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Identification of neural 
networks preferentially engaged 
by epileptogenic mass lesions 
through lesion network mapping 
analysis
Alireza M. Mansouri1*, Jürgen Germann2, Alexandre Boutet2,3, Gavin J. B. Elias2, 
Karim Mithani4, Clement T. Chow2, Brij Karmur4, George M. Ibrahim5,6,7, 
Mary Pat McAndrews8, Andres M. Lozano9, Gelareh Zadeh9 & Taufik A. Valiante9

Lesion network mapping (LNM) has been applied to true lesions (e.g., cerebrovascular lesions in 
stroke) to identify functionally connected brain networks. No previous studies have utilized LNM 
for analysis of intra-axial mass lesions. Here, we implemented LNM for identification of potentially 
vulnerable epileptogenic networks in mass lesions causing medically-refractory epilepsy (MRE). 
Intra-axial brain lesions were manually segmented in patients with MRE seen at our institution (EL_
INST). These lesions were then normalized to standard space and used as seeds in a high-resolution 
normative resting state functional magnetic resonance imaging template. The resulting connectivity 
maps were first thresholded (pBonferroni_cor < 0.05) and binarized; the thresholded binarized connectivity 
maps were subsequently summed to produce overall group connectivity maps, which were compared 
with established resting-state networks to identify potential networks prone to epileptogenicity. 
To validate our data, this approach was also applied to an external dataset of epileptogenic lesions 
identified from the literature (EL_LIT). As an additional exploratory analysis, we also segmented and 
computed the connectivity of institutional non-epileptogenic lesions (NEL_INST), calculating voxel-
wise odds ratios (VORs) to identify voxels more likely to be functionally-connected with EL_INST 
versus NEL_INST. To ensure connectivity results were not driven by anatomical overlap, the extent 
of lesion overlap between EL_INST, and EL_LIT and NEL_INST was assessed using the Dice Similarity 
Coefficient (DSC, lower index ~ less overlap). Twenty-eight patients from our institution were included 
(EL_INST: 17 patients, 17 lesions, 10 low-grade glioma, 3 cavernoma, 4 focal cortical dysplasia; NEL_
INST: 11 patients, 33 lesions, all brain metastases). An additional 23 cases (25 lesions) with similar 
characteristics to the EL_INST data were identified from the literature (EL_LIT). Despite minimal 
anatomical overlap of lesions, both EL_INST and EL_LIT showed greatest functional connectivity 
overlap with structures in the Default Mode Network, Frontoparietal Network, Ventral Attention 
Network, and the Limbic Network—with percentage volume overlap of 19.5%, 19.1%, 19.1%, and 
12.5%, respectively—suggesting them as networks consistently engaged by epileptogenic mass 
lesions. Our exploratory analysis moreover showed that the mesial frontal lobes, parahippocampal 
gyrus, and lateral temporal neocortex were at least twice as likely to be functionally connected 
with the EL_INST compared to the NEL_INST group (i.e. Peak VOR > 2.0); canonical resting-state 
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networks preferentially engaged by EL_INSTs were the Limbic and the Frontoparietal Networks (Mean 
VOR > 1.5). In this proof of concept study, we demonstrate the feasibility of LNM for intra-axial mass 
lesions by showing that ELs have discrete functional connections and may preferentially engage in 
discrete resting-state networks. Thus, the underlying normative neural circuitry may, in part, explain 
the propensity of particular lesions toward the development of MRE. If prospectively validated, this 
has ramifications for patient counseling along with both approach and timing of surgery for lesions in 
locations prone to development of MRE.

While medically refractory epilepsy (MRE) in adults is most commonly diagnosed in mesial temporal lobe epi-
lepsy (mTLE), it is not uncommon in individuals with intra-axial brain lesions such as low-grade gliomas (LGGs, 
up to 50%), cavernomas (up to 40%), and focal cortical dysplasia (FCD)1–3. The pathophysiology of seizures and 
epilepsy in these individuals is multi-factorial. While cortical lesions are prone to epilepsy, other more com-
plex factors related to the lesion microenvironment, such as peri-lesional inflammatory changes, imbalance of 
excitatory and inhibitory neurotransmitters, and metabolic changes, have been implicated4–7. Furthermore, gene 
expression profiling of glioneuronal tumors and some FCDs have identified common pathways in both patholo-
gies that contribute to pathogenesis and epileptogenesis8. Broader changes related to whole-brain connectivity 
may also play an important role by facilitating an altered threshold for seizures9. Several lines of investigation have 
supported the notion of epilepsy, whether focal or generalized, as a large-scale, network-wide disorder, rather 
than one isolated to particular region(s) of the brain10–13. This, in part, explains the cognitive and psychological 
manifestations in individuals with focal epilepsy14.

