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General method for classification 
of fiber families in fiber‑reinforced 
materials: application to in‑vivo 
human skin images
Maximilian Witte1,2, Sören Jaspers2, Horst Wenck2, Michael Rübhausen1 & frank fischer2*

Fiber structures play a major role for the function of fiber‑reinforced materials such as biological 
tissue. An objective classification of the fiber orientations into fiber families is crucial to understand 
its mechanical properties. We introduce the Fiber Image Network Evaluation Algorithm (FINE 
algorithm) to classify and quantify the number of fiber families in scientific images. Each fiber family 
is characterized by an amplitude, a mean orientation, and a dispersion. A new alignment index giving 
the averaged fraction of aligned fibers is defined. The FINE algorithm is validated by realistic grayscale 
Monte‑Carlo fiber images. We apply the algorithm to an in‑vivo depth scan of second harmonic 
generation images of dermal collagen in human skin. The derived alignment index exhibits a crossover 
at a critical depth where two fiber families with a perpendicular orientation around the main tension 
line arise. This strongly suggests the presence of a transition from the papillary to the reticular dermis. 
Hence, the FINE algorithm provides a valuable tool for a reliable classification and a meaningful 
interpretation of in‑vivo collagen fiber networks and general fiber reinforced materials.

Biological tissue such as articular  cartilage1,  myocardium2, aortic  valve3, arterial  walls4, and  skin5 exhibit a 
stress strain behavior that strongly depends on the collagen fiber distribution. Fiber reinforced materials are 
classified by the underlying fiber network which is characterized by its anisotropy and the fiber  orientation6–8. 
Upon stretching, tensile forces are applied to biological specimens and collagen fibers align in the stretching 
 direction9–14. The characterization of the collagen network is typically determined by quantities like the orienta-
tion index, mean fiber orientation, and the fiber dispersion. These parameters are obtained from the angular 
orientation distribution which is commonly modeled by a pi-periodic von-Mises  function15–21. However, this 
approach assumes that all fibers are part of a single fiber family. Gasser et al. introduced a mechanical model for 
arterial walls which assumes the existence of two opposing collagen fiber families, which are oriented around 
a main  direction4. Parameters for this model are achieved by modeling the fiber orientation distribution using 
two pi-periodic von-Mises  functions22. Skin is of major relevance as it represents the largest organ of the human 
body. It is subject to diverse environmental stress conditions and also large mechanical strains. Langer lines, also 
known as cleavage lines, are reported to indicate the main orientation of collagen fibers in  skin16.

We introduce the Fiber Image Networks Evaluation algorithm (FINE algorithm), which is based on the 
cumulative orientation distribution (COD), to classify and quantify the fiber network by means of fiber fami-
lies. The FINE algorithm uses an iterative approach to identify the number of fiber families and their angular 
properties. The variance of the COD that is obtained by the adaptive Fourier filtering method, proposed  in23, 
is used to estimate the significance of each fiber family. To benchmark the FINE algorithm, realistic grayscale 
Monte-Carlo simulated fiber images containing multiple fiber families are used. We derive the minimum fraction 
of anisotropic fibers as well as the maximum number of highly aligned fiber families that the FINE algorithm is 
able to discriminate. In addition to the orientation index (OI), we introduce and validate the alignment index 
(AI) which quantifies the average alignment degree of different fiber families. We apply the FINE algorithm to 
in-vivo, three-dimensional images of collagen fibers in human skin. Indeed, at a depth of 85–90 µm we find an 
increase of the derived alignment index with a concurrent decrease of the orientation index. Furthermore, two 
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intersecting fiber families with a perpendicular orientation around the Langer line arise. This strongly suggests 
the presence of a transition from the papillary to the reticular dermis.

Results and discussion
Fiber image network evaluation algorithm (FINE algorithm). We develop a general method for 
classification of fiber families in fiber-reinforced materials, Fiber Image Network Evaluation Algorithm (FINE 
algorithm). In order to explain the algorithm, we use an artificial fiber image, shown in Fig. 1(a). Artificial, 
grayscale fiber images are created using a Monte-Carlo procedure that allows us to control the number of fiber 
families, their amplitudes and their fiber distributions.

