“Griffith criterion”, they proposed the interesting aspect of necessary distance for shear band to reach a mature 
stage. In addition, the authors emphasized the fact that the sample size is most likely below the range of shear 
band spacing. They suggest that the sample volume is less likely to contain “fertile” sites for the initiation of shear 
bands (those favorable to form shear transformation zones).

The mechanical approach is necessarily based on shear band properties. We suggest an alternative approach 
starting on the idea that the glass flows at a critical size as it does at the glass transition temperature. Hence, a 
“sample size—temperature” equivalence is envisaged similar to the “time–temperature” equivalence in thermally 
activated process. We shall see that this is more specifically a “size—glass transition temperature” equivalence.

The glass transition is understood as the temperature below which elementary species mobility is too low to 
observe relaxation at the time scale of experiment. In their initial statistical mechanics theory, Gibbs and DiMa-
rzio, showed that the increase in relaxation time at the glass transition is related to a dramatic decrease towards 
very small value of the configurational  entropy8. Later on, Gibbs and Adam introduced the configurational 
entropy in description of the  viscosity9, what Angell discussed in term of entropy excess of liquid to that of the 
crystal in the supercooled  domain10. From that, an interpretation of the phenomenon would be that an increase in 

open

1Univ. Grenoble Alpes, CNRS, SIMaP, 38000 Grenoble, France. 2IMSIA, CNRS, EDF, CEA, ENSTA Paris, Institut 
Polytechnique de Paris, 828, boulevard des Maréchaux, 91762 Palaiseau, France. *email: yannick.champion@
grenoble-inp.fr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-67813-w&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:10801  | https://doi.org/10.1038/s41598-020-67813-w

www.nature.com/scientificreports/

specific configurational entropy happens with decreasing sample size. Homogenous deformation should be then 
allowed when the value at the glass transition is reached. A change in entropy with size has not been considered 
yet, but was the number of energy minima in the potential energy landscape (PEL) description of  glass11,12. The 
PEL is appropriate for modelling the structural local rearrangement under an applied stress and the variation in 
minima of the energy density supports well an evolution of configuration with size.

Model and experimental evidence
The glass is discretized in non-periodic small regions, we call “clusters” of size l  , having various potential energy 
in the PEL distribution. Figure 1A, is a 2D scheme of a glass in such description, where black clusters are in 
favorable energy configuration for rearrangement under an external solicitation. A stress is characterized by its 
spatial orientation and breaks the average spherical symmetry of the glass. It results that only clusters favorably 
oriented with respect to the applied stress are selected and the resulting atomic displacements are in a close direc-
tion to the stress orientation (Fig. 1B). The PEL is heterogeneous and locally non-isotropic13. Then, activation of 
a favorable cluster, (black in Fig. 1B) may trigger atomic rearrangement over many k successive clusters nearby 
(Fig. 1B). We call ligament of size h ≈ k × l , the successive clusters (black and grey in Fig. 1B) producing the total 
displacement h . The total number of clusters is very large ( nc ≫ 1 ) and the probability to find a ligament is very 
small ( p ≪ 1 ). Such rare event configuration is described by a Poisson distribution which gives the probability 
Pk = �

ke−�/k! , of finding ligaments formed of k successive clusters, where � = p× nc is the average number of 
clusters giving the most expected ligament size h = �× l .

This model description was tested by comparison with experimental data. At first, the predicted displacements 
were naturally associated to serrations (pop-in) events observed in nano-indentation or nano-pillar compres-
sion tests. The mechanical test is probing the local structure of the glass by observing in the displacement extent 
(serration size) the capacity for atomic rearrangement. It is well known that the serrations events are strain rate 
 dependent14, which would mean that the serrations size distribution is not unique. However, it is emphasized 
that the most faithful structural description obtained from the mechanical probing, necessarily required that 
the time scale of the experiment is lower than the timescale of the atomic rearrangement. To an experimental 
point of view, it is then obvious that such experiment must be carried out in quasisatic condition that is at the 
lower strain rate as possible.

About 7,980 serrations were measured from 320 nano-indentations (Fig. 2) performed on a Mg based metallic 
 glass15 (see supplementary materials and methods).

The normalized experimental distribution  Pe(h) is plotted in the Fig. 3 and compared to a normalized Poisson 
distribution P(h) with the fitting parameters: h=3.47 ± 0.03 nm, l=0.64 ± 0.03 nm, which gives � ≈ 5 . The waiting 
times, δt distribution (inset of Fig. 3) is also consistent with the Poisson statistic and verifies P(δt) = Ae−�δt . It 
was reported that the activation volume controlling the shear band formation in this Mg glass is of the order of 3 
 atoms16. Similar value was reported by Schall and  collaborators17 and Ju and  collaborators18 for different materials. 
The present statistical analysis is consistent with that result, considering that an elementary displacement of the 
order of l  , which is about two interatomic distances, needs a rearrangement of at least 3 atoms. It is satisfactory 
to find analogy between cluster size used for the discretization of the glass and the activation volume controlling 
shear band formation having a physical meaning.