At present, it remains unclear why identical lesions in different brain regions have differing propensity to 
induce seizures. One putative hypothesis relates to the underlying neural circuitry they are more likely to engage. 
Several neural networks have been uniquely implicated in epileptogenicity in both humans and non-human 
primates15–17. An emerging approach to understand the relation between intra-axial brain lesions causing epilepsy 
and the underlying neural circuitry involves leveraging high-quality resting state functional magnetic resonance 
imaging (rsfMRI) data from large samples of healthy subjects (i.e., normative data). This facilitates explorations 
of network connectivity in subjects of interest who lack native functional neuroimaging in routine clinical 
MRI protocols—a common scenario in the routine clinical practice involving people with brain tumors—but 
also informs the relation between lesions in an individual patient and normative brain connectivity18,19. This 
approach, known as lesion network mapping (LNM), has been applied in numerous recent studies assessing 
clinical symptoms/syndromes attributable to focal lesions in diverse anatomical brain locations20–22. LNM allows 
for a better understanding of a distinct neurological manifestation—such as seizures—originating from lesions 
in anatomically disparate locations. Extending the use of this method to epileptogenic tumors, LNM analysis 
has the potential to identify canonical resting-state networks that are vulnerable to epileptogenesis secondary 
to an offending lesion, which may not be necessarily explainable by simple anatomy. Recently, LNM was used 
to postulate a connectomic rationale for heterogeneous seizure outcomes following MR-guided laser interstitial 
thermal therapy for epilepsy23,24. In addition, a similar approach was employed to identify networks that may 
contribute to deep brain stimulation-induced seizures17,25. To date, however, LNM analysis has not been applied 
for larger intra-axial mass lesions causing epilepsy.

In this proof of concept study, we applied the LNM method to a comparison of our center’s epileptogenic 
lesions (EL_INST) with non-epileptogenic lesions (NEL_INST). To accomplish this, individuals harboring 
tumors that caused epilepsy were identified and compared with lesions in other individuals who did not have 
seizures as part of their clinical presentation. The LNM method, using the patients’ own structural imaging super-
imposed on normative rsfMRI atlas data, was then used to identify resting-state networks portending vulner-
ability to epileptogenicity. For comparative purposes, the same LNM approach was applied to non-epileptogenic 
mass lesions derived from a second patient cohort at our institution (NEL_INST) and to epileptogenic mass 
lesions sourced from the published literature (EL_LIT). We hypothesized that (1) EL would have distinct con-
nectivity patterns; (2) this pattern should be externally valid with respect to epileptogenic lesions encountered 
outside our institution and would involve resting-state networks known to be implicated in epileptogenicity; 
and (3) the functional connectivity pattern associated with ELs would differ from that associated with NELs.

Through demonstration of the feasibility of LNM for mass lesions, new hypotheses regarding connectivity 
patterns implicated in epileptogenicity can be tested. Furthermore, once verified, this method could be applied 
toward patient counseling and surgical planning, as earlier surgery could be applied for lesions in locations 
thought to be more prone to development of MRE based on their brain-wide connectivity profile. This is espe-
cially valuable because not all patients, particularly those with neoplastic lesions, undergo native functional 
imaging in a routine clinical scenario.

Methods
Institutional cohort case selection.  This was a retrospective study conducted at the University Health 
Network following institutional research ethics board approval (Neurosciences committee, study ID UHN13-
6399). All research was performed in accordance with relevant guidelines/regulations. Informed consent was 
waived by institutional research ethics board at the University Health Network due to the retrospective nature 
of the study.

