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open software platform 
for automated analysis 
of paper‑based microfluidic devices
Rayleigh W. parker1,2, Daniel J. Wilson1,2 & charles R. Mace1*

Development of paper‑based microfluidic devices that perform colorimetric measurements requires 
quantitative image analysis. Because the design geometries of paper‑based microfluidic devices are 
not standardized, conventional methods for performing batch measurements of regularly spaced 
areas of signal intensity, such as those for well plates, cannot be used to quantify signal from most 
of these devices. To streamline the device development process, we have developed an open‑source 
program called colorScan that can automatically recognize and measure signal-containing zones from 
images of devices, regardless of output zone geometry or spatial arrangement. This program, which 
measures color intensity with the same accuracy as standard manual approaches, can rapidly process 
scanned device images, simultaneously measure identified output zones, and effectively manage 
measurement results to eliminate requirements for time‑consuming and user‑dependent image 
processing procedures.

Paper-based microfluidic devices enable measurement capabilities for a number of fields, from clinical 
 diagnostics1 to environmental  management2 and food quality monitoring,3 by employing a variety of detection 
strategies with different signal output formats. These self-contained analytical systems are typically fabricated 
from paper patterned with hydrophobic barriers, made from materials such as wax,4 photoresist,5 glue,6 or 
PDMS.7 Patterned paper layers can be  stacked8 or  folded9 to create three-dimensional fluidic networks, which 
enable measurement of target analytes by automating complex liquid handling protocols. Depending on the 
selected signal formation strategy and analysis method, paper-based microfluidic devices can provide qualitative, 
semi-quantitative, or quantitative  results10..

Paper-based platforms that employ electrochemical,11 fluorescence,12 and  chemiluminescence13 detection 
strategies enable quantitative measurements, but generally require secondary equipment, such as a portable 
 potentiostat14 or handheld UV source.15 To enable measurements without any requirements for specialized 
external equipment, many developers design devices using colorimetric detection strategies. Qualitative meas-
urements (i.e., on/off sensors) may be interpreted by visual inspection,8,16 and readout zones may be compared 
to printed read  guides1 or designed to provide distance-based  outputs17–20 to enable semi-quantitative measure-
ments. Image analysis is used to characterize assay  performance21 during the device development process, but can 
also be performed at the point-of-use by smartphone  applications22 to provide quantitative measurements while 
reducing user training requirements.23 These applications may operate using algorithms that are specific to the 
geometry of the device being analyzed or from unpublished code that is not available for modification,24 requiring 
developers of paper-based devices to develop their own software tools or rely on manual image analysis protocols.

As a critical component of paper-based assay development, especially for qualitative and semi-quantitative 
devices, image analysis facilitates investigation of device design criteria that determine how a user may interpret 
developed signal. During the prototyping process, device readout zones are typically imaged using a flatbed scan-
ner or camera, and the acquired images are analyzed to inform device fabrication and assay conditions to provide 
sufficient analytical performance of the device. Images of device output zones are often measured using free and 
open-source tools (e.g.,  ImageJ25,  Fiji26) that support user-developed  plugins27,28 for application-specific analyses. 
Although numerous plugins exist, available options do not facilitate streamlined analysis of paper-based output 
zones of different colors and geometries. While manual approaches for image analysis of colorimetric signals 
have broad utility for general measurement needs across many fields, application of these tools for analysis of 
paper-based devices is labor-intensive, user dependent, and time consuming. Our program effectively packages 
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the capabilities of existing general color analysis techniques and applies them towards solving the specific chal-
lenges facing the interpretation of paper-based assays (e.g., non-standardized zone numbers and geometries).

