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Acid‑catalysed α‑O‑4 aryl‑ether 
bond cleavage in methanol/
(aqueous) ethanol: understanding 
depolymerisation of a lignin model 
compound during organosolv 
pretreatment
Edita Jasiukaitytė‑Grojzdek, Matej Huš, Miha Grilc* & Blaž Likozar*

The selective lignin conversion into bio‑based organic mono‑aromatics is a major general challenge 
due to complex structure itself/additional macromolecule modifications, caused by the cleavage 
of the ether chemical bonds during the lignocellulosic biomass organosolv pulping in acidified 
aqueous ethanol. Herein, the acido‑lysis of connected benzyl phenyl (BPE), being a representative 
model compound with α‑O‑4 linkage, was investigated in methanol, EtOH and 75 vol% EtOH/water 
mixture solutions, progressing each time with protonating sulfuric acid. The effect of the physical 
solvent properties, acidity of the reaction process media and temperature on rate was determined. 
Experiments suggested BPE following  Sn1 mechanism due to the formation of a stable primary 
carbocation/polarity. The product species distribution in non‑aqueous functional alcohols was strongly 
affected. The addition of  H2O was advantageous, especially for alkoxylation. Yield was reduced by 
a factor of 3, consequently preserving reactive hydroxyl group. Quantitative experimental results 
indicated key performance parameters to achieve optimum. Organosolv lignins were further isolated 
under significantly moderate conditions. Consecutive structural differences observed supported 
findings, obtained when using BPE.  H2O presence was again found to grant a higher measured –OH 
content. Mechanistic pathway analysis thus represents the first step when continuing to kinetics, 
structure–activity relationships or bio‑refining industrial resources.

Serious concerns about the use of fossils fuels require the development of new procedures for the production of 
alternative fuels from sustainable, renewable and non-food resources. Lignocellulosic (LC) biomass represents 
one of low-cost, abundant and renewable materials with a high potential for the conversion into numerous 
 chemicals1 or precursors for polymer  synthesis2. The major components of the LC biomass are cellulose, hemicel-
lulose and lignin. Lignin is an amorphous three-dimensional polymer of phenylpropanoid units interconnected 
by ether (α-O-4; β-O-4) and carbon–carbon (C–C)  bonds3. Due to its aromatic, highly functionalized structure 
and abundancy, lignin is considered to be a very promising renewable and sustainable feedstock for the produc-
tion of the chemicals, especially bio-aromatics4,5.

The conversion of lignin into value-added chemicals involves three steps: isolation, depolymerisation and 
final upgrading of the obtained platform chemicals. The fractionation procedure is essential as it determines the 
structure and reactivity of the isolated lignin. The content of β-O-4 bonds in the lignin molecule is besides the 
low molecular weight and low dispersity one of the key parameters, defining the suitability of lignin for further 
conversion into the value-added chemicals by depolymerizing and upgrading uniform lignin fragments. In order 
to separate lignin, the LC biomass is usually treated with acidified organic solvent and/or water as a co-solvent6,7. 
During fractionation in acidified media, lignin undergoes several structural changes due to the cleavage of 
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aryl-ether bonds, followed by the substitution and/or condensation leading to the formation the lignin structures 
less susceptible to the  depolymerisation8. An efficient lignin depolymerisation has been a major challenge for the 
last decade, having led to the development of new LC biomass fractionation techniques, such as the ‘lignin-first’ 
 approach9 or lignin isolation through the formaldehyde  stabilization10.

For depolymerisation by direct hydrogenolysis in the LC biomass (‘lignin-first’ approach), a heterogeneous 
metal catalyst is usually mixed with solid biomass in a high-pressure batch reactor, skipping the isolation of lignin. 
Despite the high efficiency of the ‘lignin-first’ approach to isolate lignin and concurrently produce aromatic 
monomers, some issues such as catalyst recovery and mass transfer limitations have limited the up-scale of this 
methodology. An outstanding lignin isolation/depolymerisation strategy using the formaldehyde stabilization/
hydrogenolysis has been reported by Luterbacher and co-workers10. The addition of formaldehyde prevented 
the condensation of lignin by forming 1,3-dioxane/acetal structures with α- and γ-hydroxyl groups in the lignin 
side-chain and by functionalizing aromatic rings to generate hydroxymethyl groups. A highly efficient depoly-
merisation of formaldehyde-treated lignin by hydrogenolysis has the potential to have a significant impact on 
the shift from the petroleum-based to sustainable, biomass-based society.