We reviewed clinical and imaging data of individuals with intra-axial brain tumors/lesions resulting in MRE 
(i.e., the EL_INST cohort) and without prior surgical resective procedures who were identified as possible surgical 
candidates (January 2007–October 2018). Comprising the NEL_INST cohort (control population) were seizure-
free individuals with brain tumors with no prior cranial surgical procedures (October 2018). Only cases with a 
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comprehensively documented clinical exam that specifically detailed the presence or absence of a diagnosis of 
epilepsy, and corresponding high resolution (3D sequences with isotropic voxels ≤ 2 mm) T1-weighted (T1W) 
structural images (SPGR or MPRAGE) were included. For both non-contrast T1-weighted and post-contrast 
T1-weighted images, the acquisition parameters were TR = 7.5–9.0 ms, TE = 3.0–4.2, flip angle = 12–15°, iso-
tropic voxel ≤ 2 × 2 × 2 mm. Among patients in the EL_INST cohort, data pertaining to seizure-freedom status 
at 12 months following surgery was also extracted.

Systematic review of the literature to identify ELs for external validation.  In order to externally 
validate functional connectivity patterns potentially implicated in epileptogenicity (according to analysis of our 
EL_INST cohort), additional intra-axial tumors causing MRE were identified from the literature. This approach 
has been successfully undertaken in several prior similar studies20–22,26. A systematic search for published reports 
of ELs histologically comparable to our own cohort was conducted on March 27, 2020 using the MEDLINE 
database, using medical subject headings (MeSH) and free-text terms related to “magnetic resonance imaging” 
and “low grade glioma (astrocytoma, diffuse glioma, ganglioglioma, and oligodendroglioma)” and “epilepsy”. A 
total of 320 articles were retrieved. Following screening by two reviewers (CTC, AB), 19 articles were deemed 
eligible for analysis. Any disagreements were settled by a consensus decision after discussion with the third 
reviewer (AM) to confirm presence of an intra-axial glioma with clear imaging and epilepsy attributed to the 
lesion. Study inclusion criteria comprised English language, focused on adults (age ≥ 18 years old), and presence 
of an MRI image of an intra-axial lesion presumed to cause epilepsy. Data extraction was performed indepen-
dently by two authors (AM, CTC) using a pre-constructed spreadsheet (see Supplementary Table 1). Overall, 23 
cases (25 lesions) were identified; these comprised the EL_LIT cohort and were used for external validation of 
the EL_INST cohort.

Lesion segmentation.  High resolution T1-weighted structural images were used to delineate intra-axial 
lesions for both institutional lesion cohorts (EL_INST and NEL_INST). Lesions were manually segmented in 
native space using MRIcron (https​://www.nitrc​.org/proje​cts/mricr​on)23. Segmentation was performed by two 
independent authors (AM, AB) in the axial plane and confirmed for accuracy on the coronal and sagittal planes. 
While all segmentations were performed on non-contrast T1-weighted images, additional image sequences 
were referred to in order to ensure segmentation accuracy. For example, Fluid-Attenuated Inversion Recovery 
(FLAIR) sequences were used to guide segmentation of LGGs and FCDs, Gradient Resolution Echo (GRE) 
sequences to guide segmentation of cavernomas, and post-gadolinium T1-weighted contrast images to guide 
segmentation of metastatic lesions. Only the mass lesion itself was segmented; any surrounding edema was 
excluded.

The T1-weighted images were registered to the MNI152 template in a stepwise iterative process using linear 
(FLIRT) followed by nonlinear (FNIRT) registration techniques25,27. For each step, the previously segmented 
lesion mask was applied as an input-weighting volume25 to avoid registration distortion from abnormal voxel 
intensities within the lesion areas. Each transformation was then applied to the matching lesion mask, transfer-
ring it into MNI space for group-level analysis.

For the EL_LIT cohort, segmentation of available two-dimensional tumor images was performed manually 
on a standard template brain (MNI152 asymmetric brain). This brain was resampled at 0.5 × 0.5 × 2 mm to pre-
serve anatomical contrast in the axial plane and thereby better delineate/identify the lesion, similar to methods 
described previously20–22,26. All 25 lesions from the eligible published figures were accurately segmented—refer-
encing neuroanatomical landmarks—onto the 2D axial plane of the template brain (Fig. 1).