For example, to analyze a paper-based output zone in ImageJ, a user must first define a region of interest 
(ROI) for analysis (e.g., using the “Oval” tool for a circular zone). This region is typically defined on a magnified 
view of a high-resolution (e.g., 600–800 dpi)8,29 image. At high magnification, it can be difficult for a user to 
differentiate between the signal-containing area and surrounding material (e.g., hydrophobic wax barrier). To 
avoid introducing bias in measured signal intensities, this region must also be centered on the output zone so 
that the selected area does not contain any undesired surrounding material and adequately captures any non-
uniform distribution of signal. When the ROI has been placed in the desired location, the output zone may be 
analyzed by a selected method (e.g., “RGB Measure”)30. After a single measurement is complete, the ROI can be 
moved to or recreated on the next output zone so that the measurement process can be repeated. The area and 
placement of this region must be consistent throughout the analysis process so that measurements are consist-
ent across output zones. Measured values can then be copied or exported for further statistical analysis. The 
reproducibility of these results may vary by software user, as size and placement of the ROI are both manually 
defined for individual measurements.

Because the device development process typically requires analysis of replicate results across many condi-
tions, potentially necessitating hundreds of devices, image analysis and data processing can be substantially 
labor-intensive and time-consuming for device developers. For complex devices, these requirements can inhibit 
broad screening of fabrication or use conditions (e.g., channel geometry, reagent storage, sample volume). Auto-
mated image processing can improve the time requirements and precision of measured results for colorimetric 
paper-based assays, but existing ImageJ plugins and available tools are not compatible with device-specific design 
 geometries31 and spatial arrangements of color localization in most paper-based devices.

Existing ImageJ plugins, such as “ReadPlate”32, enable automated analysis of images of well plates with stand-
ard configurations (e.g., 96-well plates). This plugin streamlines analysis by allowing the user to define a grid 
of circular regions of interest that is superimposed on the well plate image. The grid is created by defining 
the number of rows and columns in the well plate, the pixel coordinates of bounding wells (e.g., wells A1 and 
H12), and the diameter of each analysis spot. Because paper-based devices are designed in custom, non-linear 
 geometries33 according to their intended performance and function, their output zones typically do not follow the 
spatial arrangement of commercial liquid handling tools. Other ImageJ plugins, including “Template Matching”34 
and “Template Matching and Slice Alignment”35, can perform automated recognition of desired image features 
based on a user-generated reference template or selection. These tools are designed to recognize the extent of 
agreement between a reference template and a larger image and may not be sufficient for recognizing multiple 
shapes or colors within a single image.

Since the development of early paper-based devices, cellular phones have been used to enable quantitative 
analysis of colorimetric  signal21. As smartphone technologies and quantitative measurement  accessories36,37 have 
advanced over time, many groups have written custom applications to quantify signal from paper-based devices 
at the point-of-care22,38–42. Smartphone image analysis applications are typically tailored to the geometries of 
individual paper-based  assays43 and cannot be used to measure output zones that differ from those of the origi-
nal device. In many cases, the positions of test zones are detected using registration marks patterned within the 
paper  device22,44. These recognition algorithms do not independently identify the positions of signal formation 
and instead analyze known areas of signal formation. Additionally, the source code for these applications is not 
always published with scientific  manuscripts24, and the resulting lack of modifiable open-source options requires 
developers of paper-based devices to either (i) create their own analysis software or (ii) rely on existing inefficient 
options throughout the assay development process.

To address this shortcoming, we have developed a free, open-source software called ColorScan that enables 
streamlined, automated analysis of paper-based microfluidic devices. This Python-based program automatically 
identifies and measures signal-containing zones of any geometry or color from images of paper-based devices. 
Our tool provides a variety of quantitative measurement options based on user-specified criteria and effectively 
manages data, even providing cropped images of output zones paired with measured results to facilitate figure 
creation. To verify the performance of this software, we compared the consistency and time requirements of our 
tool to manual measurements completed using ImageJ. Our software, which has the potential to simplify the 
time and labor-intensive process of quantitative image analysis for paper-based devices, is freely  available31,45,46, 
as an easy-to-use Python program to facilitate widespread use and further improvement by other developers of 
colorimetric sensors.