LC biomass fractionation using the organosolv process has been recognized as environmentally friendly, 
yielding ether bond-rich lignin of higher purity compared to the lignin obtained with other methods, which 
is essential for its valorisation into value-added  chemicals11. However, the main advantage of the organosolv 
process is its efficient fractionation of separate streams of major biomass components (cellulose, lignin and 
hemicelluloses), thus allowing the valorisation of all components. Cellulose and lignin are recovered as solids, 
while hemicelluloses and sugar degradation products are recovered from the water-soluble fraction as furfural 
and  hydroxymethylfurfural12. The most common organosolv pretreatment systems apply aqueous ethanol or 
methanol with mineral acids as catalysts. Additionally, a low cost, low boiling point, easy recovery and green 
production make ethanol and methanol very attractive solvents for the organosolv pretreatment. Ethanol is a 
suitable solvent as its eventual losses in the reactive solvolysis could be compensated by feeding the fermentation-
based bioethanol where bio-based ethanol could be collected in the  product13. Also considering the maturity 
of the bioethanol production process from LC biomass using the organosolv process, the optimization of the 
isolated lignin quality would facilitate lignin valorisation, thus improving the efficiency of a complete organosolv-
process-based biorefinery. To optimize the quality of the isolated lignin in terms of the preserved ether bonds, 
it is essential to understand the mechanism of the ether bond cleavage and the effects of operating conditions.

The most abundant ether bonds in lignin are α-O-4 (6 – 8 %), β-O-4 (45 – 60 %), 4-O-5 (4 – 9 %), β-1 
(7 – 9 %), and 5–5 (3 – 27 %)  linkages14,15. During organosolv pretreatment, lignin-carbohydrate and α-O-4 bonds 
in the lignin macromolecule are broken predominantly, while the scission of β-O-4 linkages occurs to a relatively 
smaller  extent16. A relatively lower activation energy for the hydrolysis of α-O-4 bond (80 – 118 kJ mol–1)17 than 
the one for β-O-4 bond hydrolysis (150 kJ mol–1)18 and accordingly a much faster hydrolysis of α-aryl ethers was 
demonstrated in several  studies19,20,21. Furthermore, the predominance of the cleavage of α-O-4 bonds during 
ethanol organosolv hydrolysis of Miscanthus reported by Hagea et al.20 indicated that β-O-4 cleavage is not the 
controlling reaction and did not play a significant role in the delignification process, while in Alcell lignin β-O-4 
structures were even found to survive chemical  processing22.

In numerous studies benzyl phenyl ether (BPE) was used as a α-O-4 linkage model compound to explore 
mechanisms of catalytic α-ther bond cleavage in aqueous and apolar  phases23,24,25, in supercritical water and 
supercritical  methanol26 because it has a weak ether bond (bond dissociation energy 215 kJ mol−1) and belongs 
to the most labile ether bonds in  lignin27. In addition, α-O-4 linkage represents a typical lignin-carbohydrate 
bond, which has to be cleaved to liberate lignin from the lignocellulosic  matrix28. Accordingly, benzyl phenyl 
ether was used as a α-O-4 linkage model compound to study the cleavage of one of the common bonds in the 
lignin structure in this work. We investigated the reaction pathway of aryl-ether bond cleavage in various sol-
vents, used for organosolv pretreatment, such as ethanol and methanol. Additionally, the effects of water when 
used as a co-solvent and operating conditions on to the reaction and the product distribution were also studied.

Acidolysis of benzyl phenyl ether, being an important α-O-4 linkage model compound, has been investigated 
in ethanol, methanol and in 75 vol% ethanol/water with sulphuric acid. Here, we seek to understand the effect of 
alcohols, commonly used for the organosolv process, on the extent of the ether bond cleavage and alkoxylation 
reactions in aqueous and non-aqueous reaction media. Furthermore, the impact of the reaction media acidity 
and temperature on the product distribution (reflecting the conversion and selectivity of ongoing reactions) 
over time was studied.

Material and methods
Materials. All the reactants, gases, solvents and external calibration standards were of reagent grade and were 
used without further purification, specifically: benzyl phenyl ether (98 wt%, Tokyo Chemical Industry co LTD, 
Tokyo, Japan, CAS number 946-80-5), phenol (99.5 wt%, Carlo Erba Reagents SAS, Val de Reuil Cedex, CAS 
number 108-95-2), benzyl alcohol (≥ 99.0 wt%, Fluka Chemie GmbH, Buchs, Swizerland, CAS number 100-51-
6), 2-benzylphenol (≥ 98.0 wt%, Sigma Aldrich, St. Louis, MO, USA, CAS number 28994-41-4), 4-methylbenzyl 
alcohol (98 wt% Sigma Aldrich, St. Louis, MO, USA, CAS number 589-18-4), ethanol (EtOH, absolute anhy-
drous, Carlo Erba Reagents SAS, Val de Reuil Cedex, France, CAS number 64-17-5), methanol (MeOH, ≥ 99 %, 
for HPLC, CAS number 67-56-1), sulfuric acid  (H2SO4, 95 – 97 % Merck, Darmstad, Germany, CAS number 
7664-93-9), nitrogen (5.0, Messer, Bad Soden am Taunus, Germany).

Acidolysis experiments. Acidolysis was carried out in a six-parallel batch high-pressure reactor system, 
consisting of vessels with 250 mL volume, equipped with a magnetically driven Rushton turbine impeller (Amar 
Equipment Pvt. Ltd, Mumbai, India). Each reaction vessel was filled with the reactant (benzyl phenyl ether: 
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BPE), the solvent (ethanol, methanol) or the solvent mixture (ethanol/water) and sulfuric acid. The reactor was 
placed in a housing, sealed, flushed twice and pressurized with nitrogen up to 1 MPa. All trials were performed 
with the stirring speed of 600 min–1. The heating was set to start at room temperature, gradually increase and 
kept at the set temperature for 4 h. The reaction was quenched by rapidly cooling down the reactor. Before open-
ing the autoclave, the gaseous phase was released and the headspace was purged with nitrogen. The operating 
conditions such as time, temperature and pressure were automatically recorded by a Scada system. The experi-
ments performed are summarized in Supplementary Table S1 and can be found online.