Spatial overlap across segmented lesions.  The extent of physical overlap between (i) EL_INSTs and 
NEL_INSTs, and (ii) EL_INSTs and EL_LITs was examined using the Dice similarity coefficient (DSC, also 
known as the Sørensen-Dice coefficient or index), a metric that evaluates overlap between binarized volumes 
according to the following formula:

In this formula, |X| and |Y| are the cardinalities of the two sets (i.e. the number of elements in each set). The 
DSC equals twice the number of elements common to both sets divided by the sum of the number of elements 
in each set.

Lesion network mapping.  For both our in-house treated dataset (i.e., patients treated at UHN) and the 
literature-derived validation dataset, the segmented lesion masks were subsequently used as seeds (regions-of-
interests) for the functional connectomic mapping analysis (in-house MATLAB script, The MathWorks, Inc., 
Version R2018a. Natick, MA, USA31-34). This analysis utilized a normative dataset compiled from rsfMRI scans 
of 1,000 healthy subjects, as reported previously20,24,28. Each subject was scanned once or twice (1.7 times per 
subject on average) with a 6.2 min-long echo-planar imaging sequence (124 time points; 3 × 3 × 3 voxel size, TR 
3,000 ms, TE 30 ms, flip angle 85°) in order to acquire rsfMRI data.

Whole-brain connectivity r-maps were generated for each individual seed using the entire normative dataset. 
For each seed, a connectivity r-map describing the correlation between the seed and every voxel in the brain—on 
the basis of the averaged low-frequency blood-oxygen-level-dependent (BOLD) signal fluctuations sampled 
across the 1,000 normative subjects—was obtained. The r-map describes the pairwise correlation between the 
BOLD time courses of the seed and every voxel in the brain. For patients with multiple lesions, these were used 

DSC =
2|X ∩ Y |

|X| + |T|

https://www.nitrc.org/projects/mricron
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collectively as a single seed for connectivity mapping. To define meaningful networks, each patient’s r-map was 
converted to a t-map with a known p value distribution; this t-map was then Bonferroni-corrected for multiple 
comparisons at t = 5.1 (pcor < 0.05) across the entire brain19. The thresholded t-maps were then binarized such 
that all subsequent analyses looked solely at the topographical relationship between the different groups’ sig-
nificant (pcor < 0.05) connectivity patterns, as opposed to considering subtle variations in how strongly a given 
region is connected to either group24. This conservative strategy addresses some of the limitations associated 
with using normative healthy patient data in epilepsy patients, whose brain functional connectivity may differ 
substantially from healthy controls29. Specifically, the use of stringent thresholding and binarizing was intended 
to avoid over-interpretation of more granular connectivity patterns that exist in the normative dataset employed 
here but are less likely to hold true in epilepsy patients.

Using the individual thresholded and binarized connectivity maps, summed connectivity maps were sepa-
rately computed for the EL_INST and EL_LIT to obtain the overall connectivity patterns linked with each group. 
The higher the voxel value in each cohort’s summed image, the greater the number of individual connectivity 
maps that overlapped with that voxel. To also assess network-level engagement, overlap between the summed 
connectivity maps and 7 canonical resting state networks (https​://surfe​r.nmr.mgh.harva​rd.edu/fswik​i/Corti​calPa​
rcell​ation​_Yeo20​11)24,28 was assessed.

Connectivity patterns of EL_INST versus NEL_INST.  To complement our description of epilepto-
genic networks in EL_INST, we also conducted an exploratory analysis to determine the odds of particular 
resting-state networks being involved in epileptogenicity as opposed to non-epileptogenicity. This was done 
in order to clarify whether the networks or regions found to be connected to epileptogenic lesions were in fact 
specifically related to epilepsy or not, and was accomplished by a comparison between EL_INST and NEL_INST 
connectivity. The lesions from EL_LIT were excluded from this analysis due to concerns regarding the limita-
tions of combining 2D segmentation approaches with actual 3D techniques possible using our in-house cases.

First, the thresholded binarized connectivity maps were separately summed across the EL_INSTs and NEL_
INSTs (i.e., summed connectivity maps) in order to obtain the overall connectivity patterns linked with each 
cohort. The higher the voxel value in each summed connectivity map, the greater the number of individual 
connectivity maps that overlapped with that voxel.