In a statistical physics approach, as proposed by Gibbs and  Adam9, the probability to find a ligament formed 
of k clusters is Pk = gke

−uk
kbT /Z . uk is the energy of a ligament of k clusters in the PEL, gk is a degeneracy factor 

and Z is the partition function. If we arbitrarily set for the most probable ligament of � clusters, g� =1, then 

Figure 1.  2D scheme of the glass description in a PEL approach. (A) The glass is divided in “clusters” with same 
size, formed in average of the same number but different atoms. Clusters are distributed over the PEL, where 
some (black) are in favorable energy configuration with respect to an external solicitation. (B) Orientation of 
the external stress solicitation produces selection of clusters (black) favorably oriented. Though energetically 
favorable, green clusters are not favorably oriented with respect to the applied stress. In the complex PEL 
gradient, clusters (grey) nearby selected black clusters, energetically and favorably oriented can be triggered 
participating in the rearrangement in the stress direction.
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combining with the Poisson distr ibut ion and using def init ion of  the f ree  energ y, 
f = −kbTlnZ = u� − kbTln

(

�!

��e
−�

)

 . kb is the Boltzmann constant and T is the absolute temperature. Energy of 
the ligament is unknown but we derive a simple apparent entropy per ligament depending only on � , 
s = kbln

(

�!

��e−�

)

.

The size effect
Among the simplicity of the result, the complexion � =

�!

��e
−�

 brings interesting perspectives. The Permutations 
( �! ) and the combinations ( �� ) of the � clusters forming the most probable ligament are identified. It seems that 
ligaments formed of � clusters are only considered and then a large part the glass is missing. However, rewriting 
e−� = limnc→∞

(

1− �

nc

)nc
 reveals the combinations of the fraction of the nc − � , other clusters, indicating that 

the overal l  sample is  wel l  considered in the complexion.  Further,  identifying that 
limnc→∞

(

1− �

nc

)nc
≈ limn→∞

(

1− �

n

)n
 , n is the total number of ligaments, inserting in the entropy expres-

sion and after Taylor series development, a size dependent of entropy is derived:

(1)s = kbln

(

�!

��e−�

)

+ kb
�
2

2n

Figure 2.  Nano-indentation curve showing serrations on the loading branch, also shown in the inset with the 
serration size, h and the waiting time between successive serrations δt.

Figure 3.  Normalized experimental distribution of serration sizes Pe(h) (blue dots) compared with the Poisson 
distribution P(h) . Distribution of waiting time, δt between successive serrations is shown in the inset.
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Reducing n means that the statistic is changing from Poisson to binomial, a well-known property for these 
distributions. In other words, the way events are “drawn” changes with the reduction of the sample size. From 
this result and considering the Gibbs and Adam  analysis9, we define the “sample size—temperature” equivalence 
writing that the entropy of an infinite sample at the glass transition temperature is equal to the entropy of the 
small size specimen at room temperature. This simple equality needs however, some special care. Entropy from 
room temperature to glass transition is calculated numerically with heat capacity cp measured for many metallic 
glasses (Table 1). It is emphasized that entropy of the small size sample is calculated with data obtained from 
the mechanical testing, then considering only the ligament probed by the mechanical solicitation in its specific 
direction. Consequently, the entropy from room to glass temperature must be rescaled by the ligaments fraction 
probed in the mechanical testing. Heat capacity cp is rescaled in number of ligaments (or mole of ligaments), 
that is by ∼ 3� , assuming cluster formed of about 3 atoms. The balance between the entropy of the small size 
specimen and the entropy of infinite specimen at the glass transition writes, with � the atomic volume and nln  
the fraction of ligaments probed:

The volume of the specimen is V = n3�� and the volume density of ligament is � =
nl
V =

nl
n3��.

After combination, the critical size for the transition in the specimen size effect is obtained:

� and � are structural features of the glass determined from experiments and characterizing the deformation 
dynamics.

For the Mg based metallic glass used in our experimental work, � = 5 is determined from a robust statistical 
distribution. The ligaments density is estimated of  10–8 nm−3, assuming a hemispheric zone, v ≈ 60h3max , where 
hmax is the maximum indent depth. An entropy from room temperature to glass transition was numerically 
evaluated  from19 of about 10 J.mol-1 k-1. Then the critical size for the transition from brittle to ductile is calcu-
lated of about 400 nm, consistent with observations by Lee and collaborators on pillars with diameter smaller 
than 1,000 nm20.