Here, BPE was used as the reactant throughout. BPE was dissolved in a solvent (ethanol, methanol) or solvent 
mixture (75 vol% ethanol/water) in the ratio of 1 : 70 (w/v) making 120 mL of total reaction volume. Experiments 
were performed at various temperatures (160 – 200 °C) and with various catalyst loadings 0.5 – 1.5 % of  H2SO4 
based on dry matter (for 1 g of model compound 0.025 – 0.075 g of  H2SO4 in form of 2 M solution were used, 
thus taking into account that wood contains approximately 20 % of lignin).

Samples were collected during the reaction in a following order: the first sample was taken at room tempera-
ture, the second one halfway up the heating ramp, the third one at the final reaction temperature and then every 
30 min until the end of the treatment. Eleven samples of 1 mL were collected for each experiment.

GC–MS analysis. The samples were analysed using gas chromatography coupled with mass spectrometry 
(GC–MS; 2010 Ultra, Shimadzu, Kyoto, Japan) with an additional FID (flame ionization detector) detector, 
equipped with the Zebron ZB-5 (Phenomenex, Torrance, CA, USA) 60 m × 0.25 mm × 0.25 µm, or RXi-1MS 
(Restek, Bellefonte, PA, USA) 15  m × 0.25  mm × 0.25  µm capillary column. Before the analysis, the samples 
were diluted with ethanol by a factor of 10. The concentration of the obtained products in samples was evalu-
ated based on the calibration curves for the known concentrations of external standards. The column oven 
temperature was programmed from 50 (5.5 min hold) to 290 °C (7.5 min hold) at 20 °C min−1. Helium was used 
as a carrier gas at a constant flow of 0.8 mL min–1. The temperature of the injector and detector was 290 °C, the 
injection volume has been set to 1 µL with a split ratio of 50. The separated compounds were identified using 
mass spectrometry. Every product was sent through the ion source and the fragments were separated by a single 
quadrupole in the range from 35 to 600 m/z. The mass spectra were compared to the spectra of pure compounds 
from commercial FFNSC and NIST17 libraries.

The quantitative GC–MS/FID data reported in this work are averages of three experiments. The maximum 
standard deviation of our results was 1.1 × 10−3 mol L–1, while the maximum standard error was 6.1 × 10−4 mol L–1.

Lignin extraction. Lignin was extracted from beech tree sawdust (25 g, < 24 mesh, dried at 105 °C for 24 h) 
with methanol, ethanol, 75 vol% methanol/water and 75 vol% ethanol/water in the ratio of 1 : 7 (w/v). To catalyse 
the reaction, 1 % of  H2SO4 based on dry matter was added to the reaction mixture. The extraction was carried 
out in a 300 mL cylindrical stainless steel slurry reactor (Autoclave Engineers) at 180 °C over 1 h. The reactor was 
flushed twice and pressurized with nitrogen up to 1 MPa. The experiments were performed in a batch regime 
with the agitation speed of 200 min–1. The reaction was quenched by dipping the reactor in an ice-bath. The 
solids were filtered out and rinsed with 150 mL of the 4 : 1 (m)ethanol/water mixture heated up to 60 °C in order 
to remove the extracted lignin, trapped on the surface of the wood particles. The remaining solids were dried at 
105 °C for 48 h. Lignin was precipitated by adding three volumes of distilled water. The precipitate was collected 
by centrifugation for 10 min at 4,500 min−1, repeatedly washed with distilled water and freeze-dried. Yields of 
isolated lignin (%) were calculated according to Eq. 1 considering that beech wood contains 24.4 %29 of lignin.

Here Wt—weight of isolated lignin (g), W0—initial lignin content (g). The yield of residue (%) was calculated 
according to Eq. 2:

Here Zt—weight of the remaining solids (g), Z0—weight of starting beech wood (g).

ATR/FT–IR spectroscopic analysis. Fourier Transform Infra–Red (FT–IR) spectra of isolated lignin sam-
ples were recorded using a FTIR spectrophotometer equipped with a  LiTaO3 detector (PerkinElmer, FT–IR spec-
trophotometer, Spectrum Two, Manchester, UK), in the range between 400 and 4,000 cm−1 using diamond ATR 
mode of operation with 64 accumulated scans, at a resolution of 4 cm−1. The background spectrum was collected 
before every measurement and was subtracted from the sample spectrum automatically.