The network connectivity specifically associated with EL_INSTs was then investigated by computing voxel-
wise odds-ratio (VOR) maps that contrasted the binarized connectivity masks from each cohort. Here, the NEL_
INST cohort served as the control. Generation of the VOR map was based on previously described methods30.

where Ne = number of epileptogenic lesions; Nne = number of non-epileptogenic lesions; Ve = number of epilep-
togenic lesions overlapping a specific voxel; Vne = number of non-epileptogenic lesions overlapping a specific 
voxel. Ve and Nne were interchanged in the formula to calculate the NEL_INST VOR map.

In order to systematically interpret the results of the VOR analysis in the context of anatomical brain regions, 
we overlaid the VOR maps on the AAL atlas, which is a well-established repository of standard masks of indi-
vidual brain regions (e.g., cerebellum). Although the AAL atlas is an excellent tool for obtaining an overview 
of the anatomical distribution of connectivity, anatomy does not necessarily reflect functional divisions31. The 
average VOR value in each AAL ROI was then computed and those with peak VOR > 2.0 were displayed; this 
threshold was chosen to only display regions with the highest VOR of connectivity. Next, in order to investigate 
the potential differences between EL_INST and NEL_INST in the context of wider brain networks, the VOR 
maps of associated functional connectivity hubs implicated in epileptogenicity were also overlaid on the standard-
ized atlas of seven canonical resting-state networks (https​://surfe​r.nmr.mgh.harva​rd.edu/fswik​i/Corti​calPa​rcell​
ation​_Yeo20​11)24,28. To calculate mean VOR values for the resting-state networks, the liberal binary masks were 
derived for each. The mean value within each mask was then calculated for both the EL_INST and NEL_INST 
VOR map. Resting state networks with mean VOR > 1.5 were displayed in order to show only regions with the 
highest likelihood of functional connectivity.

Statistical analyses.  Depending on the distribution of the data, mean or median values were calculated 
along with standard deviation or range, respectively. Similarly, t-test or Wilcoxon Rank Sum tests were used 
to assess for statistical significance. A p value < 0.05 was deemed significant. All analyses were performed with 
SPSS v22.0 (IBM Corp) or R (https​://www.r-proje​ct.org/, version 3.4.4) and RMINC (https​://githu​b.com/Mouse​
-Imagi​ng-Centr​e/RMINC​) for the imaging analyses.

Results
Clinical and lesion characteristics.  Based on our clinical and imaging inclusion criteria, 28 cases were 
included in this analysis (Table 1). The EL_INST cohort comprised 17 individuals each with a single intracranial 
lesion: LGGs were the most common pathology (11 of 17), followed by FCD (3 of 17) and cavernoma (3 of 17). 
The NEL_INST cohort comprised 11 individuals with a total of 33 intracranial metastatic lesions. On average, 
the EL_INST cohort was significantly younger than the NEL_INST cohort (Mean age ± SD: 33.7 ± 11.8 years 
versus 68.5 ± 8.4 years, p < 0.05). The majority of lesions in the EL_INST cohort were located in the temporal 
lobe (12 of 17) and lateralized to the left side (13 of 17); whereas, lesions in the NEL_INST cohort were relatively 
evenly distributed across the brain (Table 1). The DSC (which reflects extent of lesion overlap) for both groups 
was low overall, with EL_INST lesions demonstrating slightly greater lesion overlap within the cohort (Fig. 2). 

VOR =
Ve(Nne − Vne)

Vne(Ne − Ve)

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://www.r-project.org/
https://github.com/Mouse-Imaging-Centre/RMINC
https://github.com/Mouse-Imaging-Centre/RMINC
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Following surgery for MRE, 15 of 17 patients in the EL_INST cohort were seizure-free at 12 months postopera-
tively.

From a total of 19 full-text articles, 23 cases with 25 intra-axial lesions (mean age 36.7 ± 12 years, range 
21–67 years, 35% female, mean disease duration 7.4 ± 9 years, range 0.4–27 years) with tumor-related epilepsy 
were identified (Table 1). A detailed description of these cases is provided in Supplementary Table 1. The DSC 
index between our EL_INST cohort and EL_LIT was 0 for 11 of 25 lesions and the highest value was 0.02, indi-
cating negligible anatomical overlap between lesions in the two cohorts.