In the FINE algorithm, the number N, the mean orientations θ̄i , the amplitudes ai and the dispersion bi of 
fiber families, based on the cumulative orientation distribution (COD) of an input fiber image, are identified. 
We obtain the COD by applying the adaptive Fourier filter method (AF method), as proposed by Witte et al.23, 
to a fiber image. Exemplary, this is shown for an artificial, grayscale Monte-Carlo fiber image in Fig. 1(b). The 
proposed AF method provides the variance σ of the COD, which we use in the FINE algorithm as termination 
criterion.

We use the sigmoid function of Eq. (5) to model the COD of one fiber family. This sigmoid function has a step 
at the mean orientation angle θ̄ , a steepness given by the dispersion b of the fibers around its mean orientation 
and a height given by the amplitude a . Furthermore, the analysis of N fiber families in the fiber image is realized 
by modeling the COD as a sum of N sigmoid functions [Eq. (8)]. The number N of fiber families is iteratively 
determined by the FINE algorithm. The FINE algorithm starts with the most trivial assumption of a completely 
isotropic fiber distribution. Such a distribution is described by a straight line with slope 1°/180° in the COD. 
Thus, the first step in the algorithm is to check for an isotropic distribution by evaluating the R2 value of the 
straight line. Exemplary, this is shown in Fig. 1(c) for the artificial Monte Carlo generated fiber image of Fig. 1(a). 
In Fig. 1(c), the ideal isotropic fiber distribution is represented by a red, straight line. In the FINE algorithm, a 
fiber distribution is considered as isotropic for a fit quality better than R2 = 0.9916 . In our example, R2 = 0.92 
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Figure 1.  Schematic representation of the FINE algorithm. (a) Exemplary Monte-Carlo simulated fiber 
image with 300 isotropically distributed fibers and two aligned fiber families, each containing 175 fibers 
(θ̄2 = 40◦ and θ̄2 = 160◦; b2 = b3 = 0.18) . (b) The angular orientation distribution I(θ) is achieved 
according to Witte et al.23. (c) As a first step the cumulative orientation distribution (COD) is checked for 
isotropy as the R2 value of a straight line with slope 1/180◦ is examined. (d) Fit of a single step function to model 
one fiber family ( S1 Eq. (8)) to the COD. (e) Difference between the COD and S1 with subsequent peak finding. 
(f) Fit of two fiber families using a series of two sigmoid functions (S2) . (g) Difference between the signal COD 
and S2 with subsequent peak finding. (h) Final fit of three fiber families using a series of three sigmoid functions 
S3 . (i) Final difference between the COD and S3 . Since no significant residuals are present, the algorithm 
terminates. (j) Summary of the fit parameters of the three fiber family fit S3 . Two highly aligned fiber families in 
addition to one isotropic fiber family are identified.



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:10888  | https://doi.org/10.1038/s41598-020-67632-z

www.nature.com/scientificreports/

indicates the presence of at least one fiber family, and the first sigmoid function (Eq. (8) with N = 1) is fitted to the 
COD. The resulting fit of a single fiber family is shown in Fig. 1(d). The quality of the fit increases to R2 = 0.964 . 
However, the difference between the single sigmoid fit and the COD, shown in Fig. 1(e), is larger than 3σ. For 
the FINE algorithm, this is the criterion to consider an additional fiber family. Now, the angular location of the 
largest deviation between COD and fit is considered as new starting value for the additional fiber family. The 
corresponding fit of a series of two sigmoid functions (N = 2) is shown in Fig. 1(f). Although a better goodness 
of the fit with R2 = 0.996 is reached, the corresponding residual, as shown in Fig. 1(g) indicates the existence 
of another significant amplitude. Again, we employ the location of the highest deviation between fit and COD 
as initial location for a third sigmoid function (N = 3). In our fiber image simulation example the COD and 
the fit are presented in Fig. 1(h). We now obtain R2 = 1 , and the residual between fit and COD is within the 3σ 
criterion (Fig. 1(i)). This terminates the FINE algorithm.