Discussion and concluding remarks
The approach was applied for various metallic glasses tested on nanopillars (Table 1). The volume of pillar, 
impacted during deformation is v ≈ ǫV  , where ǫ is the strain and V  is the pillar volume. The � value is estimated 
from the serration which appears the most (the much probable) in the deformation curves and elementary cluster 
formed of 3 atoms is assumed. The Table 1 shows rather good estimation of the critical size when comparing 
experimental observations and the calculated values, �.

To come back on initial assumption of a “sample size—Tg ” equivalence, one relies on the relation of the 
critical size (3). Observing that the cp variation with temperature are little for the various glasses ( cp is from 25 
to 90 J.K-1.mol-1), one derives the size-temperature dependence, from the first terms of a Taylor development:

The relation demonstrate the starting point of the approach with the size ( �)—temperature ( Tg ) or entropy 
( Cp,Tg ) dependence (Fig. 4). The relation (4) also reminds that this equivalence is done between two different 
property-dependent values, a mechanical one ( � ) and thermal one ( Tg ) that is why structural parameter, �,� 
are necessary to make compatibility between the two. The relation (4) predicts that the critical size is as small as 
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1
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Table 1.  Comparison between observed and calculated critical size � for various metallic glass alloys. 
Structural parameters, glass transition temperature and entropy are indicated.

Glass Test � �(nm-3)
∫ Tg

TRT
cp

dT
T (J.mol-1.K-1) Tg (K) Size (nm) observed � (nm) calculated

Pd77Si23 Pillar3 20 1 × 10–8 20  from25

Pd80Si20
480 440 500

Mg65Cu12.5Ni12.5(Ce0.75
La0.25)10

Indent
this work 5 1 × 10–8 10  from19

Mg65Cu25Y10
425  < 1,000  from20

Mg65Cu25Gd10
410

Au49Ag5.5Pd2.3Cu26.9Si16.3 Pillar26 7 1.6 × 10–8 10.5  from27

Au53.2Pb27.5Sb19.2
400  < 1,000 400

Cu47Ti33Zr11Ni6Sn2Si1 Pillar28 9 8.5 × 10–7 30  from29

Cu47Ti34Zr11Ni8
673 70 80

Zr47Cu46Al7 Pillar30 7 1.6 × 10–6 30  from31

Zr41.2Ti13.8Cu12.5Ni10Be22.5
675  < 100 60

Zr41Ti14Cu12.5Ni10Be22.5 Pillar32 9 2.4 × 10–6 30  from31

Zr41.2Ti13.8Cu12.5Ni10Be22.5
630  < 75 55
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Tg and � are large, which is the case for Zr, and Cu based alloys, compared to Pd, Mg, Au-based alloys. � values 
are similar except for PdSi glass (Table 1). In this work, the reference temperature is the room temperature; it is 
interesting to notice that infinite critical size is well predicted for reference temperature of Tg and that critical 
size � → 0 when T → 0 . This donnot consider variations of value � and � with temperature, which is most 
likely the case.

A dominant parameter impacting the critical size � , is the volume density of ligaments as observed from the 
data in the Table 1. � is the concentration of the local zones in the glass where rearrangement is able to occur 
under stress. One of these zones will evolve forming shear band. It is commonly argued that multiplying shear 
bands would be much favorable for plasticity while our results would indicate the contrary. The critical size is 
as large as � is small. In other words, the glass would be as robust against brittleness as it is poor in easy rear-
ranging zones where softening happens under stress. This was called “fertile” zones by Guo and  collaborators7. 
The argument support well the evidence of large critical size observed for oxide glasses which are probably more 
“structurally perfect” compared to metallic glasses. This should be examined under the angle of difference in the 
PEL between oxide and metallic glasses.

In the deformation process, � and � are novel parameters for describing the glass structure. It has been shown 
that metallic glass is formed of a distribution of clusters having varied deviations from a perfect  icosahedron21. 
The local structure was earlier described by a distribution of atoms and free volume, which is convenient in 
particular for modeling mechanical behavior as developed by  Spaepen22 and  Argon23. An alternative to direct or 
mean field atomic structure is the  PEL11 where atoms are omitted and the properties related to local variation of 
the system energy. This was used for the modelling glass  rheology24. Our approach suggests that the glass can be 
described by the unique average value �  and the density of ligaments � . The first is corresponding to elementary 
translation in the glass as Burgers vector is in crystals. The second is the density of local “defects” involved in the 
deformation process analogous to dislocations density in crystals though having different properties.
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