experimental design
Identification of desired software features.  We designed ColorScan to automate the workflow of our 
image analysis process, which consists of three main steps: (i) selection of a region of interest, (ii) color intensity 
measurement within the selected region, and (iii) management of measured results. When a paper-based device 
is imaged to facilitate analysis, arbitrary placement or rotation of the device on the scanner bed or within the 
camera’s field of view can lead to variability of output zone position across replicate devices. Manual selection 
of analysis regions can be performed regardless of zone position, but is time consuming, while patterned reg-
istration marks for automated analysis programs place design constraints on device developers. We designed 
ColorScan to automatically recognize colored regions of an image based on hue (i.e., the color or shade of the 
output zone), saturation (i.e., amount of gray), and value (i.e., the brightness of the output zone). This recogni-
tion step is not dependent on the spatial location of colored pixels within the image file, enabling automated 
analysis of devices imaged in any orientation.
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Manual analysis protocols, in addition to being labor-intensive and user-dependent, usually only allow an 
image to be measured within a single color space. Device images are typically acquired in the RBG color space, 
requiring conversion to determine if another color space (e.g., HSV, CIELAB)47,48 is more sensitive to the signal 
formed by a particular sensor or more intuitive for interpretation by visual  inspection49. Standard image analy-
sis approaches also require measurement results to be manually tracked and compiled into spreadsheets for 
processing. We developed ColorScan to not just automate analysis in multiple color spaces, but also effectively 
manage results by organizing them in a common location (i.e., a .csv file) for direct comparison during the assay 
development process. To streamline comparison of measurement results to their respective output zones, as well 
as process device images for presentation or publication, we configured ColorScan to crop and save an image of 
each measured output zone. The file name of each image is labeled so that it may be paired with its numerical 
measurement results.

computational analysis approach. To make our software broadly accessible and readily modifiable, we 
chose to develop it using  Python50, a programming language that is used in a wide range of fields, has a large 
assortment of libraries, and is compatible with a number of third-party modules. We used  OpenCV51, an exten-
sive open-source computer vision library, in conjunction with  NumPy52, an array manipulation and numerical 
operation library, to perform image processing tasks. We also developed a graphical user interface, using the 
Python TkInter  library53, to ensure that ColorScan would be accessible to a broad user base without requiring 
device developers to be experienced in coding. The source script for our Python-based program is available 
for download at our group’s GitHub  page54 and we have included a detailed User Guide document, including 
instructions for downloading and using Python, as part of the Supplementary Information.

The first step in our image analysis protocol (Fig. 1A) is identification of the colorimetric signal contained by 
the output zones of a paper-based device. We designed ColorScan to automatically recognize the color of output 
zones against the contrasting color of the patterned hydrophobic barrier, which is black wax in our devices. The 
software masks the area around the zones by temporarily converting the image to the HSV (i.e., Hue, Satura-
tion, Value) color-space, and excluding pixels below minimum saturation and value thresholds defined by the 
user. This masking step produces a binarized image (Fig. 1B), in which color-containing pixels within the device 
output zones are identified for further refinement.

To reduce the jaggedness of the masked output zone edges, ColorScan performs a box blur (Fig. 1C) based on 
a user-defined kernel size. Next, the software runs OpenCV’s contour-identification algorithm, which is based 
on work by Suzuki and  Abe55, on the binarized image to define the boundaries of the areas where color intensity 
measurements may be performed (Fig. 1D). In order to cut down on computation time, we set an arbitrary 
cutoff for contours containing fewer than five pixels in area. This threshold effectively determines the minimum 
feature size that ColorScan can detect. The open-source nature of the code, however, allows the user to modify 
this threshold to suit their needs. The maximum feature size is, in principle, the size of the image itself. At this 
point, the user selects a reference contour to facilitate identification of similar objects for analysis. ColorScan 
compares the sizes (i.e., pixel area contained within the border) and shapes, defined by the Hu image  invariants56, 
of the reference contour and all of the identified contours based on thresholds set by the user in the graphical user 
interface. In this comparison, the OpenCV shape-matching function computes the sum of absolute differences 
between each of the seven Hu invariants for the two contours under comparison (i.e., the reference contour and 
another contour), and produces a score indicating how similar the two contours are. Contours with scores within 
the user-defined thresholds are selected for batch analysis (Fig. 1E).

