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A regression algorithm 
for accelerated lattice QCD 
that exploits sparse inference 
on the D‑Wave quantum annealer
Nga T. T. Nguyen1, Garrett T. Kenyon1,2 & Boram Yoon3*

We propose a regression algorithm that utilizes a learned dictionary optimized for sparse inference 
on a D‑Wave quantum annealer. In this regression algorithm, we concatenate the independent and 
dependent variables as a combined vector, and encode the high‑order correlations between them 
into a dictionary optimized for sparse reconstruction. On a test dataset, the dependent variable is 
initialized to its average value and then a sparse reconstruction of the combined vector is obtained in 
which the dependent variable is typically shifted closer to its true value, as in a standard inpainting 
or denoising task. Here, a quantum annealer, which can presumably exploit a fully entangled initial 
state to better explore the complex energy landscape, is used to solve the highly non‑convex sparse 
coding optimization problem. The regression algorithm is demonstrated for a lattice quantum 
chromodynamics simulation data using a D‑Wave 2000Q quantum annealer and good prediction 
performance is achieved. The regression test is performed using six different values for the number of 
fully connected logical qubits, between 20 and 64. The scaling results indicate that a larger number of 
qubits gives better prediction accuracy.

Sparse coding refers to a class of unsupervised learning algorithms for finding an optimized set of basis vectors, 
or dictionary, for accurately reconstructing inputs drawn from any given dataset using the fewest number of non-
zero coefficients. Sparse coding explains the self-organizing response properties of simple cells in the mammalian 
primary visual  cortex1,2, and has been successfully applied in various fields including image  classification3,4, image 
 compression5, and compressed  sensing6,7. Optimizing a dictionary φ ∈ R

M×Nq for a given dataset and inferring 
optimal sparse representations a(k) ∈ R

Nq of input data X(k) ∈ R
M involves finding solutions of the following 

minimization problem:

where k is the index of the input data, and � is the sparsity penalty parameter. Note that the convergence of the 
solution is guaranteed only when the norm of column vectors of the dictionary φ is constrained by an upper 
bound, which is unity in this study. Because of the L0-norm, the minimization problem falls into an NP-hard 
complexity class with multiple local  minima8 in the energy landscape.

Recently, we developed a mapping of the a(k)-optimization in Eq. (1) to the quadratic unconstrained binary 
optimization (QUBO) problem that can be solved on a quantum annealer and demonstrated its feasibility on 
the D-Wave  systems9–11. The quantum processing unit of the D-Wave systems realizes the quantum Ising spin 
system in a transverse field and finds the lowest or the near-lowest energy states of the classical Ising model,
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using quantum  annealing12–14. Here si = ±1 is the binary spin variable, hi and Jij are the qubit biases and coupling 
strengths that can be controlled by a user, and optimization for the Ising model is isomorphic to a QUBO problem 
with ai = (si + 1)/2 . By mapping the sparse coding to a QUBO structure, the sparse coefficients are restricted to 
binary variables ai ∈ {0, 1} , and it makes the L0-norm equivalent to the L1-norm. Despite this restriction, it was 
able to provide good sparse representation for the the  MNIST9,11,15 and CIFAR-1010,16 images.

In this paper, we propose a regression algorithm using the sparse coding on D-Wave 2000Q in Sect. Regres-
sion algorithm using sparse coding on D-Wave 2000Q and apply the algorithm to a prediction of quantum 
chromodynamics (QCD) simulation observable in Sect. Application to lattice QCD.

Regression algorithm using sparse coding on D‑Wave 2000Q
Regression model. Consider N sets of training data {X(i), y(i)}Ni=1 , and M sets of the test data {X(j)}Mj=1 , 
where X(i) ≡ {x

(i)
1 , x

(i)
2 , . . . , x

(i)
D } is an input vector known as the independent variable, and y(i) is an output vari-

able known as the dependent variable. A regression model F can be built by learning correlations between the 
input and output variables on the training dataset, so that it can make predictions ŷ of y for an unseen input 
data X as

Such a regression model can be built using the sparse coding learning implemented on a quantum annealer 
described below.

