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Risk analysis of maize yield losses 
in mainland china at the county 
level
Xuan Li1, Shibo fang1,2*, Dong Wu1,3, Yongchao Zhu4 & Yingjie Wu1

food security in china is under additional stress due to climate change. the risk analysis of maize 
yield losses is crucial for sustainable agricultural production and climate change impact assessment. 
It is difficult to quantify this risk because of the constraints on the high-resolution data available. 
Moreover, the current results lack spatial comparability due to the area effect. These challenges were 
addressed by using long-term county-level maize yield and planting area data from 1981 to 2010. We 
analyzed the spatial distribution of maize yield loss risks in mainland China. A new comprehensive 
yield loss risk index was established by combining the reduction rate, coefficient of variation, and 
probability of yield reduction after removing the area effect. A total of 823 counties were divided 
into areas of lowest, low, moderate, high, and highest risk. High risk in maize production occurred 
in Heilongjiang and Jilin Provinces, the eastern part of Inner Mongolia, the eastern part of Gansu-
Xinjiang, west of the Loess Plateau, and the western part of the Xinjiang Uygur Autonomous Region. 
Most counties in Northeast China were at high risk, while the Loess Plateau, middle and lower reaches 
of the Yangtze River and Gansu-Xinjiang were at low risk.

Crop production has increased rapidly over the past several decades but with significant variations across the 
 world1,2. Increases in crop production are mainly due to technological developments, infrastructure improve-
ments, and investment increases, such as increases in fertilizer investment, especially after 2003 in China, while 
climate conditions predominantly induce instability in crop production, which could explain 30% or more of 
the variations in the global crop  yield3–5.

China suffers from climate change and severe agro-meteorological disasters, including drought and  floods6. 
The precipitation distribution exhibits regional differences; the amount of precipitation varies dramatically from 
less than 100 mm/year to more than 1,000 mm/year7. It has been estimated that the proportion of the area in 
China affected by drought disasters will increase with global warming, from 15.4 to 44.00% by  21003. Crop 
production in China significantly depends on irrigation infrastructure, especially in poverty  areas8. All these 
problems and challenges place additional stress on food security throughout  China2.

The assessment of the risks of crop yield losses caused by climatic and socioeconomic conditions is crucial 
for sustainable agricultural production and inquiries regarding the uncertainty and risk associated with climate 
 change9,10. To date, extensive research has been conducted on crop production risks, mainly focusing on the 
content, methods, indicators, and technologies used for  assessment3,11,12. Due to the complexity of crop systems 
and yield  formation13,14, when analyzing the impacts of climatic and socioeconomic conditions on crop produc-
tion, most studies have focused on one or a combination of several meteorological factors (temperature, sunshine 
hours, and precipitation)12,15,16 or used crop-climate models to describe the responses of  crops17–20. However, the 
observed crop yield is the result of the interaction of nature, crop genotype, and socioeconomic components, such 
as the selected crop varieties and planned management  level21. The accuracy of an assessment could decrease due 
to the uncertainties in the physiological, ecological and parameterization  processes21 described in the model, 
and the failure of the model to include all of the interactions because of the complexity in yield-determining 
 processes22,23. Only some practices and crop systems can be simulated by models with confidence, rather than all 
of the crop production under the various socioeconomic or climatic  environments23. The yield loss risk, which is 
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estimated by the method proposed in IPCC 5th assessment reports, is determined by three indicators: exposure 
degree, sensitivity, and adaptive  capacity24. Many researchers have selected a method that directly quantifies the 
risk of crop yield loss based on historical time series yield  data25–27, which could integrate climatic conditions and 
socioeconomic components, as these factors are directly reflected in the data. Various indices, which include the 
coefficient of variation (CV) and yield reduction rate, have been commonly used to indicate the risk of  losses25,27. 
However, assessments are often conducted at a coarse resolution, such as at the provincial or district  level6, or at a 
high resolution over small  regions27,28, which has significant limitations because of the difficulty in accessing yield 
data at high spatial resolution. In addition, these studies focused on only the economic responses to sown area 
size or used the percentage of the affected areas to planting areas to show the degree of damage/exposure24,28–30, 
without considering the area effects (see the next paragraph for further explanation). These choices induced the 
lack of spatial comparability in the results.