Descriptive analysis of connectivity hubs potentially implicated in epileptogenicity.  Despite 
the low degree of anatomical overlap between lesions in EL_INST and EL_LIT, we found extensive overlap in 
connectivity patterns. Calculating the percentage of volume overlap between both 50% thresholded summed 
connectivity maps (i.e., voxels significantly connected to at least half of the cohort lesions) and anatomical ROIs 
specified in the AAL atlas, we observed prominent shared connectivity to the middle temporal gyri, dorsal ante-
rior cingulate, posterior cingulate, and pre-cuneus (Fig. 3A). Similarly, the top 4 canonical resting-state networks 
implicated in epileptogenicity, as determined by the percentage of volume overlap between both 50% thres-
holded EL summed connectivity maps and the resting-state network labels, were the Default Mode Network 
(DMN, 19.5%), Frontoparietal Network (19.1%), Ventral Attention Network (19.1%), and the Limbic Network 
(12.5%). The 7 canonical resting-state networks have been provided as reference in Fig. 3B.

Exploratory analysis of regions and resting‑state networks specifically engaged by epilepto-
genic lesions, compared to non‑epileptogenic lesions.  To quantify the odds of particular resting-
state networks being involved in epileptogenicity specifically, we conducted a comparison between the EL_INST 
and NEL_INST cohorts using voxelwise odds-ratio (VOR) maps. The lesions from EL_LIT were excluded from 
this analysis due to concerns regarding the limitations of combining 2D segmentation approaches with actual 
3D techniques possible using our in-house cases.

Voxels in the EL_INST and NEL_INST cohorts with peak VORs between 1 and 20 are outlined in Fig. 4 (A 
and B, respectively). Through this approach, the bilateral medial frontal gyri, right parahippocampal gyrus, right 
temporal pole, and right inferior parietal lobule constituted the top 5 functionally-connected anatomical locations 
with EL_INSTs (Supplementary Table 2). Conversely, bilateral cerebella, bilateral precuneus, and right rolandic 
operculum had the greatest likelihood of functional connectivity with NEL_INSTs (Supplementary Table 3). 
Because the median volume of EL_INSTs tended to be larger than NEL_INSTs (3,450.5 ± SD versus 737 cc ± SD, 
p > 0.05), we confirmed that the connectivity findings were not due to larger lesions in the EL_INST group. The 
overall volumes of the binarized thresholded connectivity maps were similar (325.8 cc ± SD versus 294.4 cc ± SD, 
p > 0.05), suggesting that (1) after the thresholding connectivity step, the extent of connectivity is similar across 
lesions and (2) location—rather than size—is a major driver of the connectivity differences (Table 1).

Given that anatomical regions do not necessarily correlate with function, group differences in functional 
connectivity to canonical resting-state networks were also examined. Implementing a mean VOR > 1.5 threshold, 
we identified the Limbic (mean VOR = 1.92) and the Frontoparietal Networks (mean VOR = 2.04) to be most 

Table 1.   Case summary of lesions used in lesion network mapping analysis. a For epileptogenic lesions 
(literature), the sum of lesion locations does not total 25 as some lesions were located in multiple lobes.

Epileptogenic lesions 
(institutional)

Non-epileptogenic lesions 
(institutional)

Epileptogenic lesions 
(literature)

N cases 17 11 23

N lesions 17 33 25

Sex (M/F/unknown) 7/10/0 6/5/0 14/8/1

Mean age, years (SD) 33.7 (11.8) 68.5 (8.4) 36.7 (12.3)

Median lesion volume (cc), range 3,450.5 (374–44,038) 737 (44–5,916) N/A

Median Thresholded Connectiv-
ity Volume (cc), range 325.8 (74.1–590.6) 294.4 (78.8–630.9) N/A

Pathology
Diffuse Grade II Glioma = 10
Cavernoma = 3
Cortical dysplasia = 4

Brain metastases = 11
Diffuse Grade II Glioma = 17
Hamartoma = 1
Neoplasm = 1
Ganglioglioma = 4

Lesion locationa

Frontal
Temporal
Parietal
Occipital
Insula
Cerebellum
Brainstem

4
12
1
0
0
0
0

9
8
8
3
1
3
1

14
12
2
1
3
0
0

Lesion laterality

Left
Right
Midline

13
4
0

15
16
2

15
10
0
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associated with epileptogenicity. These results are summarized in Supplementary Table 4. Conversely, the Dorsal 
(mean VOR = 2.12) and Ventral (mean VOR = 1.52) Attention Networks along with the DMN (mean = VOR 
2.08) were resting-state networks most likely to be functionally connected with NELs (Supplementary Table 5). 
A graphical representation of the 7 established resting state networks is provided in Fig. 3 for reference32. In this 
approach, it is important to note that although several individual VOR peaks overlapped with regions in the 
DMN for EL_INSTs, the averaging of the volume of these peaks in the context of the entire DMN ROI volume 
resulted in smaller mean VOR values.