For device designs that use a colored hydrophobic barrier feature to provide contrast for visual interpretation 
of assay  results8,57, the software may recognize these features as part of the output zone. To ensure that inclu-
sion of barrier edge pixels does not bias measurement results, we developed a zone refinement tool that allows 
the user to geometrically constrain the reference contour to exclude undesired image features. This constraint 
needs only be manually performed on the reference contour and is applied to all similar contours before analysis. 
This feature also allows the user to select regular polygonal geometries, in addition to common circular output 
zones. Performing this step provides direct control of the exact size and position of each analysis region in a 
batch measurement (Fig. 1F).

Once the user is satisfied that all of the output zones—and only the output zones—have been selected, the 
software will measure all of the pixels within each contour. Results can be presented as average color intensities in 
up to three color spaces, including RGB, HSV, and CIELAB, and also as histograms of RGB intensities, depend-
ing on user-defined preferences. Measurements are exported to a .csv file and may be compared to saved images 
of output zones, which are automatically cropped from the full image based on the bounding rectangle of each 
output zone contour and saved with their associated index identifier to facilitate data curation and presentation.

Design of software and graphical user interface.  We designed ColorScan to have a simple graphical 
user interface that would streamline the image analysis process and improve consistency across users. The first 
step in using ColorScan is selecting an image. Selecting an image using the “Select Image” button displays it in 
the main window of the software (Fig. 2A). The program supports most image file types, the full list of which 
can be found in the OpenCV  documentation58. The image in the main ColorScan window updates as options in 
the Analysis Menu window (Fig. 2B) are adjusted. This window is opened with the “Analysis” button after image 
selection, and its features are spatially arranged, from top to bottom, in the sequence that they should be used to 
complete image analysis. At the beginning of the analysis process, only the masking controls are available in the 
Analysis Menu window. Additional features become available as each step in the analysis sequence is completed.

First, the value slider is used to mask the area surrounding the output zones and highlights pixels above a 
selected brightness threshold. Next, the saturation slider is used to refine the masked areas by filtering unsaturated 
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pixels (i.e., those close to grayscale) to show only pixels containing color. After identification of the output zones, 
the blur options can be used to smooth the mask edges and reduce the granularity of the areas to be analyzed. 
The “Dilate” and “Erode” buttons expand and shrink the masked and blurred areas, respectively, allowing for 
further refinement before selection of the output zone contours. Masking and blurring parameters can be saved 
into a named preset, which can be loaded during subsequent analyses to facilitate rapid, consistent analysis of 
assay replicates.

Once masking parameters include all of the desired output zones, the user can find the contours of those 
zones using the “Find Contours” button. This will select all color-containing regions in the image, from which 
the user may select a reference contour by clicking on it. The “Find Similar Contours” button selects all regions 
that are similar in size and shape to the reference contour for analysis. The Size Tolerance and Shape Tolerance 
values should be adjusted so that only the device output zones are highlighted. After these zones are selected for 
analysis, clicking the Refine Zones button will open a separate window that enables geometric restriction of the 
analysis area within each output zone.

This tool is useful for cases where undesired pixels from the hydrophobic barrier edge (e.g., black wax) or a 
patterned contrast feature (e.g., colored rings) are selected by the masking and contour finding steps but should 
not be included in the area that is being measured. To ensure that only signal from the paper-based assay is 
measured, the tools in the Refine Zone window allow the user to constrain the position, shape, and area of the 
analysis region within the reference contour. This analysis geometry is applied to all identified similar contours 
to provide consistent measurement area and shape across all analysis regions. It also allows for better handling of 
potential problem-cases where there is insufficient contrast between the color-containing regions of interest (i.e., 
the test zones) and the background color from the device (e.g., colored wax barriers or the paper itself), which 