The fit parameters received from the FINE algorithm, shown for our example in Fig. 1(j), are now used to 
evaluate the structure of the fiber network. In our fiber image, a small dispersion coefficient of b1 = 0.04 indicates 
that this fraction of fibers is isotropically distributed. Fiber families 2 and 3 are highly aligned with b2 = 0.15 
and b3 = 0.14 . The amplitudes ai are a measure for the fraction of each fiber family with respect to the whole 
fiber network. The amplitudes show that the aligned fiber families 2 and 3 exhibit a similar fiber fraction within 
the network (a2 = 0.42 and a3 = 0.37). In contrast, the isotropic fiber family 1 contributes less with a1 = 0.21 . 
Since we used a Monte-Carlo generated fiber image as input in our example, the determined parameters found 
by FINE algorithm can be compared to the preset values of the Monte Carlo simulation. For our example, we 
find that the dispersion coefficients of fiber families 2 and 3 calculated by the FINE algorithm underestimate 
the Monte-Carlo input value of b = 0.18 , indicating a broadening of the distribution of aligned fibers. Prede-
fined mean orientations of the highly aligned fiber families with θ̄2 = 40◦ and θ̄3 = 160◦ are reproduced with 
θ̄2 = 37.4◦ and θ̄3 = 159.6◦.

In order to evaluate the FINE algorithm, we generate Monte-Carlo fiber images with systematically modified 
properties and compare preset fiber network parameters with the network parameters calculated by the FINE 
algorithm.

FINE evaluation using Monte‑Carlo images. Our general expectation to a fiber distribution includes 
isotropic as well as aligned parts. The quantification of both parts is crucial in order to identify an anisotropic 
material behavior. Since the FINE algorithm calculates the dispersion as well as the amplitude of each fiber 
family, we are analyzing its ability to discriminate the aligned part from the isotropic part. In order to control 
the aligned part of our Monte-Carlo images, we define the anisotropic ratio of fibers (ARF) of our Monte-Carlo 
simulated images. The ARF measures the number of fibers contributing to an aligned fiber family relative to the 
total number of sampled fibers.

Anisotropic ratio of fibers. Monte-Carlo images with two fiber families, one isotropic and one highly 
aligned family are created. In the process, we use a constant number of 200 isotropically distributed fibers, 
together with a variable number of highly aligned fibers as anisotropic part. The maximum number of aligned 
fibers is limited to 200 (ARF = 0.5), whilst zero aligned fibers ensure a pure isotropic distribution (ARF = 0). A 
total of 104 images are generated to guarantee a high statistical accuracy of the result. Exemplary Monte-Carlo 
images with a different ARF are shown in Fig. 2(a). Figure 2(b) shows the calculated local fiber orientation in 
false colors. Color-coded fiber angles visually coincide well with the expected angles.

For quantitative evaluation, we measure different parameters of the FINE algorithm as a function of the 
ARF. The mean number of total fiber families Ntot , the mean number of anisotropic fiber families Nalign and the 
mean number of isotropic fiber families Niso identified by the algorithm are shown in Fig. 2(c). As expected, the 
mean number of isotropic fiber families constantly remains at a mean value of Niso = 1 . Contrary, its standard 
deviation first increases to maximum of 0.25 at a ratio of ARF = 0.12 and then decreases to a constant value of 
∼ 0.05 for a fraction larger than ARF > 0.35 . The mean number of identified aligned fiber families increases 
from near zero at a vanishing anisotropic part to a value of Nalign = 1 for a ratio of ARF ≥ 0.163 . The deter-
mined mean orientation θ̄ of the aligned fiber family exhibits an absolute deviation to the reference angle of 
�θ̄ = (2.4± 2.5)◦ . Next, we determine the probability that the FINE algorithm identifies exactly one isotropic 
and one highly aligned fiber family, which is shown in Fig. 2(d). The accuracy rapidly increases with the num-
ber of aligned fibers. At a ratio of ARF = 0.163 , a 90% accuracy for the identification for one isotropic and one 
aligned fiber family is reached. For ARF ≥ 0.163 , the error of the calculated mean orientation θ̄ of the aligned 
fiber family decreases to �θ̄ = (2.0± 1.9)◦ . The mean amplitude of the aligned fiber family increases from near 
zero at a vanishing ARF to 0.6 at ARF = 0.5 (Supplementary Fig. 1(a)). Remarkably, the calculated amplitudes 
are overestimating the anisotropic ratio. Since grayscale images are created, where fiber intensities are added to 
the image, the overlay of multiple fibers causes an artifact in the angular orientation  distribution18. Additionally, 
isotropic fibers that are by chance oriented in the direction of the aligned fiber family might further raise the 
intensity of the aligned fiber family.