• Pre-training

(1) Normalize x(i)d  and y(i) so that their standard deviations become comparable. One possible choice is 
rescaling the data to have a zero mean and a unit variance using the sample mean and sample variance 
of the training dataset. This procedure is an essential step for the regression algorithm as it makes the 
reconstruction error for each component comparable.

(2) Using X in the test dataset (M) or those in the combined training and test datasets ( N +M ), perform 
sparse coding training and obtain the dictionary φ for X.

• Training

(3) Concatenate the input and output variables of the training dataset and build the concatenated vectors 
X̃
(i) ≡ {x

(i)
1 , x

(i)
2 , . . . , x

(i)
D , y(i)} . Extend the dictionary matrix φ ∈ R

D×Nq obtained in the pre-training 
to φ̃o ∈ R

(D+1)×Nq , filling up the new elements by zeros.
(4) Taking X̃(i) as the input signal and φ̃o as an initial guess of the dictionary, perform sparse coding 

training on the training dataset and obtain the dictionary φ̃ . Through this procedure, φ̃ will encode 
the correlation between x(i)d  and y(i).

• Prediction

(5) For the test dataset, for which only X(j) is given, build a vector X̃(j)
o ≡ {x

(j)
1 , x

(j)
2 , . . . , x

(j)
D , ȳ(j)} , where 

ȳ(j) is an initial guess of y(j) . One possible choice of ȳ(j) is the average value of y(i) in the training 
dataset.

(6) Using the dictionary φ̃ obtained in (4), find a sparse representation a(j) for X̃(j)
o  and calculate recon-

struction as X̃′(j) = φ̃a(j) . This replaces the outlier components, including ȳ(j) , in X̃(j)
o  by the values 

that can be described by φ̃.
(7) After inverse-normalization, the (D + 1)’th component of X̃′(j) is the prediction of y(j) : 

(X̃′(j))D+1 = ŷ(j) ≈ y(j).

In this regression model, D should be sufficiently large so that the initial guess of the dependent variable ȳj does 
not bias the reconstruction. This procedure can be extended to predict multiple variables by increasing the 
dimension of y, in exchange for prediction accuracy.

Sparse coding on a D‑Wave quantum annealer. The a(k)-optimization of the sparse coding problem 
in Eq. (1), can be mapped onto the D-Wave problem in Eq. (2), by the following  transformations9–11:

In this mapping, each neuron, the sparse coefficient, of the sparse coding model corresponds to a qubit. After 
a measurement, the quantum state of a qubit collapses to 0 or 1, which indicates that the neuron can have only 
two states of fire (1) or silent (0). Here the qubit–qubit coupling J shares similarity with the lateral neuron–neu-
ron inhibition in the locally competitive  algorithm17, and the constant � makes the solution sparse by acting a 
constant field forcing the qubits to stay in ai = 0 ( si = −1 ) state. By performing the quantum annealing for a 
given dictionary φ and input data vector X with the transformations given in Eq. (4), one can obtain the optimal 
sparse representation a.

(3)F(X) = ŷ ≈ y .

(4)hi =

(
−φT

X +

(
�+

1

2

))

i

, Jij = (φTφ)ij , si = 2ai − 1.
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An ideal D-Wave 2000Q consists of 2048 qubits, and the entire coupling graph of this 2048-qubit system 
is called the perfect Chimera 2000Q, whose 1/16 subset is illustrated in Fig. 1. However, the graph is sparsely-
connected in which one qubit can couple to only up to 6 other qubits. With the limited connectivity between the 
qubits, a perfect 2048-qubit Chimera has 6016 couplers. To map a general Ising model problem with arbitrary 
bipartite couplings to a D-Wave Chimera, in many cases, one requires an additional step called the embedding. 
In the case of the sparse coding problem, the embedding translates a graph of a fully-connected logical qubits 
to the Chimera graph of the partially-connected physical qubits by chaining a group of physical qubits together 
with a certain chain strength ξ . One example of such a mapping of fully-connected logical 6 qubits to the D-Wave 
2000Q by chaining 14 physical qubits is described in Fig. 1. This embedding procedure results in a significant 
reduction of the total available logical qubits that represent the mapped problem; on a perfect D-Wave 2000Q 
QPU, only up to 65 fully-connected logical qubits can be mapped. In practice, however, some qubits on the QPU 
are inoperable after a calibration, and the maximum number of logical qubits that could be embedded decreases. 
For example, the D-Wave 2000Q quantum annealer at Los Alamos National Laboratory (LANL) has only 2032 
active qubits with 5924 active couplers. We find that an arbitrary QUBO problem up to 64 fully-connected logical 
qubits can be embedded in the LANL D-Wave 2000Q.