Figure 1.  ColorScan image analysis protocol. (A) Scanned image of paper-based microfluidic device output 
zones filled with dyes. (B) A binarized image generated using value and saturation masking thresholds identifies 
areas of the image that contain colorimetric signal. (C) The masked image is blurred to smooth zone boundaries 
before contour detection. (D) A contour identification step highlights the borders of all white areas within 
the image (magenta). A reference contour (yellow) can be selected for identification of similar contours. (E) 
Identified contours that are sufficiently similar in size and shape to the reference contour are highlighted in light 
blue. (F) An analysis region defined within the reference contour is applied to all similar contours to support 
batch measurement of identical analysis regions. Scale bar is 4 mm.
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may occur when the assay produces colors that are either very dark (low Value) or very pale (low Saturation). 
By refining the zone area, the user may cut out regions potentially erroneously included in the analysis region. 
This process can be optimized for a specific device geometry and then saved as a preset to facilitate objective 
and reproducible measurements across multiple images. These techniques, in combination with judicious device 
design features (e.g., colored rings printed around output zones to improve contrast) make consistent contour 
identification possible.

Importantly, the positional controls in the Refine Zone window (X Displacement, Y Displacement, Angle) 
can be used to define the analysis region at the end of a paper channel (Fig. 3). Many device  designs21,22,57 con-
tain detection zones at the ends of paper channels used for fluid distribution. While the white or grey color of 
these channels can be difficult to distinguish from colorimetric signal during masking steps in ColorScan, our 
zone refinement approach allows these features to be analyzed in a controlled, reproducible manner. After zone 
refinement, pressing the “Analyze” button completes automated measurement of all analysis regions selected 
by the user-defined criteria and exports results and zone images to the same directory as the original image.

Figure 2.  ColorScan graphical user interface. (A) The main ColorScan window displays the image being 
analyzed. (B) The Analysis Menu window contains all of the analysis control options. Additional features of this 
window become usable as the measurement process is completed.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11284  | https://doi.org/10.1038/s41598-020-67639-6

www.nature.com/scientificreports/

Results and Discussion
color intensity measurements. We compared the user experience and measurement results provided 
by ColorScan to those of our standard image analysis approach, completed using ImageJ, to evaluate the perfor-
mance of our custom software. To complete this comparison, we analyzed four replicate paper-based microflu-
idic devices (Fig. 4A) containing six circular output zones each, using both ImageJ and ColorScan. These four-
layered devices, described in the Materials and Methods document as part of the Supplementary Information, 
contained internally stored and spatially separated reactants for six colorimetric reactions. When these devices 
were run with water, stored analytes and their reagents were rehydrated and delivered to output zones where col-
orimetric signal developed to indicate the presence of (i) cysteine, (ii) a neutral pH, (iii) sulfite, (iv) cobalt(II), (v) 
iron(II), or (vi) molybdate. Each of these zones was surrounded by a wax-printed contrast ring (Fig. 4B), which 
could be used to support signal interpretation by visual inspection. These devices were not designed to perform 
measurements for these analytes at the point-of-care, but the homogenous (e.g., sulfite zone) and heterogeneous 
(e.g., cobalt(II) zone) distributions of signal intensity in their output zones are demonstrative of signal forma-
tion patterns found in practical paper-based microfluidic devices. All devices were imaged using an Epson V600 
Photo flatbed scanner at a resolution of 800 dpi. Scanning at lower resolutions is not expected to appreciably bias 
measurements acquired from a test zone—data from neighboring pixels within a zone that can be resolved in a 
high-resolution image are effectively accounted for through averaging in a low-resolution image. Practically, we 
suggest setting 300 dpi as a lower limit for images and scans.

To complete our performance evaluation, we began by manually measuring the pixel intensity of each output 
zone in ImageJ using the “RGB Measure”  tool30. We created a circular region of interest on the scanned device 
image and manually measured the output zones in the numerical order shown in Fig. 4B, then compiled meas-
urement results in a Microsoft Excel spreadsheet. To acquire images of each output zone, as ColorScan does 
automatically, we manually cropped selected features from the scanned device image using Adobe Photoshop. 
In total, our manual measurement and image processing steps took approximately 24 min. ColorScan analysis 
of the same image took only 2 min and automatically provided an organized spreadsheet of results and cropped 
images of output zones. This is a reasonable analysis time for a trained ColorScan user, and we expect the time 
investment required for users to familiarize themselves with the software to be minimal. Unlike manual analysis 
performed using ImageJ, the time required to perform automated measurements in ColorScan does not signifi-
cantly depend on the number of output zones being measured, offering substantial time savings over conventional 
methods. Measurement results obtained in the RGB color space using each software are shown in Fig. 5. Further 