Size‑exclusion chromatography (SEC). SEC of the acetylated lignin samples was performed on a size-
exclusion chromatographic system (Thermo Scientific Ultimate 3000, ThermoFisher, Waltham, MA, USA) 
equipped with a UV detector set at 280 nm. The analyses were carried out at ambient temperature using THF as 
eluent at a flow rate of 1 cm3 min−1. The aliquots (100 µL) of each sample dissolved in THF (1.5 mg cm−3) were 
injected into Plgel 3 µm MIXED E 7.5 × 300 mm. The column specifications allow the separation by molecular 
weight up to 30 kDa. The SEC system was calibrated with polystyrene standards with the molecular weight in 
the range from 500 Da to 30 kDa. The chromatographic data were processed with the PSS (Polymer Standards 
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Service) WinGPC Unity software. The acetylation of lignin was performed using acetic anhydride according to 
the procedure reported  elsewhere30.

Results and discussion
Acidolysis of the α‑O‑4 linkage in non‑aqueous alcohols. It is well-known that during organosolv 
pretreatment lignin undergoes initial depolymerisation due to the scission of the α-ether bonds, which are cleaved 
more easily than the β-ether bonds because of a lower bond dissociation energy (BDE(α-O-4) = 215 kJ mol–1; 
BDE(β-O-4) = 290 kJ mol–1)27. Acidolysis of the α-ether linkage was found to predominate during the initial 
phase of organosolv pretreatment and was considered to be the rate-determining step. Subsequently, alkoxyla-
tion of a lignin macromolecule caused by alcohols acting as external nucleophiles determines the final structure 
of the isolated lignin as shown in Fig. 131. Therefore, to elucidate the effect of the alcohol used, acidolysis of BPE 
(α-O-4 model compound) was examined in ethanol and methanol. Based on the GC–MS analyses, the main 
identified products were phenol (Ph), 2-benzyl phenol (2BPh) and benzyl ethyl ether (BEE) in the case of acid-
olysis in ethanol, and benzyl methyl ether (BME) in the case of acidolysis in methanol.

Reaction mechanism. The mechanism of acidolysis of benzyl phenyl ether (BPE) in the aqueous and non-
aqueous alcohols was proposed based on the GC–MS analyses of the liquid samples. The main products of the 
BPE acidolysis in ethanol were identified to be phenol (Ph) and benzyl ethyl ether (BEE), while minor amounts 
of 2-benzyl phenol (2BPh) were also detected. Acidolysis in methanol proceeded in a similar manner, yielding 
benzyl methyl ether (BME) instead of BEE. The acid–catalysed conversion of BPE in ethanol with water as a 
co-solvent led to the formation of benzyl alcohol (BA). The product distribution was strongly affected by the 
solvent, acidity and temperature.

Ethers can be cleaved via the  SN1 or  SN2 mechanisms. We argue that BPE follows the  SN1 mechanism due to 
the intermittent formation of a stable primary benzyl carbocation (stabilized by the resonance effect as presented 
in Supplementary Fig. S1) and due to the polarity of the medium. As shown below, increasing the polarity of the 
medium (substituting ethanol with methanol) increased the reaction rate.

In Fig. 2, the mechanism of acidolysis is shown. In the first step, BPE is protonated by sulphuric acid. Subse-
quently, phenol and a primary benzylic carbocation are formed in a  SN1 reaction. This carbocation reacts with 
either alcohol or water, forming BME/BEE or BA,  respectively32,33.

Small quantities of 2BPh form when phenol reacts with the carbocation. If phenol reacts with its oxygen atom, 
this is a self-exchange reaction (the phenolic group in BPE is replaced by another phenol). However, the hydroxyl 
group in phenol activates the carbon atom in the ortho position, which can also take part in the acidolysis. This 
results in the formation of 2BPh (after keto-enol isomerization)32,33,34.

The effect of solvent. The difference in the intensity of the alkoxylation reactions is most obvious when com-
paring the BPE, Ph, BME and BEE concentration profiles for the experiments performed with 1 % of  H2SO4 at 
160 °C (runs 10, 11), shown in Fig. 3a,b.

During the four-hour reaction, the BPE conversion of 77.5 % in methanol and 42.1 % in ethanol was achieved. 
We ascribe the greater activity in methanol to the difference in acidity (methanol pKa = 15.5, ethanol pKa = 15.9)35 
and polarity (methanol > ethanol)36. Firstly, the O–H bond is more polarized in methanol (no stabilizing inductive 
effect), making it a better nucleophile to attack the benzyl carbocation. Moreover, greater polarity of methanol 
stabilizes the carbocation intermediate, which is well known to accelerate the  SN1  reactions32,33.

Figure 1.  Cleavage of the α-ether bonds in lignin followed by alkoxylation during organosolv pretreatment.
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Figure 2.  The proposed reaction mechanism of BPE acidolysis in aqueous and non-aqueous alcohol.