Application to lattice QCD
QCD is a theory of quarks and gluons, which are the fundamental particles composing hadrons such as pions 
and protons, and their interactions. It is a part of the Standard Model of particle physics, and the theory has 
been demonstrated by a large class of experiments over the  decades18,19. Lattice QCD is a discrete formulation 
of QCD on a Euclidean space time lattice, which allows us to solve low-energy QCD problems using computer 
simulations by carrying out the Feynman path integration using Monte Carlo  methods20,21.

In lattice QCD simulations, a large number of observables are calculated over an ensemble of the Gibbs 
samples of gluon fields, called the lattices, and computational cost for calculating those observables is expensive 
in modern simulations. However, the observables’ fluctuations over the statistical samples of the lattices are cor-
related as they share the same background lattice. By exploiting the correlation between them, in Ref.22, Gradient 
Tree Boosting (GTB) regression algorithm was able to replace the computationally expensive direct calculation 
of some observables by the computationally cheap machine learning predictions of them from other observables.

In this section, we apply the regression algorithm proposed in Sect. Regression algorithm using sparse cod-
ing on D-Wave 2000Q to the lattice QCD simulation data used for the calculation of the charge-parity (CP) 
symmetry violating phase αCPV of the  neutron23,24. Here we consider three types of observables: (1) two-point 
correlation functions of neutrons calculated without CP violating (CPV) interactions C2pt , (2) γ5-projected two-
point correlation functions of neutrons calculated without CPV interactions CP

2pt , and (3) γ5-projected two-point 
correlation functions of neutrons calculated with CPV interactions CP,CPV

2pt  , and the phase αCPV is extracted from 

Figure 1.  A subset (1/64) of the Chimera structure of the D-Wave 2000Q consisting of 32 qubits (circles) 
arranged in a 2× 2 matrix of unit cells of 8 qubits. The qubits within a unit cell have relatively dense 
connections, while the interactions between the unit cells can be made through the sparse connections in their 
edges. This figure also shows an example of embedding 6 fully-connected logical qubits (numbers from 1 to 
6 inside 14 circles) onto the D-Wave chimera using 14 physical qubits, in which red edges indicate bipartite 
couplings between qubits while blue edges indicate chained qubits. After such embedding, for example, the 
logical qubit 1 is mapped to two physical qubits tiled from one qubit in the top right and one in the bottom right 
unit cell, while the logical qubit 2 mapped to three physical qubits tiled from two qubits in the top left and one 
qubit in the top right unit cell, and so forth.
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the imaginary part of CP,CPV
2pt  . Those observables are calculated at multiple values of the nucleon source and sink 

separations in Euclidean time direction t.

Method. Our goal of the regression problem is to predict the imaginary part of CP,CPV
2pt  at t = 10a from the 

real and imaginary parts of the two-point correlation functions calculated without CPV interactions, C2pt and 
CP
2pt , at t = 8a, 9a, 10a, 11a, and 12a, where a is the lattice spacing. It forms a problem with single value of output 

variable (y) and 20 values (two observables, real/imag, 5 timeslices) of the input variables ( X ). In this application, 
we use 15616 data points of of these observables measured in Refs.25,26 divided into 6976 training data and 8640 
test data. Using these datasets, we follow the regression procedure proposed in Sect. Regression algorithm using 
sparse coding on D-Wave 2000Q to predict y of the test dataset that contains around 9 K data points.