Figure 3.  ColorScan zone refinement tool. Detection zones at the ends of paper channels, like the ones shown 
in the above paper-based microfluidic device, can be precisely selected for measurement using the options in 
the Refine Zone window. Identical zone selections are propagated to the same relative positions in the contours 
the user and program have identified as being the same size and shape of the reference contour. This allows for 
reproducible, precise analyses of replicate assays on multiplexed devices.
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details of our performance evaluation, including additional comparisons for the HSV and CIELAB color spaces, 
are available in Materials and Methods document of the Supplementary Information.

For each set of output zones measured in the RGB color space, mean pixel intensities acquired using 
ColorScan were consistent with values obtained using ImageJ. On average, ColorScan and ImageJ values were 
0.7% different, with a maximum difference of 1.8% for the blue channel intensity of the purple-colored signal 
in output spot 6 of each device (Table 1). These differences may be related to minor inconsistencies in analysis 
region position or size in each approach, or the computational methods used to average pixel intensity in each 
program. Additionally, the variance of mean pixel intensity values for replicate output zones is comparable for 
measurements performed using ColorScan and ImageJ (Table S3). These results indicate that ColorScan, in addi-
tion to providing a user-friendly approach for streamlined image analysis, performs pixel intensity measurements 
just as well as standard image analysis programs.

Figure 4.  Paper-based microfluidic devices used to complete ColorScan performance evaluation. (A) A 
scanned image of a strip of four replicate devices was measured in the RGB color space using ImageJ and 
ColorScan. (B) Each device contained output zones that provided six different colorimetric signals. These zones 
were bordered by wax-printed contrast rings, a common feature of paper-based devices that are designed to be 
interpreted by visual inspection. Scale bars in both (A) and (B) are 6 mm.

Figure 5.  ColorScan performance evaluation. Solid and diagonally striped bars represent ImageJ and 
ColorScan measurement results, respectively, performed in each channel of the RGB color space. Spot 
numbers correspond to the diagram shown in Fig. 4B. Error bars represent standard deviation of four replicate 
measurements of each numbered output zone.
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conclusions
We have developed an open-source computer program designed specifically to facilitate the automated analysis 
of colorimetric signals in paper-based microfluidic devices. This program, ColorScan, independently identifies 
locations of signal formation in images of devices to enable simultaneous measurement of replicate output zones 
arrayed in any geometry. We intended this approach to address outstanding challenges facing the development of 
paper-based assays: (i) Because assays conducted in paper devices are not restricted to any set zone size, shape, 
or spatial orientation, the time-intensive methods used for manual data analysis can create an arbitrary obstacle 
to conducting large numbers of replicates or comprehensively evaluating device design criteria. (ii) The use of 
presets enables reproducible analyses that are scalable. ColorScan operates identically if an image contains few 
or numerous zones, if an image contains numerous devices, or if data sets span numerous images. ColorScan 
requires minimal user intervention and offers a substantial time savings over manual image analysis methods 
(e.g., via ImageJ) and provides accurate and reproducible pixel intensity measurements in multiple color spaces 
(RGB, HSV, and CIELAB). Moreover, ColorScan effectively manages measurement results by (i) tagging each 
identified test zone with a unique identifier; (ii) exporting measurements to a .csv file; (iii) creating histograms, 
as both .csv tables and .png plot images, of values within each zone, (iv) compiling averages and standard devia-
tions for each zone and color space, (v) generating cropped and centered images of each logged zone to facilitate 
the design of publication-quality figures. By automating user-dependent aspects of the image analysis process, 
this tool improves the consistency and speed of color intensity measurements to support evaluation of assay 
conditions and design criteria during the development of paper-based microfluidics. Finally, as an open source 
tool, ColorScan can facilitate transparency of data analysis techniques.
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Table 1.  Mean RGB pixel intensities measured using ImageJ and ColorScan. Percent difference calculations 
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