Most of the farmland in China is distributed in the eastern region, including Heilongjiang, Hebei, Henan, 
and Shandong Provinces, which host large crop-planting areas in most  counties31. The planting scale of a county 
affects the yield loss risk result when field-based or farm-based observed yields are aggregated by county. For 
instance, the increase/decrease of the yield in some fields will offset the decrease/increase in other fields when 
the field yields are summed, and then the fluctuation or variation in yield will be underestimated. Moreover, 
the increasing crop area is threatening food security from increased competition for land for food  production23. 
Thus, the actual risk should be higher. In contrast, the provinces in western China, such as Qinghai Province, 
the Tibet Autonomous Region, and the Xinjiang Uygur Autonomous Region (Xinjiang), have relatively small 
crop-planting areas in most  counties31, where the estimated yield variation or loss risk could be higher than 
those of the counties with large planting areas. This suggests that the risk of small crop-planting areas could be 
overestimated in this area. Twenty-four counties (in western and eastern China) were randomly selected from 
the alphabetically ordered data of maize yield and planting area as a case study to test the hypothesis (Fig. 1). 
The CV of the annual yield per unit area of maize from 1981 to 2010 was calculated for each of the 24 counties 
to reflect the variation in maize yield. The Pearson’s pairwise correlation coefficient between planting area and 
CV was − 0.53, which indicates that there is a strong negative relationship between planting area and CV. The 
influence of planting area scale, which induced the overestimation or underestimation of yield loss risk, is referred 
to as the “area effect”. This study is the first to consider the area effect in the analysis of yield loss risk. The area 
effect will be removed or mitigated by introducing the indicator of the standardized planting area in our study.

This study aims to provide high-resolution information on the spatial distribution of yield loss risk based on 
a new comprehensive risk index, which was established by combining the reduction rate, CV, and probability of 
yield reduction after removing the area effect. The proposed index can improve the spatial comparability of risk. 
The results may be crucial for agricultural decision-support systems and climate change assessments.

Figure 1.  Coefficient of variation ( CV ) of the annual yield per unit area of maize for 24 counties with different 
planting areas from 1981 to 2010. The CV (red line with dots) is calculated by using Eq. (1). The planting area 
(black line with dots) is calculated by the temporal average. The Pearson’s pairwise correlation coefficient is 
− 0.53. MATLAB  software32 version R2016a (https ://cn.mathw orks.com/produ cts/matla b/) was used to draw the 
plot.

https://cn.mathworks.com/products/matlab/
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Result
Distribution of the coefficient of variation ( CV). The CV indicates the stability of maize production. 
A high CV means that the maize yield fluctuates greatly between years and that the yield is vulnerable to both 
climatic and socioeconomic conditions. The CV identified three regions with high variations covering (1) parts 
of Heilongjiang and Jilin Provinces and the eastern part of the Inner Mongolia Autonomous Region (Inner 
Mongolia); (2) the eastern part of zone VIII and western part of zone VI, including parts of Shanxi Province 
and the Ningxia Hui Autonomous Region; and (3) the western part of agricultural zone VIII (Fig. 2). The largest 
fluctuations occurred in the northern part of zone I, covering part of Heilongjiang Province, and small fluctua-
tions occurred in the southern part of zone I, covering part of Liaoning Province. In contrast, the eastern part of 
the zone III covering parts of Shandong Province, Jiangsu Province and Anhui Province, and the southwestern 
region in China, covering Sichuan Province and Chongqing city, have low CV values. A total of 38.61% of the 
counties in agricultural zone I correspond to the highest CV level, while 31.29% of the counties in agricultural 
zone VI correspond to the lowest CV level (Table 1). A total of 29.41%, 24.4%, 32.14% and 40.98% of the counties 
in agricultural zones II, III, V and VIII had moderate CV (see Table 1).

Figure 2.  Distribution of the CV for maize in the main production areas in China from 1981 to 2010. The data 
were processed in MATLAB  software32 version R2016a (https ://cn.mathw orks.com/produ cts/matla b/). The map 
was generated with ESRI ArcGIS  software33 version 10.2.1 (URL: https ://www.esri.com/softw are/arcgi s/arcgi 
s-for-deskt op).

Table 1.  Percentage of counties at each CV level to the total counties in the corresponding main agricultural 
zones.