Furthermore, the dispersion of the aligned fiber family constantly increases with the ARF but remains under-
neath the predefined value of b = 0.18 (Supplementary Fig. 1(b)). This indicates a broadened angular width of 
the aligned fiber family with respect to its defined value. The deviation to the reference most likely originates 
from the significant angular overlap between both fiber families, such that fibers either contribute to the aniso-
tropic or the isotropic part. A very high mean goodness of the fit of R2 = 0.999± 0.001 indicates a very good 
representation of the COD by the FINE algorithm.
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Multiple aligned fiber families. Another important evaluation aims to capture the performance of the 
FINE algorithm to identify multiple non-overlapping highly aligned fiber families. To ensure a clear angular sep-
aration of each created fiber family, a minimum angular distance between adjacent families has to be enforced. 
In order to find a good estimate for the minimum angular distance, the ability of the algorithm to separate two 
equally dispersed families from each other is investigated. Supplementary Fig. 2(a) shows the mean number of 
identified fiber families for Monte-Carlo images with two equally dispersed fiber families as a function of their 
alignment and their angular distance. If the angular distributions of both fiber families are exceeding a critical 
angular overlap, as exemplary shown in Supplementary Fig. 2(b) and (c) the FINE algorithm identifies a single 
fiber family. A clear separation of both families can be accomplished by a vanishing angular overlap, which is 
ensured for a minimum angular distance of 30° and a high alignment of b > 0.16 (Supplementary Fig. 2(d)).

We generate Monte-Carlo images containing up to five highly aligned fiber families, that are exemplary 
shown in Fig. 3(a). The number of fibers contributing to one fiber family as well as their dispersion are held 
constant. The calculated local fiber orientations are shown in false colors in Fig. 3(b). The COD is modeled with 
R2 = 0.999± 0.002 . Mean orientation angles of each aligned fiber family are found with a high accuracy as the 
absolute deviation to the reference mean orientations amounts to �θ̄ = (0.7± 0.5)◦ . The ratio of images where 
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Figure 2.  Result of the FINE algorithm as a function of the anisotropic ratio of fibers (ARF) of Monte-Carlo 
simulated fiber images. (a) Representative Monte-Carlo images with a different ARF. Mean orientations of the 
aligned fiber families are indicated by arrows in the bottom, left corner. (b) Calculated local main orientation 
in false colors. (c) Mean number of fiber families Nalign (aligned), Niso (isotropic) and Ntotal (total) that were 
identified by the algorithm. Error bars represent the standard deviation. (d) Accuracy of the algorithm to 
identify exactly one aligned and one isotropic fiber family.
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the predefined number of fiber families is identified, decreases from 99.7% in case of one and two predefined 
fiber families down to 87.0% in case of five predefined fiber families (Fig. 3(c)). The mean number of identified 
fiber families matches the number of predefined fiber families for Monte-Carlo images with up to four fiber 
families. With an increase of fiber families, the probability to wrongfully identify the network as an isotropic 
network increases, since an infinite number of fiber families yields an isotropic network. The amplitude of each 
identified fiber family as well as expected amplitudes 1, 0.5, 0.33, 0.2 are shown in Fig. 3(d). Mean amplitudes 
are found to closely match the expected values.