Figure 3.  Product distribution during the BPE acidolysis in methanol (MeOH) or ethanol (EtOH) with 1.0 % 
of  H2SO4 at 160 °C (a, b), 180 °C (c, d) and 200 °C (e, f). Key: blue filled triangles — benzyl phenyl ether (BPE), 
black empty diamonds — benzyl ethyl ether (BEE), black empty triangles — benzyl methyl ether (BME), red filled 
circles — phenol (Ph), black empty squares — 2-benzyl phenol (2BPh), black empty circles — molar balance.
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The effect of temperature and acid concentration in methanol. To determine the effect of operating conditions, 
the experiments were performed in ethanol and methanol at different temperatures (160 °C, 180 °C, 200 °C; runs 
10, 11, 4, 5, 13, 14) and with different catalyst concentrations (0.5 %, 1.0 %, 1.5 %; runs 1, 2, 4, 5, 7, 8), as shown 
in Figs. 3 and 4, respectively.

The concentration profiles of 2-benzyl phenyl (2BPh) are similar for all temperatures and both alcohols. 
However, slightly higher concentrations of 2BPh were observed in methanol. The more pronounced formation 
of 2BPh is the consequence of the overall greater reactivity in methanol.

The influence of temperature on the BPE conversion is presented in Fig. 5a, while Fig. 5b shows the effect 
of acid concentration. The temperature effect is most obvious. Increasing the temperature from 160 to 200 °C 
increased the conversion in methanol from 77.5 to 98.8 % and in ethanol from 42.1 to 70.0 %. With methanol, 
the conversion was nearly complete (96.4 %) already at 180 °C and only negligible improvement was observed 
with a further increase of the reaction temperature to 200 °C. A similar effect was seen when using ethanol, only 
the conversions were not as high (vide infra).

The concentration of acid had a small effect on the conversion. Upon comparing the experiments at 180 °C 
with 0.5 %, 1.0 % and 1.5 % of  H2SO4 (Fig. 4a,c,e), no noticeable difference in the conversion is seen (93 %, 
96.4 % and 97.4 %, respectively).

The effect on the initial reaction rate was more distinct, however not directly proportional to the amount of 
the used catalyst. For instance, 70 % of the BPE conversion during the acidolysis in methanol at 180 °C acidified 

Figure 4.  Product distribution during the BPE acidolysis in methanol (MeOH) or ethanol (EtOH) at 180 °C 
with 0.5 % of  H2SO4 (a, b), 1.0 % of  H2SO4, (c, d) and 1.5 % of  H2SO4 (e, f). Key: blue filled triangles — benzyl 
phenyl ether (BPE), empty diamonds — benzyl ethyl ether (BEE), empty triangles — benzyl methyl ether (BME), 
red filled circles — phenol (Ph), black empty squares — 2-benzyl phenol (2BPh), black empty circles—molar 
balance.

Figure 5.  Benzyl phenyl ether (BPE) conversion with time in methanol (MeOH) and ethanol (EtOH): (a) 
at 160 °C, 180 °C, 200 °C with 1.0 % of  H2SO4 used as a catalyst; (b) at 180 °C with 0.5 %, 1.0 % and 1.5 % of 
 H2SO4.
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with 0.5 %, 1.0 % and 1.5 % of  H2SO4 was achieved after 130 min, 75 min and 55 min, respectively (Fig. 5b). Based 
on the obtained results, we assume that the alcohol acidity  (pKa) and polarity are the key parameter, determining 
the intensity of the α-ether bond acidolysis in non-aqueous alcohols. The rate of ether bond acidolysis is more 
strongly dependent on the reaction temperature than on the concentration of hydronium ions.

The effect of temperature and acid concentration in ethanol. A similar temperature effect as in methanol has 
been observed also in ethanol, acidified with 1.0 % of  H2SO4 (Fig. 3b,d,f). Here, increasing the reaction tem-
perature from 160 to 180 °C caused an analogous increase in the α-ether bond cleavage. After four hours of the 
reaction, the conversion rose from 42.1 to 70.0 %. Analogously, any further rise of the reaction temperature (up 
to 200 °C) had a negligible effect on the conversion. This suggests that the optimal temperature for the cleavage 
of the α-O-4 linkage is 180 °C.

The product distribution in ethanol was significantly affected by the acidity of the reaction media. As shown 
in the concentration profiles in Fig. 4b,d,f, the effect of the acid concentration in ethanol has a much more pro-
nounced effect than in the case of methanol. When running the reaction in ethanol with 0.5 %, 1.0 % and 1.5 % 
of  H2SO4 at 180 °C, the conversions were 47.9 %, 70.13 % and 82.3 %, respectively. This is a consequence of the 
different polarity of methanol and ethanol, as discussed (vide supra)36.

From the obtained results we conclude that the extent and rate of the α-O-4 bond cleavage is strongly depend-
ent on the type of the solvent, specifically the acidity and polarity of the solvent itself. A greater solvent polarity 
can be beneficial as it reduces the required amount of sulfuric acid, which is the most frequently used catalyst 
for organosolv pretreatment. Expectedly, the reaction is also influenced by the concentration of the hydronium 
ion (a catalyst) and temperature.