The procedure can be summarized as follows. First, we standardize the total data using the mean and variance 
of the training dataset for normalization. Then, we perform the pre-training and obtained φ for the 20 elements 
of X only using the test dataset. After appending the y to X as the 21st element in the training dataset, we per-
form the sparse coding dictionary learning and update φ to encode correlation between X and y. For prediction, 
input vectors X in the test dataset are augmented to dimension of 21 vectors by appending the average value of 
y, which is 0 after standardization. Finally, sparse coefficients a for the augmented input vectors are calculated 
with the fixed dictionary φ obtained above, and predictions of y are estimated by taking the 21st element of the 
reconstructed vectors on the test dataset.

Note that a sparse coding problem solves for the sparsest representation a and the dictionary φ , simultane-
ously, by minimizing Eq. (1). First, our optimization for a is performed using the D-Wave 2000Q at a given φ , 
whose initial guess is given, in general, by random numbers or via imprinting technique. Then, the optimiza-
tion for φ is performed on classical CPUs. The latter step is an offline learning for the fixed values of a obtained 
using D-Wave 2000Q. In the offline learning procedure, φ is learned using the batch stochastic gradient descent 
(SGD) algorithm:

where Eb = 1
nb

∑nb
i=1 Ei with Ei is the sparse coding energy function for a given input data given in Eq. (1), and η 

is the learning rate. In this study, η is initially set to 0.01 and gradually decreased during the training procedure. 
Batch-learning is used with the batch size of nb = 50 . We repeat the iterative update of the quantum D-Wave 
inference for a and SGD learning for φ until a convergence is attained. On average, we find the convergence after 
4 or 5 iterations. In this study, we use the SAPI2 python client  libraries27 for implementing D-Wave operations.

The sparsity of the sparse representation a associated with the sparsity penalty parameter � is calculated by the 
ratio of nonzero elements in a . In this study, � is tuned to the values that make the average sparsity about 20%, 
because we find that the 20% of sparsity provides an optimal prediction performance, after examining a few dif-
ferent values of � . This corresponds to � = [0.06, 0.1], which we varied for different Nq studies in our experiments. 
Although the prediction performance could be further optimized by an extensive parameter search, such as that 
performed in Ref.28, the procedure is computationally expensive so ignored in this proof-of-principle study.

Note that the definition of the overcompleteness is not straightforward for the D-Wave inferred sparse cod-
ing because the input signal X may have arbitrary real numbers, while the sparse coefficients a could have only 
binary numbers of 0 or 1. Ignoring the subtlety, for simplicity, the overcompleteness γ for the input signal of 
dimension 20 (or 21 for extended vectors) can be calculated by γ = Nq/20.

Results. Examples of the reconstruction and prediction from the randomly chosen test data points are visu-
alized in Fig. 2. In the plot, the first 20 elements are the input variables, and the element 21 is the output of the 
prediction algorithm. As one can see, the reconstruction of the 21st element, which was 0 in their initial guess, 
is successfully shifted close to their ground truth, as expected.

In order to investigate the prediction accuracy for different Nq , we explore the prediction algorithm with six 
different numbers of qubits Nq = 20, 29, 38, 47, 55 and 64, which corresponds to γ ≈ 1 ∼ 3 . Note that the larger 
Nq implies the more difficult optimization problem, and Nq = 64 is the maximum number of logical qubits 
that can be embedded onto the D-Wave 2000Q. In the experiments with the D-Wave 2000Q, we use annealing 
time τ = 20µs , which is a relatively short annealing time. In addition, we run the experiments with 10 different 
values of the chain strengths ξ for each input data point to obtain an optimal solution in exchange for longer 
wallclock time. We performed our D-Wave experiments using 20 reads for each value of ξ and take the lowest 
energy solution. In Fig. 3, we show the distribution of the normalized original data of the dependent variable 
y(i) and its prediction error �(i) defined by the difference between the ground truth y(i) and its prediction ŷ(i) : 
�(i) = y(i) − ŷ(i) . It is clearly demonstrated that (1) the prediction error is much smaller than the fluctuation of 
the original data, (2) the prediction error is sharply distributed near 0, which indicates no obvious bias in the 
prediction, and (3) the prediction error tends to be smaller when Nq becomes larger.