Dermal collagen fiber network. Collagen fibers represent the major load-bearing component of connec-
tive tissue such as the dermal skin  layer16,24,25. Contrary to the straight fibers that are sampled in our artificial 
Monte-Carlo images, collagen fibers are wavy and  bended17 Compared to the angular orientation distribution of 
a network of straight fibers, the angular orientation distribution of a wavy and bended fiber network is broad-
ened. Since the FINE algorithm processes the entire angular orientation distribution of an image, the waviness of 
fibers does not influence the algorithms accuracy. We capture the second harmonic generation (SHG) signal of 
dermal collagen fibers by using multi-photon microscopy, which is a common tool to visualize collagen fibers of 
human skin in-vivo26,27. We apply the FINE algorithm to an in-vivo depth scan of the SHG signal of dermal colla-
gen in human skin. Depths from 60 µm up to 105 µm relative to the skin surface are measured. Mean orientation 
angles, amplitudes and dispersions of identified fiber families are evaluated. Additionally, derived parameters, 
which quantify the entire orientation distribution are calculated. The orientation index (OI) describes the global 
alignment of the fibers with respect to their main orientation based on the angular orientation  distribution28. 
Contrary, we define the alignment index (AI) as a measure of the global alignment of the fibers, independent 
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Figure 3.  Result of the FINE algorithm applied to Monte-Carlo simulated grayscale fiber images containing 
one to five fiber families. (a) Representative images with one to five fiber families. Mean fiber orientations are 
indicated by arrows in the bottom, left corner. (b) Calculated local main orientation in false colors. (c) The mean 
number of fiber families estimated by the algorithm. Error bars represent the standard deviation. The percentage 
of images for which the number of estimated fiber families matches the number of defined fiber families 
is specified at the top. (d) The amplitudes of each identified fiber family. Error bars represent the standard 
deviation. Expected amplitude levels at 1, 0.5, 0.33, 0.2 are marked with dotted lines. Note that amplitudes below 
a value of 0.01 are removed for the sake of clarity.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:10888  | https://doi.org/10.1038/s41598-020-67632-z

www.nature.com/scientificreports/

from their main orientation. Assume N identified fiber families with amplitudes ai and dispersion parameter bi . 
The AI then reads as:

b′i represents the normalized dispersion coefficient with normalization quantities bmin and bmax . For example, 
a fiber network of two highly aligned fiber families that are arranged perpendicular to each other exhibit an OI of 
zero and an AI of one. We further illustrate the difference between the OI and the AI in the Supplementary Fig. 3.

Figure 4 summarizes the result of the FINE algorithm as well as the corresponding parameters as a func-
tion of dermal depth. In general, two fiber families are identified. The weighted mean orientation of both fiber 
families, shown in Fig. 4(b), fluctuates around 90°, which coincides with the direction of the so called Langer 
 lines29. Langer lines are the main tension lines of human skin, that were correlated to a preferred orientation of 
collagen in ex-vivo  experiments30–32. At a depth of 60 µm, fiber family 1 dominates the fiber distribution with an 
amplitude that is 3.2 times stronger as compared to fiber family 2, shown in Fig. 4(c). With increasing depth, the 
amplitudes of both fiber families evolve to similar values. The measured dispersions, that are shown in Fig. 4(d), 
reveal a different degree of alignment between both families at 60–80 µm of depth. Note that, at a depth of 60 µm 
and 65 µm, high dispersion values, b2,3 ≥ 0.2 , are measured. This is favored by a low fraction of fibers, a ≤ 0.2 , 
contributing to fiber families 2 and 3. Below a depth of 80 µm, the dispersion of both fiber families is identical. 
The mean alignment of the fiber network, measured by the AI, continuously increases with depth (Fig. 4(e)). 
Contrary, the OI first increases until a depth of 75–80 µm and then decreases to a value of nearly zero at 105 µm. 
This is visually expressed by local fiber orientations covering almost the full angular half space (Fig. 4(e) and 
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Figure 4.  Results of the FINE algorithm of in-vivo multi-photon SHG images as a function of skin depth. 
(a) Location of the measurement and origin of the coordinate system. (b) Mean orientation angles θ̄i of the 
identified fiber families. (c) Amplitudes ai of each identified fiber family. (d) Dispersion parameter bi of each 
identified fiber family. Error bars represent the 95% confidence intervals. (e) Derived parameter AI (alignment 
index) and OI (orientation index) as a function of depth. (f–i) Exemplary SHG images (left) and the local fiber 
orientation shown in false colors (right). The color wheel shows the assignment of each color.
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(f)). Below a depth of 80 µm, the color variety of local orientations reduces (Fig. 4(h)). At a depth of 105 µm, the 
large majority of fibers is visualized in green and blue/purple representing fiber orientations fluctuating around 
mean values of θ̄1 = 44.4◦ and θ̄2 = 142.8◦.

The collagen fiber network of soft tissue is in general not isotropic and expresses a preferred  orientation5,33,34. 
In human skin, the preferred orientation is supposed to coincide with the main tension lines of skin, e.g. the 
Langer lines, which was confirmed ex-vivo16,30. However, scanning electron microscopy (SEM) and SHG ex-vivo 
experiments failed to support this  model35–38.