Acidolysis of the α‑O‑4 linkage in aqueous ethanol. The effect of water. Water is the most en-
vironmentally friendly solvent and is usually used in combination with organic solvents for organosolv 
 pretreatment37,38. The highest lignin solubility in ethanol–water mixtures has been achieved in 70 % ethanol/
water39. According to the Hildebrand solubility parameter theory, the materials having similar δ-values show 
good solubility or miscibility. It has been determined that good solvents for lignin have the δ-value around 11 
(cal  cm–3)1/240. An efficient dissolution of high and low molecular weight lignin fractions has been demonstrated 
in a mixture of 75 % ethanol (δ = 12.9 (cal  cm–3)1/2) and 25 % of water (δ = 23.5 (cal  cm–3)1/2) with the δ-value 
close to the one of lignin (δ = 12 − 15.5 (cal cm−3)1/2)41,42,43.

Hence, 75 vol% ethanol/water was examined as a solvent in our study. We sought to determine the effect of 
water on the α-ether bond acidolysis. Additionally, the influence of the reaction temperature and acidity of the 
reaction media was investigated. A methanol/water mixture was not studied due to poor solubility of the model 
compound (BPE).

Based on the GC–MS analyses, the main identified products were phenol (Ph), 2-benzyl phenol (2BPh), 
benzyl ethyl ether (BEE) and benzylic alcohol (BA). As shown in Fig. 2, water or ethanol participate in the  SN1 
reaction after the protonation step, yielding BA or BEE, respectively.

The intensity of the reaction is most evident in the BPE, Ph, BEE and BA concentration profiles for the 
experiments performed with 1.5 % of  H2SO4 at 180 °C (runs 7, 9), shown in Fig. 6e and f. After four hours, the 
conversion was 82.3 % in ethanol and 65.3 % in 75 % ethanol/water was achieved.

The lower activity in the ethanol/water mixture compared to ethanol might be explained by its acidity. Water 
itself  (pKa =  − log (Kw/(55.56 mol L–1)) = 15.7) is more acidic than ethanol  (pKa = 15.9)35. This means that  H2SO4 
more easily protonates ethanol than water, causing the reaction to be slower in the ethanol/water mixture.

However, one of the main challenges is an efficient lignin isolation with as few structural changes (condensa-
tion reactions, scission of β-ether linkages and alkoxylation reactions) as possible. During organosolv pretreat-
ment it is important to preserve the reactive functional groups (aliphatic and phenolic hydroxyl groups). We 
show that the intensity of the ethoxylation reactions can be reduced by a factor of 3 by adding 25 % of water 
to ethanol. Water evidently represents one of the key parameters and has to be taken into account for eventual 
lignin isolation by the organosolv fractionation.

The effect of temperature. The effect of temperature on the α-ether scission in acidified aqueous ethanol was 
tested at 160 °C, 180 °C and 200 °C (runs 12, 6, 15) with 1.0 % of  H2SO4. The product distribution in aqueous 
ethanol at different temperatures is shown in Fig. 6.

The effect is most evident in the concentration profiles of BPE. As the temperature rises from 160 to 200 °C, 
α-ether bond cleavage is significantly promoted and the conversion increases from 23.7 to 92.0 %. The tempera-
ture increase significantly increased the reaction rate and strongly affected the product distribution.

The reactant conversion in aqueous ethanol as a function of the reaction time is shown in Supplementary 
Fig. S2. We see that a 15 % conversion of BPE in aqueous ethanol with 1 % of  H2SO4 at 160 °C, 180 °C, 200 °C 
was achieved after 150 min, 75 min, 50 min, respectively. The highest catalyst activity and conversion (up to 
92.0%) was demonstrated at 200 °C with 1.0 % of  H2SO4, yielding the highest concentrations of Ph, BEE and 
BA. Moreover, the BEE : BA ratio at the end of the experiment was 3 : 1, which corresponds to the initial ratio of 
ethanol and water. This additionally confirms the  SN1 reaction mechanism shown in Fig. 2.

The concentration profiles of 2BPh exhibit similar patterns. For instance, the concentrations of 2BPh deter-
mined after a four-hour treatment with 1.0 % of  H2SO4 at 160 °C, 180 °C, 200 °C were proportional to the Ph 
content and made up approximately 20 % of phenol.

The effect of acidity. To evaluate the effect of acidity on the α-ether bond scission in aqueous ethanol, experi-
ments were carried out at 180 °C with 0.5 %, 1.0 % and 1.5 % of  H2SO4 (runs 3, 6, 9). The product distributions 
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during the reaction are shown in Fig. 6. The BPE concentration profiles show that an increase in acidity (from 
0.5 to 1.5 %) accordingly affects the α-ether bond cleavage, as evidenced by an increase in the conversion (from 
42.1 to 65.3 %).

The conversion of the reactant in aqueous ethanol as a function of time is shown in Supplementary Fig. S2. 
For instance, a 30 % conversion in aqueous ethanol with 0.5 %, 1.0 % and 1.5 % of  H2SO4 at 180 °C was achieved 
after 200 min, 125 min and 100 min, respectively. This shows that after a certain threshold (in our case 1.0%), 
the increased acidity does not translate into higher reaction rate.

However, when carrying out the reaction in ethanol, the effect was more pronounced. Increasing the con-
centration of  H2SO4 from 0.5 to 1.5 % improved the final conversion from 47.9 to 82.3 %. This is consistent 
with the overall decrease of the reaction rate when water is added to ethanol. A greater amount of the catalyst 
is required, meaning that the threshold is moved above 1.0 %. Due to the higher acidity of water compared to 
ethanol,  H2SO4 is less likely to dissociate and protonate it, results in the overall lower concentration of protonated 
species (hydronium ions or alcohols).