Level CV I II III IV V VI VII VIII

Lowest 0.00–0.17 12.87 10.29 21.20 22.81 14.29 31.29 25.93 0.00

Lower 0.17–0.22 12.87 17.65 21.60 35.09 14.29 13.50 29.63 8.20

Moderate 0.22–0.28 16.83 29.41 24.40 14.04 32.14 24.54 18.52 40.98

Higher 0.28–0.33 18.81 14.71 19.60 12.28 25.00 15.34 14.81 22.95

Highest 0.33–0.63 38.61 27.94 13.20 15.79 14.29 15.34 11.11  27.87

https://cn.mathworks.com/products/matlab/
https://www.esri.com/software/arcgis/arcgis-for-desktop
https://www.esri.com/software/arcgis/arcgis-for-desktop
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Distribution of risk index ( I
R

). The risk of maize yield loss increases with IR , which means that the yield 
is vulnerable to climatic conditions. The two regions that were identified to exhibit a high risk covered (1) parts 
of Heilongjiang and Jilin Provinces and the eastern part of Inner Mongolia and (2) the western part of Xinjiang 
(Fig. 3). Agricultural zones I, II and IV had 38.61%, 57.35% and 24.56% of their counties in the highest IR level 
(see Table 2). Agricultural zones V and VII had 32.26% and 30% of their counties in the high IR level. Agri-
cultural zone VI had more counties with the lowest risk, low risk, and moderate risk than the other zones (see 
Table 2).

The comparison of Figs. 2 with 3 indicates that there are some differences between the spatial distributions of 
the CV and IR . The reason for these differences might be that IR is related to only climatic conditions such as pre-
cipitation, temperature, sunshine hours and soil type. However, the CV is related to the local socioeconomic con-
ditions (technological developments, infrastructure and investment level) in addition to the climatic conditions.

Performance of two comprehensive risk indices ( CRI and ICRI). The risk of maize yield loss increases 
with the comprehensive risk index. A high value of the comprehensive risk index means that the maize yield 
is dramatically impacted by both climatic and socioeconomic conditions. Figures 4 and 5 show the distribu-
tions of the comprehensive risk index without considering the planting area effect and after removing the area 
effect, respectively. After the effect was removed, the improved comprehensive risk index (ICRI) identified three 

Figure 3.  Distribution of the risk index ( IR ) of maize for the main production regions in China from 1981 to 
2010. The data were processed in MATLAB  software32 version R2016a (https ://cn.mathw orks.com/produ cts/
matla b/). The map was generated with ESRI ArcGIS  software33 version 10.2.1 (https ://www.esri.com/softw are/
arcgi s/arcgi s-for-deskt op).

Table 2.  Percentage of counties at each level of IR to the total counties in the corresponding main agricultural 
zones.

Level IR I II III IV V VI VII VIII

Lowest 0–0.012 8.91 7.35 21.60 22.81 19.35 19.63 16.67 18.46

Low 0.012–0.015 9.90 10.29 29.60 17.54 16.13 31.90 26.67 15.38

Moderate 0.015–0.021 16 7.35 20.80 11.40 12.90 25.15 20.00 35.38

High 0.021–0.047 25.74 17.65 16.00 23.68 32.26 17.18 30.00 20.00

Highest 0.047–0.149 38.61 57.35 12.00 24.56 19.35 6.13 6.67 10.77

https://cn.mathworks.com/products/matlab/
https://cn.mathworks.com/products/matlab/
https://www.esri.com/software/arcgis/arcgis-for-desktop
https://www.esri.com/software/arcgis/arcgis-for-desktop
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regions with high risk covering (1) parts of Heilongjiang and Jilin Provinces and the eastern part of Inner Mon-
golia, (2) parts of Hebei, Shandong, Henan and Anhui Provinces, and (3) the western central part of zone VI 
(Fig. 5). More counties in zones I, III, and III were at high risk after the area effect was removed, while the risk 
in zone VIII decreased dramatically, especially in the western (Xinjiang) and eastern (Hetao area) parts of zone 
VIII (Figs. 4 and 5). Across China, the degree of yield loss risk increased gradually from south to north and from 
east to west (Fig. 5). As shown in Table 3, 62.38%, 25.37% and 25.6% of the counties in agricultural zones I, II 
and III had the highest ICRI , respectively. A total of 37.72%, 58.62% and 50.82% of the counties in agricultural 
zones IV, V and VII had the lowest ICRI . A total of 27.6% and 34.62% of the counties in agricultural zones III 
and VII, respectively, had a moderate ICRI.