Our results show that with the newly introduced FINE algorithm a direct analysis of a collagen network 
in-vivo is possible. The quantification algorithm allows to determine the number of fiber families without any 
previous assumptions about the underlying tissue. With increasing depth, mean fiber family orientations align 
perpendicular to each other such that no main orientation is expressed. The transition of the fiber network from 
overall dispersed fibers to aligned fibers at a depth of 80 µm is expressed by all parameters describing the col-
lagen network. We associate this transition with the crossover from the papillary dermis to the reticular dermis, 
which is in line with Neerken et al., who measured the onset of the reticular dermis at a depth of (95± 10)  µm 
at the  temple39. The transition is additionally characterized by loose, thin collagen fibers in the papillary dermis 
that form a resilient network of thicker fibers in the reticular  dermis40. The fiber status of the papillary dermis 
has been shown to be of main importance in skin  aging27,41.

Furthermore, the FINE algorithm might be suitable for the classification of pathological deficiencies that 
impact the collagen fiber network like the Ehlers–Danlos  syndrome42. It should be noted that our presented 
measurement serves as a proof of principle study and does not allow for a general conclusion, which would 
require a higher number of samples.

In conclusion, the FINE algorithm was found to be able to reliably quantify the fiber network by determining 
the number of fiber families, their mean orientations, amplitudes, dispersions as well as the orientation index, 
and the alignment index. The newly derived alignment index captures fiber family dependent information about 
the fiber network independently from the widely used averaged orientation index. Combined with in-vivo SHG 
microscopy of dermal collagen, we demonstrate a fully non-invasive and reliable algorithm to obtain meaningful 
insights into the composition of the dermal collagen fiber network. In general, the presented FINE algorithm is 
not limited to the application of dermal collagen. Potential applications might reach from different soft tissues 
to the quantification of any kind of fiber-reinforced material.

Methods
Image processing, Monte-Carlo image generation and curve fitting was realized by using  MATLAB43 in conjunc-
tion with the image processing toolbox and the curve fitting toolbox.

Monte‑Carlo fiber images. The generation of artificial, grayscale fiber images is described in detail by 
Witte et al.23. The orientation angles of fibers, which contribute to a certain fiber family are sampled from a semi-
circular von-Mises distribution with mean orientation θ̄:

where the dispersion parameter k defines the width of the distribution. A large value of k describes a narrow angu-
lar distribution, which corresponds to a high degree of fiber alignment. The Monte-Carlo sampling is repeated for 
each defined fiber family. To achieve a true isotropic fiber distribution, fiber angles are equally distributed across 
the entire angular range [0◦, 180◦] . In addition, every fiber features a width and an aspect ratio, which defines 
its length. As fibers with a very small width were found to produce large  errors23, we choose a minimum fiber 
width of 3 pixels. Similar  to20,23 we set the maximum fiber width to 10 pixels. The aspect ratio is constrained to the 
 interval20,45. Note that uniform fiber geometries (width, length) are used for each Monte-Carlo image. To account 
for different image qualities, we use a random noise factor which defines the amplitude of added speckle noise.

Angular orientation distribution. We use a Fourier-based method (AF method), as proposed by Witte et 
al.23, to obtain the angular orientation distribution I(θ) of an image Ip(x, y) . Using the method, the power spec-
trum P(u, v) , which is defined as the square of the absolute value of the 2D discrete Fourier transform, is com-
puted. First, coordinates are shifted such that low frequencies are located in the center of the power spectrum. In 
addition, the adaptive filter, which is based on the relative variance of the signal, is applied to the power spec-
trum. As shown by Witte et al.23, most accurate results are obtained by allowing relative variances smaller than 
2.1%. To extract the angular orientation information, the signal of the filtered power spectrum is radially 
summed and normalized. The variance of the angular orientation distribution, �I(θ) , is obtained by propagating 
the variance of the image �Ip

(

x, y
)

=

√

Ip
(

x, y
)

 to the Fourier  domain23.
Similar to Witte et al.23, we employ the cumulative orientation distribution C(θ) (COD):

Note that the angular orientation distribution is normalized with 
∑180◦

θ=0 I(θ) = 1 . The variance of the COD, 
�C(θ) , follows from propagating Eq. (3):
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θ; θ̄ , k
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Since the choice of the starting angle of computing the COD [Eq. (3)] is arbitrary, the variance of the COD, 
�C(θ) , has to be independent from θ . Thus, we employ the variance as σ = max(�C(θ)) . Note that within the 
FINE algorithm, σ is crucial for identifying additional, significant fiber families. For further information on the 
calculation of �C(θ) , please refer  to23.