Overall, the addition of water has a desired effect on the reaction. Firstly, the addition of 25 % of water to 
ethanol decreased the extent of alkoxylation reaction by a factor of 3, preserving the reactive hydroxyl group. 
Specifically, concentration of benzyl ethyl ether (BEE) has been reduced from 0.03 to 0.01 mol  L−1 (Figs. 3d and 
6c). Secondly, a more pronounced temperature-acidity dependence in aqueous ethanol is a key parameter to be 
considered for attaining the optimal extent of α-ether bond cleavage. Thirdly, by comparing the patterns in the 
concentration profiles in Figs. 3 and 4 with Fig. 6, the addition of water has reduced experimental variations, 
resulting in a more consistent process.

The effect of solvent on lignin. To estimate the effect of solvents tested with the model compound BPE, 
lignin was isolated from beech wood with MeOH, EtOH, MeOH/H2O, EtOH/H2O under moderate conditions at 
180 °C with 1.0 % of  H2SO4 according to the procedure described in Section “Material and methods.”

ATR/FT‑IR spectroscopic analysis. Preliminary information on the amount of the total hydroxyl groups was 
obtained using a FTIR analysis. The FTIR spectra were collected in ATR mode, which enables a simple and fast 
comparison of lignin samples. The assignment of lignin FTIR spectra was reported in detail by  Faix44 and allows 
the identification of characteristic bands for total hydroxyl groups (O–H stretch) at 3,412–3,460 cm–1 as well as 
for secondary alcohols and aliphatic ethers (C–O deformation) at 1,086 cm–1. Figure 7 shows the FTIR spectra 

Figure 6.  Product distribution during BPE acidolysis at 180 °C in ethanol/water (EtOH/H2O) with (a) 0.5 % 
of  H2SO4, (c) 1.0 % of  H2SO4, (e) 1.5 % of  H2SO4. The temperature influence on the product distribution in 
EtOH/H2O with 1.0 % of  H2SO4 at: (b) 160 °C, (c) 180 °C, (d) 200 °C. *(f) The product distribution in EtOH 
with 1.5 % of  H2SO4 at 180 °C is shown again for a direct comparison with the effect of water. Key: blue filled 
triangles — benzyl phenyl ether (BPE), empty diamonds — benzyl ethyl ether (BEE), black filled circles — benzyl 
alcohol (BA), red circles — phenol (Ph), black empty squares — 2-benzyl phenol (2BPh), black empty 
circles — molar balance.
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of lignin isolated with four different solvents (separate spectrum for each lignin sample are shown in Supple-
mentary Figs. S3–S6).

Intensity of the absorption band corresponding to the total OH groups increases in the following sequence: 
EtOH < MeOH < MeOH/H2O < EtOH/H2O and thus confirms that the addition of water to alcohol reduces the 
alkoxylation reactions preserving more OH groups in lignin. While there are minor differences between the 
spectra of lignin isolated using non-aqueous alcohols, the addition of water into the system causes observable 
changes. Lignin, isolated in aqueous methanol, exhibits a lower absorption band intensity corresponding to the 
O–H stretch and consequently a lower OH group content compared to the one isolated in aqueous ethanol. This 
difference could be explained by the different acidity of the solvents. As already mentioned, acidity increases 
in the following order EtOH (pKa = 15.9) < H2O (pKa = 15.7) < MeOH (pKa = 15.5)35. When aqueous methanol 
is used for lignin isolation,  H2SO4 more easily protonates methanol than water, affecting the predominance 
of the transetherification reactions at the Cα position (alkoxylation). Moreover, the aliphatic α-ether forma-
tion is confirmed by a notably more intensive shoulder at 1,086 cm–1 compared to the one of lignin isolated in 
aqueous ethanol. In contrast to the aqueous methanol, the easier protonation of water than ethanol in aqueous 
ethanol, makes the α-ether bond hydrolysis the preferential reaction resulting in the formation of the aliphatic 
OH groups at the Cα position and accordingly increases overall OH group content. Correspondingly, the FTIR 
spectrum of lignin isolated in aqueous ethanol displays the highest band intensity corresponding to the O–H 
stretch (3,412–3,460 cm–1) along with the less intensive shoulder at 1,086 cm–1 revealing a reduced extent of the 
transetherification of α-ethers (alkoxylation).