Discussion
There are many different methods of crop risk  assessment17,24–27. Quantifying the risk by the index calculated 
from historical time series yield data is often  used25–27. Many indices, including the CV, reduction rate and prob-
ability of yield reduction, and a comprehensive index combining several indices, can indicate the fluctuation in 
crop  yield25,27,28. However, the planting area of a county affects the risk assessment when field-based observed 
yields are aggregated at the county scale. As a consequence, the risk is underestimated or overestimated. In this 
study, the indicator of standardized planting area was introduced into the comprehensive risk index to remove 
this effect and improve the spatial comparability of the results.

In this research, natural and socioeconomic conditions were considered in the assessment of maize produc-
tion risks. IR is related to only climatic conditions such as precipitation, temperature, sunshine hours and soil 
type, and the CV indicates that the fluctuations between years are related to both local socioeconomic condi-
tions (technological developments, infrastructure and investment level) and climate conditions, while the ICRI 
integrates the CV , the average reduction rate and IR after removing the area effect. The ICRI indicates the risk 
due to both climatic and socioeconomic conditions.

In agricultural zones I and II, including some parts of Heilongjiang, Jilin and Liaoning Provinces, and the 
eastern part of Inner Mongolia (the Inner Mongolia Plateau), there is a region with high CV , IR and ICRI values, 
indicating that the maize yield in these areas varies considerably between years and that those areas are prone to 
disasters and changes in the socioeconomic level. Yield fluctuations increase from the south to the north in zone 
 I34,35. This result occurs because the regions in these areas are rain-fed dryland cropping areas that are entirely 
dependent on limited and erratic  rainfall30. The percentage of annual effective irrigated area to the sown area 
in Jilin and Heilongjiang Province accounted for no more than 26%, which was less than the 50th percentile of 

Figure 4.  Distribution of the comprehensive risk index (CRI) of maize in the main production regions from 
1981 to 2010 without removing the area effect. The data were processed in MATLAB  software32 version R2016a 
(https ://cn.mathw orks.com/produ cts/matla b/). The map was generated with ESRI ArcGIS  software33 version 
10.2.1 (https ://www.esri.com/softw are/arcgi s/arcgi s-for-deskt op).

https://cn.mathworks.com/products/matlab/
https://www.esri.com/software/arcgis/arcgis-for-desktop
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the proportion of all provinces (Fig. 6). A significant increase in the maize water requirements will occur in the 
future because precipitation has been continually decreasing, especially during the maize growing  season7,36,37, 
while only approximately 6% of this region is  irrigated38. Thus, drought is the greatest agro-meteorological 
disaster that occurs with the highest frequency, covers the largest area, and causes the most considerable agri-
cultural production losses in this  area30. The degree of drought disaster risk increases gradually from south to 
north and from east to  west29, similar to the distribution of the yield loss risk. The areas that already correspond 
to a high yield loss risk will be significantly damaged by climate change. Therefore, the need for adjustment and 
management is urgent.

The ICRI increased in most counties in zone III after the area effect was removed. The distribution of the ICRI 
is consistent with the distribution of the drought disaster risk, which indicates a high risk in most areas in zone 
III, and the areas with the high risk and the highest risk accounted for more than 60% of the study  area12,30. The 
high-risk areas of summer maize yield loss in Henan Province are distributed in the south and northwest parts 
of the  province39,40, which is consistent with our results (Fig. 5, orange to red areas in the south part of zone III, 
north part of zone V, and southeast part of zone IV).

The yield loss risk increased significantly for some counties in zone VI, as indicated by the ICRI , because most 
areas of zone VI are rain-fed regions with a low proportion of effective irrigated area (Fig. 6). This zone is prone 

Figure 5.  Distribution of the improved comprehensive risk index ( ICRI ) of maize in the main production 
regions from 1981 to 2010 after removing the area effect. The data were processed in MATLAB  software32 
version R2016a (https ://cn.mathw orks.com/produ cts/matla b/). The map was generated with ESRI ArcGIS 
 software33 version 10.2.1 (https ://www.esri.com/softw are/arcgi s/arcgi s-for-deskt op).

Table 3.  Percentage of counties at each ICRI level to the total counties in the corresponding main agricultural 
zones.