Figure 1.   General location and appearance of lesions segmented from the literature.
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Discussion
The LNM method is an emerging neuroscientific method that can facilitate exploration of network connectivity 
in individuals with neurological symptoms stemming from lesions in seemingly disparate brain regions. The 
majority of landmark studies using this technique, however, have focused on focal destructive lesions20–22. In 
this proof of concept study, we applied LNM to cases of epilepsy, secondary to intra-axial mass lesions. Despite 

Figure 2.   Dice similarity coefficient, quantifying degree of overlap between EL_INST and NEL_INSTs; smaller 
number indicates lower degree of overlap. Non-epileptogenic lesions = blue, epileptogenic lesions = red.

Figure 3.   (A) Epileptogenic network associated with tumors. Summed maps computed using the binary 
individual connectivity maps from EL_INST (shaded red) and literature (shaded green) were thresholded at 
50% (i.e., at least 50% of lesion connectivity overlap) and shown on T1-weighted (MNI brain) for visualization 
purposes. (B) Graphical presentation of 7 resting state networks. Figure reproduced with permission from Rojas 
et al.27.
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the absence of significant anatomical overlap between EL_INSTs, we identified discrete functional connections 
with canonical resting-state networks that have been previously implicated in focal or generalized epilepsy. The 
connectivity pattern was externally validated with ELs identified from the literature.

Resting‑state networks connected with epileptogenicity.  Despite a low degree of anatomical over-
lap between lesions within EL_INST and EL_LIT, we were able to identify distinct functional connectivity hubs. 
The percentage volume overlap between these hubs and canonical resting-state networks was highest in the 
Frontoparietal, Limbic, DMN, and Ventral Attention Networks. Using a cohort of non-epileptogenic lesions 
(NEL_INST), we were further able to quantitatively explore the differences in the odds of particular resting-state 
networks being more vulnerable to epileptogenicity. Although our approach was limited by differences in tumor 
histology, it does highlight the importance of comparing with a “control group”. In our case, the DMN was highly 
linked with our non-epileptogenic mass lesions but less so in our epileptgenic network, as shown by the VOR 
analysis. One explanation could be that resting-state networks such as the DMN involve larger brain areas and 
thus have a higher likelihood of overlapping functional hubs across the brain. Hence the importance of conduct-
ing a VOR analysis with a “control” group. Through this approach, we were able to show that while the Limbic 
and Frontoparietal Networks, both previously described in clinical experience in people with epilepsy33,34, con-
tinued to show a high likelihood of being functionally connected with EL_INSTs, the Dorsal and Ventral Atten-
tion Networks along with the DMN were in fact more likely to be functionally connected with NEL_INSTs. The 
areas within the Limbic Network play a key role in epilepsy secondary to their ability to produce and propagate 
synchronized physiological activity35,36–39. Furthermore, structural changes in the thalamus (part of the limbic 
network), including loss of volume over time, have been reported in various forms of epilepsy suggesting the 
critical role of this structure within a broader epilepsy network32,40,41. In addition, the interconnection of limbic 
structures through thalamic nuclei, particularly the anterior thalamic nucleus, has been a target for stimulation 
in the management of epilepsy not amenable to curative resection42.

Our finding that the DMN had a lower likelihood of functional connectivity with EL_INST, compared with 
NEL_INST, is also different from what has been shown with mTLE, for which numerous publications on associ-
ated networks have suggested the importance of both the DMN and the Limbic Network18,43–46. However, we 
did find an increased likelihood of functional connectivity with the Frontoparietal Network, which has broad 
connections with various brain networks, serving as a global functional hub47. Therefore, we postulate that while 
the Limbic Network may be a common conduit for seizure propagation in both epilepsy secondary to mass 
lesions and mTLE, the two forms of epilepsy may differ in their functional association with the DMN and the 
Frontoparietal Networks. Notably, our observed connectivity pattern was validated in an external cohort of 25 
epileptogenic lesions identified from the literature (EL_LIT). This was despite the low anatomical overlap—indi-
cated by the DSC index—between lesions in EL_INST and EL_LIT. It is important to emphasize that our study 
cannot make any conclusions regarding the strength or direction of connectivity with individual regions within 
these networks, given our conservative approach using binary of connectivity masks.