fit model. We model the COD by using a sigmoid function:

where θ̄ denotes the mean orientation and b the steepness of the step, which is a measure of the fiber dispersion. 
The added terms take care of the semi-circularity of the angular orientation distribution and its characteristic in 
the cumulative orientation distribution. The factor A is chosen such that the employed sigmoid function [Eq. (5)] 
fulfills Scirc(180◦) = 1 for all parameter θ̄ and b . This is given for:

To account for the contribution of multiple fiber families, a series of sigmoid functions is applied:

where N denotes the number of fiber families. The i-th fiber family which exhibits a dispersion bi and a mean ori-
entation θ̄i contributes with an amplitude of ai . We relate the von-Mises dispersion parameter k to the sigmoidal 
dispersion b using a numerical transfer function b(k) , which is shown in Supplementary Fig. 4. For each value of 
k , we sample 104 values from the respective von-Mises function. After calculating the cumulative distribution, 
we fit the sigmoid [Eq. (5)] to obtain the dispersion parameter b . Each datapoint of Supplementary Fig. 4 is cal-
culated from averaging over 100 values. Best results are obtained by splitting the dataset into k < 2 and k ≥ 2 . 
We fit both datasets using a power function c1 · kc2 + c3 with coefficients c1, c2 and c3.

Note that in Witte et al.23, a sigmoid model was proven to provide a more accurate representation of the mean 
orientation and dispersion of one fiber family compared to the classical von-Mises  approach12,22. Especially the 
calculation of the dispersion parameter can be significantly improved using the sigmoidal approach. Further 
details on the comparison of both methods can be found in Witte et al.23.

Isotropy criterion. In order to classify an unknown cumulative distribution function as isotropic prior to 
fit potential fiber families, a criterion similar to the approach of Schriefl et al.22 is used. Since an ideal cumula-
tive distribution function of an isotropic distribution is a straight line with a slope of 1/180°, the initial fit of the 
FINE algorithm (Fig. 1) is used to evaluate the isotropy of the distribution. R2 is used as parameter to measure 
the goodness of the fit. In total 104 images with an isotropic fiber orientation distribution were created using 
the implemented Monte-Carlo method. 95% of the images were considered as isotropic for a threshold value 
of R2 ≥ 0.9916 . Even if an isotropic distribution fails the initial isotropy criterion, the fitted fiber family can be 
classified as isotropic retrospectively. We emphasize, that the isotropy criterion is not used to evaluate the signifi-
cance of additional fiber families. Instead, the variance σ = �C(θ) of the COD is evaluated and used in terms 
of a 3σ criterion in the FINE algorithm.

Level of significance. The level of significance is controlled by multiplying the variance of the cumulative 
distribution function, �C(θ) , with a factor n . The right choice of n is crucial in order to not over-interpret small 
fluctuations and still capture significant fiber families of the cumulative distribution. To find the factor which 
maximizes the accuracy to determine the number of identified fiber families, Monte-Carlo images that feature 
multiple fiber families (up to three) as well as images with a single, aligned family together with an isotropic 
family were included. To ensure an unambiguous differentiation of neighbored fiber families in the orientation 
distribution, a von-Mises dispersion of k = 10 (b = 0.18) with a minimum distance of 30◦ between neighbored 
families was chosen. Subsequently, the limits nmin and nmax defining the range of significance, in which the cal-
culated number matches the defined number of fiber families, were determined. Each limit was calculated by 
repeatedly applying the implemented fit procedure on the cumulative distribution function while adapting the 
level of significance using a bisection algorithm. The algorithm was terminated as the difference between subse-
quent iterations was smaller than 10−4 . The maximum accuracy of the algorithm was found at n = 3.

orientation index. In order to characterize the entire orientation distribution, we evaluate the orienta-
tion index (OI)28 and the novel alignment index (AI). The orientation index is based on the angular orientation 
distribution I(θ):

(4)�C(θ) =

√

√

√

√

θ
∑

θ ′=0◦

�I(θ ′)2

(5)Scirc(θ) = A ·
[

S(θ)+ S
(

θ + 180◦
)

− S
(

180◦
)

+ S
(

θ − 180◦
)

− S
(

−180◦
)

− S
(

0◦
)]

(6)with S(θ) =
1

1+ e−b(θ−θ̄ )
,

(7)A =
1

S(360◦)− S(−180◦)
.