Level ICRI I II III IV V VI VII VIII

Lowest 0–0.016 6.93 10.45 6.40 37.72 58.62 26.38 3.85 50.82

Low 0.016–0.024 6.93 22.39 14.40 28.07 13.79 28.83 38.46 32.79

Moderate 0.024–0.034 10.89 22.39 27.60 18.42 13.79 22.09 34.62 8.20

High 0.034–0.05 12.87 19.40 26.00 12.28 10.34 18.40 19.23 8.20

Highest 0.05–0.311 62.38 25.37 25.60 3.51 3.45 4.29 3.85 0.00

https://cn.mathworks.com/products/matlab/
https://www.esri.com/software/arcgis/arcgis-for-desktop
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to spring and summer drought and heat stress, especially in the central and southwestern Sichuan  Basin6,41,42, 
and the agricultural infrastructure is  weak30.

The yield loss risk decreased in most counties in agricultural zone VIII. The sunshine and significant day/
night temperature differences in this zone were suitable for maize  growth43, although the annual precipitation 
was less than 400 mm/year (only 296 mm/year from 1981 to 2000) (Table 4). Thus, maize could not be grown 
in this area without  irrigation44,45. In fact, irrigation is extensively used to relieve water shortages in these areas. 
The percentages of effective irrigated area to sown area accounted for 91.01% and 33.64% in Xinjiang and Inner 
Mongolia, respectively; these results are greater than the 50th percentile of the proportion of all provinces (Fig. 6). 
Thus, maize production in the western part (Xinjiang Province) and eastern part of zone VIII (Hetao area) had 
a low yield loss  risk6,46. In turn, the IR was higher in these areas than in other areas, which was consistent with 

Figure 6.  Distribution of the proportion of effective irrigated area to sown area at the provincial level. The data 
were processed in MATLAB  software32 version R2016a (https ://cn.mathw orks.com/produ cts/matla b/). The map 
was generated with ESRI ArcGIS  software33 version 10.2.1 (URL: https ://www.esri.com/softw are/arcgi s/arcgi 
s-for-deskt op).

Table 4.  The annual average precipitation (P, mm), annual average temperature (T, ℃) in the 1981–2000 
period, number of maize-growing counties (N), number of main maize-growing counties  (Nm), and percentage 
(%) of  Nm to N in nine main agricultural zones. P and T in each zone were calculated by the spatial and 
temporal averages of the daily temperature and precipitation data.

ID Name P T N Nm Percentage

I The Northeast China 593 5.70 118 101 85.59

II Inner Mongolia and Along the Great Wall 465 9.60 101 68 67.33

III Yellow-Huai-Hai Zone 713 13.84 258 250 96.90

IV Loess Plateau 449 10.77 172 114 66.28

V Middle and Lower Reaches of Yangtze River 1,326 17.12 343 31 9.04

VI The Southwest China 1,044 15.90 305 163 53.44

VII The South China 1543 22.40 133 30 22.56

VIII Gansu-Xinjiang 296 7.95 97 65 67.01

IX Qinghai-Tibet 397 6.70 53 1 1.89

https://cn.mathworks.com/products/matlab/
https://www.esri.com/software/arcgis/arcgis-for-desktop
https://www.esri.com/software/arcgis/arcgis-for-desktop
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the trend of the average degree of drought  hazard34, while the actual yield loss risk was lower, which indicated 
that the dependence on management such as irrigation cannot be underestimated.

Wind has played a significant role in maize yield  loss39,47. Wind-induced lodging reduces the grain-filling rate 
and decreases the kernel  weight47,48. In addition, the light penetration through the upper layer of vegetation is 
reduced by  lodging49. It can decrease the ear number and kernel number per  ear48,50. Lodging also can increase 
the yield loss of mechanical  harvest50,51. Wind effects were not analyzed in our study but should be studied in 
the future.

conclusion

1. The area effect is the limiting factor for the spatial comparability of risk assessment because the planting 
area of a county affects the risk assessment when field-based or farm-based observed yields are aggregated 
by county.

2. High yield loss risk indicated by the ICRI occurs in (1) Northeast China, covering parts of Heilongjiang 
and Jilin Provinces and the eastern part of Inner Mongolia, (2) the Yellow-Huai-Hai Zone covering parts 
of Hebei, Shandong, Henan and Anhui Provinces, and (3) Southwest China, including the western central 
part. The Loess Plateau, middle and lower reaches of the Yangtze River and Gansu-Xinjiang are at low risk.

3. The distribution of yield loss risk after removing the area effect is consistent with the distribution of disaster 
risk (e.g., drought) and socioeconomic components (e.g., irrigation level); thus, the ICRI is reasonable. This 
index can be used to accurately compare the risk of maize yield loss in different areas.