To evaluate the prediction quality, the recovery of the 21st element in the extended input vector, quanti-
tatively, we calculate the ratio of the standard deviations of the prediction error and that of the original data: 
Q ≡ σ(�)/σ(y) . Q converges to 0 when the prediction is precise, and Q ≥ 1 indicates no prediction for a statisti-
cal data. Note that this definition of the prediction quality does not account for the bias of the prediction because 
the bias for the prediction of a statistical data can be removed by following the procedure introduced in Ref.22 
based on the variance reduction technique for lattice QCD  calculations29,30.

Figure 4 shows the prediction error Q as a function of the number of qubits. It is clearly demonstrated that 
the systematic decrease of the prediction error as Nq is increased. Although no theory explaining the scaling is 

(5)φ := φ − η
∂Eb

∂φ
,
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known, we find that the scaling roughly follows the exponential decay ansatz Q∞ + B · exp[−C · Nq] . By fitting 
the ansatz to the data points, an asymptotic value of the prediction quality is obtained as Q∞ ≈ 0.18 or 0.23 for 
Nq → ∞ , depending on whether we include Nq = 20 data point or not in the fit. For a comparison, regression 
algorithms provided by the scikit-learn  library31 on a classical computer are investigated for the same dataset, 
and GTB regression  algorithm32–34 showed the best prediction performance with Q = 0.15(1).

The data points in Fig. 4 are obtained with a fixed training and test datasets without cross validation because 
of the limited D-Wave 2000Q resources. However, the classical regression algorithms we applied on the same 
datasets showed prediction quality Q between 0.15 and 0.33 with 2 and 8.6% uncertainties, where the uncertain-
ties are estimated using the bootstrap resampling method following Ref.22. Based on this observation, we expect 
smaller than 10% uncertainties for the data points presented in Fig. 4.
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Figure 2.  Original, or ground truth, data (blue circles) and the reconstruction from the missing-21st-
element data using D-Wave 2000Q with Nq = 64 (red squares) for two randomly chosen data points. Here the 
21st-element is the dependent variable of the prediction, whose initial value before the reconstruction is given 
by 0.
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Figure 3.  Distribution of the prediction error �(i) of the 21st element plotted against the distribution 
of the ground truth for different numbers of qubits Nq = 20, 29, 38, 47, 55 , and 64. The narrower width 
of the prediction error indicates the better prediction. Standard deviations of the prediction errors for 
Nq = 20, 29, 38, 47, 55 , and 64 are 0.41, 0.375, 0.319, 0.29, 0.273 and 0.254, respectively. Scaling of the prediction 
error is summarized in Fig. 4.
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Pre-training is demonstrated to lower the prediction error of this regression algorithm, significantly. When 
performed the prediction with Nq = 64 qubits without the pre-training procedure, we find that Q = 0.34 , while it 
becomes Q = 0.254 with the pre-training. Without the pre-training, furthermore, we find that the required num-
ber of iterative updates of the D-Wave inference for a and SGD learning for φ is increased to about 10 iterations.

Conclusion
In this paper, we proposed a regression algorithm using sparse coding dictionary learning that can be imple-
mented on a quantum annealer, based on the formulation of a regression as an inpainting problem. A pre-training 
technique is introduced to improve the prediction quality. The procedure is described in Sect. Regression model. 
The regression algorithm was numerically demonstrated using a set of lattice QCD simulation observables and 
was able to predict the correlation function calculated in the presence of the CPV interactions from those calcu-
lated without the CPV interaction. The regression experiment is carried out using the D-Wave 2000Q quantum 
annealer with minor embedding technique in order to obtain fully-connected logical qubits. The study is per-
formed for six different values of the number of qubits between 20 and 64, and it showed a systematic decrease 
of the prediction error as the number of qubits is increased (see Fig. 4). With a larger number of qubits and 
elaborately tuned the sparsity parameter, we expect further improved performance in the future.
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