Fractionation. The beech wood fractionation results are summarized in Supplementary Table S2. The high-
est yields of lignin were obtained using aqueous alcohols. Despite the comparable yields of residue, significant 
differences between the lignin yields (76.0 % and 83.4 %) were achieved using MeOH/H2O and EtOH/H2O, 
respectively. As expected, EtOH/H2O showed the most desired results. The residue obtained after the fractiona-
tion in MeOH/H2O had a notably darker colour and apparently a certain amount of lignin remained trapped on 
the surface of the particles. MeOH/H2O seems to be a less efficient solvent for lignin which is also in agreement 
with the Hildebrand solubility parameter theory, were the lignin (δ = 12 – 15.5 (cal cm–3)1/2) solubility in EtOH/
H2O (δ = 15.5 (cal cm–3)1/2) should be better compared to MeOH/H2O (δ = 16.6 (cal cm−3)1/2)41,42,43. In addition, 
a higher degree of methylation in aqueous methanol limited a sufficient lignin isolation by precipitation in water 
and in the end, a yield of 76 % was obtained. The effect of more pronounced (m)ethylation is evident in the 

Figure 7.  ATR-FTIR spectra of lignin isolated in MeOH, EtOH, MeOH/H2O and EtOH/H2O with the enlarged 
highlighted area of the original spectra.
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case of fractionation performed using MeOH and EtOH. In those two cases, the precipitated lignin formed a 
milky suspension that made its separation extremely complicated. Therefore, despite the beneficial δ-values that 
describe MeOH (δ = 14.3 (cal cm–3)1/2) and EtOH (δ = 12.9 (cal cm–3)1/2) as suitable solvents, notably lower lignin 
yields (70.6 % and 64.4 %, respectively) were attained.

The different degree of lignin (m)ethylation which is also confirmed using FTIR analysis, accordingly affected 
lignin self-aggregation intensity. Self-aggregation of the dissolved lignin depends on the balance of electrostatic 
repulsion and van der Waals attraction in a solvent as well as on the isolation process which directly affects the 
number of cross-linking sites (methoxyl and hydroxyl groups)45. Accordingly, due to the relatively low hydroxyl 
group content in lignin isolated using EtOH and MeOH formed a milky suspension during the precipitation. 
While the higher degree of lignin methylation in MeOH/H2O than the degree of ethylation in EtOH/H2O was 
confirmed by the notably reduced lignin self-aggregation intensity.

SEC analysis. The effect of the used solvents is also evident from the SEC analysis data shown in Supplemen-
tary Table S2. The formation of α-etherified moieties within the lignin structure during the fractionation in 
MeOH and EtOH prevents any further condensation reactions resulting lignin with a lower average molecular 
weight  (Mw) 2,150 Da and 2,020 Da, respectively. The presence of water in MeOH/H2O and EtOH/H2O creates 
reactive secondary OH groups that could be further etherified or involved in condensation with the other lignin 
functional groups, forming slightly larger fragments with an average  Mw of 2,300 Da and 2,700 Da, respectively. 
However, based on the results of the previously investigated BPE acidolysis in EtOH/H2O, the presence of water 
is more likely to reduce the rate of the reaction or lignin depolymerisation in this case. Thus, higher  Mw values 
for the lignin isolated in aqueous alcohols imply a lower degree of depolymerisation. The effect of water in terms 
of weaker depolymerisation is obvious from the SEC chromatogram profiles shown in Fig. 8. Here, the main 
peak of EtOH/H2O-lignin is shifted towards the higher molecular weight region pointing towards a presence of 
a less intact lignin structure. The minor difference between the average  Mw values of MeOH-lignin (2,150 Da) 
and MeOH/H2O-lignin (2,300 Da) could be explained by the acidity of the used solvents and is consistent with 
the previously discussed results from the FTIR analyses. When MeOH/H2O is used for lignin isolation,  H2SO4 
more easily protonates methanol than water, affecting the predominance of the α-etherification reactions. Con-
sequently, as a majority of the solvent mixture consists of MeOH (75 vol%), only a minor difference between the 
 Mw values has been observed.

Figure 8.  SEC chromatograms of lignin isolated using EtOH, EtOH/H2O, MeOH and MeOH/H2O.
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conclusions
In this study, benzyl phenyl ether (BPE) was used as a model compound for the α-O-4 ether linkage in lignin to 
understand the intricacies of the α-ether bond cleavage in acidified methanol, ethanol and in aqueous ethanol.

When using BPE, the  SN1 mechanism was postulated based on several findings. Firstly, the primary benzyl 
carbocation is sufficiently stable to intermittently form after the protonation of BPE. Secondly, the reaction rate 
was found to be accelerated in methanol, which is more polar than ethanol, thus stabilizing the carbocation. 
Thirdly, when using the ethanol/water mixture, the ratio of the corresponding products (BEE:BA) matched the 
ratio of ethanol and water in the solvent, meaning that they compete for the carbocation.

The product distribution in non-aqueous alcohols was strongly affected by the solvent acidity and polarity, 
and temperature while the acidity of the reaction media had a less significant effect. Adding water to ethanol had 
a beneficial effect on the α-ether bond cleavage, especially in terms of alkoxylation reactions. Specifically, the 
extent of alkoxylation was reduced by a factor of 3, thus preserving the reactive hydroxyl group.

The structural differences between the lignins, isolated with (aqueous) alcohols, were consistent with the 
results obtained from the BPE acidolysis. Specifically, a reduced extent of the alkoxylation reactions reflected in 
a less depolymerized lignin molecule thus specifying 75 vol% EtOH/H2O as the most favourable solvent among 
the ones considered in this study.
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