(8)SN (θ) =

{

Scirc, N = 1
∑N

i=1 aiScirc
(

θ; bi , θ̄i
)

, N > 1,
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A fully isotropic distribution results in a vanishing orientation index, whereas a full alignment of the fib-
ers yields an OI of one. θ̄mean describes the overall mean orientation, which is determined from fitting a single 
sigmoid ( S1 ) to the COD.

Alignment index. The alignment index (AI) is defined in Eq. (1). Normalization constants bmin and bmax 
define the scale of the AI. The lower limit of the dispersion parameter is defined as bmin = 0.016, which results 
from the transfer function b(k) for k → 0 . bmax corresponds to the maximum dispersion parameter at which the 
AI has a value of one. We consider a family as fully aligned if its dispersion parameter b is equal to 0.26 (k = 20). 
We therefore choose a value of bmax = 0.26 . The defined scale is found to cover a large majority of the measured 
distributions without a saturation.

Local fiber orientation. The local fiber orientation is achieved similarly to the fan-filter method proposed 
by McLean et al.44. In each pixel the angular distribution contributes to an orientation spectrum. The contribu-
tion of one specific angle θ ′ results from applying the inverse Fourier transform to the fan-filtered discrete Fou-
rier transform of the image. The fan-filter is a wedge-shaped filter, that covers θ ∈ [θ ′ − δθ , θ ′ + δθ] . Contrary 
to McLean et al., we define the fan-filter by computing the fraction of each pixel in the Fourier domain that is 
covered by the angle interval. Hence, we do not need to apply a Gaussian convolution to remove sharp filter 
edges that induce Gibbs artifacts. We use the fan-filter in the frequency domain with a subsequent inverse Fou-
rier transformation for every angle θ ∈ [0◦, 180◦] in 1◦ steps with δθ = 0.5◦ to obtain local orientation spectra 
I(x, y, θ) . Spectra are smoothed using a moving average filter with an angular span of 7◦ . We assign a color to 
each pixel based on the angle at maximum spectral intensity. In agreement with McLean et al.44, in non-fibrous 
areas of the image the amplitude of the RGB color is reduced using the relative intensity of the background-
subtracted pixel. For background subtraction, the Fiji (ImageJ) build-in function subtract background with a 
rolling ball radius of 40 pixels is  used45.

Multi‑photon microscopy. For collagen measurements we use a multi-photon microscope which was 
developed in collaboration with Jenlab GmbH (Jena, Germany)46. To measure the collagen-specific second-
harmonic generation (SHG) signal, a femtosecond ti:sapphire laser (Mai Tai, Spectra-Physics, California, USA) 
adjusted to a wavelength of 820 nm is used in combination with a 410 nm band-pass filter (AQ 410/20 m-2P, 
Chroma Technology Corp., Bellows Falls, VT). The microscope was used at a scan time of 7 s, a constant mean 
illumination power of 50 mW, and a field of view that covers a 220 × 220 µm area at an image dimension of 
512 × 512 pixels.

In order to measure the three-dimensional distribution of collagen, a 3D-stack of in total 10 SHG images 
is recorded at the forehead of a 53 years old male Caucasian. An image slice spacing of 5 µm was chosen. The 
initial depth of the stack resulted from the onset of visible collagen fibers which was at a depth of 60 µm. The 
maximum depth of 105 µm was limited by the decreasing image quality. Depth is measured relative to the skin 
surface which was recorded by measuring the two-photon autofluorescence signal of the uppermost skin layer 
using an excitation wavelength of 750 nm with a (548± 150) nm band pass filter (HQ 548/305 m-2P, Schott AG, 
Mainz, Germany).

This study was conducted according to the recommendations of the current version of the Declaration of 
Helsinki and the Guideline of the International Conference on Harmonization Good Clinical Practice, (ICH 
GCP). In addition, this study was approved and cleared by the institutional ethics review board (Beiersdorf AG, 
Hamburg, Germany). Written informed consent was obtained from the volunteer.
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