Data and methods
Agricultural data and meteorological data. This study used the total yield (kg) and planting area (ha) 
of maize for 2,247 counties in China from 1981 to 2010; these data were collected by the Ministry of Agriculture 
and Rural Affairs of the People’s Republic of China. The dataset contains summer maize and spring maize, while 
not all of the counties planted both types of maize. The yield per unit area was determined by the planting area 
and total yield. The counties used in this study were required to have at least fifteen records over the 1981–2010 
period. The planting area sizes ranged from 2 ha in Lang County, Tibet, to 199,043 ha in Nongan County, Jilin 
Province.

The data of annual effective irrigated area and annual total sown area at the provincial level from 1981 to 2010 
were collected by the National Bureau of Statistics (https ://data.stats .gov.cn/); however, data were only available 
from 1996 to 2010 for Chongqing City.

The daily temperature and precipitation data from 740 stations during 1981–2000, which were collected by 
the China Meteorological Administration, were used.

Study area. The study area included the main maize production regions in mainland China. The annual 
total yield in each county was calculated by the temporal average. The main production counties were those with 
an annual average total yield greater than the 50th percentile of the annual average total yield of all the counties. 
Finally, 823 counties were selected for analysis (in light green to dark blue areas, Fig. 7). There are nine main 
agricultural zones in mainland  China52. The annual average precipitation (P, mm) and temperature (T, ℃) in 
each zone were calculated by the spatial and temporal averages of the daily temperature and precipitation data. 
The number of maize-growing counties (N), number of main maize-growing counties  (Nm), and percentage (%) 
of  Nm to N in each zone are listed below (Table 4).

In this study, the observed maize yield per unit area (kg/ha) was used to obtain the CV. The yield per unit area 
time series was decomposed into three components by using the linear moving average method: the meteorologi-
cal yield, the trending yield (or technical yield in some studies), and the  error53,54. Ultimately, the meteorological 
yield was further processed to obtain the relative meteorological yield, in which the negative values were taken 
as the object to obtain the probability of reduction, risk index, and ICRI.

Coefficient of variation ( CV). The CV of yield per unit area indicates the variations in yield caused by 
climatic and socioeconomic conditions. The equation is as follows:

where Yi is the i th observed yield per unit area (kg  ha−1); Y is the mean of Yi during the period 1981–2010; and 
n is the total number of observations, which is at least 15.

Meteorological yield ( Y
w

 ) and trending yield ( Y
t
). The observed maize yield per unit area is impacted 

by natural conditions (temperature and precipitation) and socioeconomic components (technological progress 
and infrastructure improvements). The yield can be divided into three parts: trending yield ( Yt ), meteorological 
yield ( Yw ) and random output/error ( ε ). The equation is as follows:

where Y is the annual observed maize yield per unit area. Since the random yield ε is quite small, it can be 
ignored. Furthermore, the simplified Eq. (1) is:

(1)CV =

√

√

√

√

1

n− 1
×

n
∑

i=1

(Yi − Y)

(2)Y = Yt + Yw + ε

https://data.stats.gov.cn/
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The approach used to simulate the trending yield has an assumption that no marked technological progress 
took place in the time step  chosen55. Although there is no definite evidence to show the time interval of the 
application of new crop varieties or technologies, the Five-Year Plan in China aims for economic growth and 
technological development. The period of research data (1981–2010) contains six Five-Year Plans, of which 
1981 is the start of the 6th Five-Year Plan and 2010 is the end of the 11th Five-Year Plan. In addition, the trend-
ing yield and meteorological yield calculated with the 5-year linear moving average method met three criteria 
that determine trend  models56, and this method can smooth irregularities and high-frequency variations in the 
 trends28. Thus, the five-year linear moving average method was employed to simulate the trending yield. The 
time series of Y was divided into sequence segments according to the time step (k), which is 5 in this study. The 
number of segments is n− k + 1 . The linear regression for each segment ( j ) is as follows:

where Yj(t) is the tth trend yield in segment j , kj and bj are estimated from a set of Y and t in segment j with the 
least squares method, and t is the rank index of each observed year. There can be more than one simulated value 
for each t in segment 2 to n− k + 1 . Finally, the trending yield of each t is a moving average:

(3)Y = Yt + Yw

(4)Yj(t) = bj + kj × t

(5)t =



















1, 2, 3, . . . , kifj = 1
2, 3, 4, . . . , k + 1ifj = 2

...
n− k + 1, n− k + 2, n− k + 3, . . . , nifj = n− k + 1

(6)Yt(t) = average





n−k+1
�

j=1

Yj(t)



t = 1, 2, 3, . . . , n

Figure 7.  Location of 740 weather stations and distribution of the annual average total yield of maize at the 
county level in mainland China. The main production counties had an annual average total yield greater than 
the 50th percentile of the annual average total yield of all counties (light green to dark blue areas). The data were 
processed in MATLAB  software32 version R2016a (https ://cn.mathw orks.com/produ cts/matla b/). The map was 
generated in ESRI ArcGIS  software33 version 10.2.1 (https ://www.esri.com/softw are/arcgi s/arcgi s-for-deskt op).

https://cn.mathworks.com/products/matlab/
https://www.esri.com/software/arcgis/arcgis-for-desktop
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where Yt(t) is the tth trending yield.

where Yw(t) Y(t) are the tth meteorological yield and actual yield per unit area, respectively.

Relative meteorological yield ( Y
r
). The Yr values are comparable since they are not impacted by the 

socioeconomic  component15. The corresponding equation is as follows:

where a negative Yr(t) is defined as the tth reduction  rate3.

Average yield reduction rate ( R). The average yield reduction rate ( R ) was determined by the negative 
value of Yr(t) . The corresponding equation is as follows:

where n is the number of negative values of Yr(t).

Risk index of yield loss ( I
R

). IR results from the integration of different levels of reduction rates ( Ri ) and 
their probability of occurrence ( Pi ). The greater the value of IR is, the greater the risk of yield losses.

Because the climate factors that affect crop yield exhibit a normal distribution, it is argued that the Yr series 
should also exhibit a normal distribution. The normal distribution test was performed on Yr to verify this assump-
tion. Due to the small sample size, the Lilliefors goodness-of-fit test was chosen. For a few samples that did not 
fit the normal distribution, the normal conversion was conducted by the logarithmic method.

There is no fixed standard for the division of the range of Ri . The China national standard (GB/T24438.1-
2009) roughly divides Ri into three ranges, 0.1–0.3, 0.3–0.8, and 0.8–1, to indicate three levels of damaged crop 
area. The threshold values of Ri for identifying different levels of drought (mild, moderate, severe, and extreme 
drought) are 0.1, 0.2, and 0.357. A value of 0.05 was used to determine whether the crop was impacted by a 
 disaster58. Based on the above threshold, Ri was divided into four ranges: (0, 0.05] , (0.05, 0.15] , (0.15, 0.35] and 
(0.35, 1] . The equation for IR is as follows:

Comprehensive risk index of yield loss ( CRI). The CRI combines CV , R , and IR . A larger CRI means a 
greater risk of losses. Due to the inconsistent units of the four variables, standardization is first performed using 
the extreme difference method. The standardized CV , R , and IR were calculated using the following equation:

where x is CV/R/IR , and xs is the standardized x.
CRI is the comprehensive risk index without considering the area effect.

where CVs , Rs and IRs are the standardized versions of CV , R , and IR . The weights of these three indicators are 
the  same28,58,59.

Improved comprehensive risk index ( ICRI ) of yield loss. R , CV and IR exhibit close positive correla-
tions with the yield loss risk, while planting area size ( S ) exhibits a negative correlation with this risk because the 
increase/decrease in the yield of a field will offset the decrease/increase in another field in the same region. The 
ICRI is the comprehensive risk index after removing the planting area effect. The main maize growing counties 
were divided into lowest-, low-, moderate-, high- and highest-risk areas.

The ICRI equation is as follows:

where SS is the standardized planting area size calculated using Eq. (11).

Data availability
All the data analyzed in this study are included in this published article. The original data are available from the 
corresponding author upon reasonable request.

(7)Yw(t) = Y(t)− Yt(t)

(8)Yr(t) =
Yw(t)

Yt(t)

(9)R = −
1

n
×

n
∑

i=1

Yr(t) when Yr(t) < 0

(10)IR =

n
∑

i=1

(Ri × Pi)

(11)xs =
x −min(x)

max(x)−min(x)

(12)CRI =
1

3
× (Rs + CVs + IRs)

(13)ICRI =
1

3
× (Rs + CVs + Is)×

1
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