Implications for research and practice.  Demonstrating the engagement of Limbic Network by EL_
INSTs not only reaffirms the important role of this canonical resting-state network in epilepsy but also provides 
preliminary evidence for our approach in applying LNM to larger intra-axial mass lesions. Application of this 
methodology to larger datasets of lesional MRE, including mTLE, can further validate our methods and provide 
additional insight into the resting-state networks implicated in epileptogenicity. Serving to direct our research 
focus to distinct resting-state network-based hypotheses, these can subsequently be supplemented with imaging 
(functional and structural) and neurophysiological methods to better understand the pathophysiology of seizure 
generation, propagation, and termination.

Figure 4.   VOR Maps based on EL_INST and NEL_INST. Voxelwise odds ratios of regions most likely 
connected with (A) epileptogenic lesions versus (B) non-epileptogenic lesions.
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The underlying pathological diagnosis for MRE subjects is heterogeneous. Accepting that additional microen-
vironmental and structural factors are involved in the epileptogenicity of certain lesions (e.g., LGGs and caverno-
mas), LNM can be used to identify locations vulnerable to seizures (due to association with vulnerable networks) 
and, by extension, may help predict post-surgical seizure outcomes. Recently, a network-targeted approach to 
the surgical management of epilepsy was implemented, based on preoperative and postoperative native resting 
state functional imaging; in this study, functional imaging as a biomarker of postoperative seizure freedom had a 
93% specificity and 96% sensitivity48. Given that many subjects in our study were seizure-free postoperatively, it 
was not possible to make meaningful statistical predictions regarding connectivity patterns predictive of seizure-
freedom. We postulate that preoperative functional imaging can serve as a valuable biomarker in epileptogenic 
tumors as well; however, functional imaging is currently not routinely performed in neuro-oncology. Validation 
of the LNM approach may obviate the need for native functional imaging.

Limitations.  Given the novelty of LNM as a research tool in neuroscience and the proof of concept nature of 
our study, it is important to interpret the results of our study with caution. Although our normative database was 
based on a large sample of ~ 1,000 individuals28, the population is comprised of healthy individuals, not neces-
sarily age-matched with our cohorts. With any neurological disorder, including epilepsy, it is well-known that 
functional and structural connectivity can be vastly different between pathologic and healthy brains24. However, 
the MRI hardware and acquisition parameters used in constructing normative connectivity datasets are highly 
optimized, enabling potentially more reliable connectivity patterns with greater reproducibility than native 
rsfMRI. Furthermore, our conservative strategy of thresholding and binarizing connectivity masks was helpful 
in identifying courser patterns of connectivity—rather than granular differences in connectivity strength—that 
are more likely to be preserved in epilepsy patients.

In mTLE, native rsfMRI studies have suggested a difference in connectivity patterns between left- and right-
sided pathology43,49. Our EL_INST cohort was comprised mostly of left-sided lesions. Furthermore, it would 
be ideal to establish a link between seizure semiology and connectivity pattern. Our dataset was too small to 
draw meaningful conclusions regarding lesion laterality and connectivity patterns, but this should be addressed 
in future studies. Furthermore, validation of our findings with an external cohort of ELs adds credence to our 
results.

The pathological entities in the EL_INST cohort were heterogeneous, comprised of neoplastic lesions and 
neuronal/vascular malformations. Each pathology is associated with a different pathophysiology of seizure 
induction35. Furthermore, our NEL_INST cohort was comprised exclusively of brain metastases, lesions that do 
not typically cause seizures. In addition, the specific interaction of each lesion with nearby brain tissue is distinct 
and the irritative zone may span beyond the area segmented manually by us as part of the ROI50. However, our 
identification of distinctly shared functional connectivity networks despite this heterogeneity, and our ability to 
externally validate these findings, further supports the feasibility of LNM in identifying vulnerable resting-state 
networks that, when exposed to the necessary substrate, can induce seizures/epilepsy.

Conclusions
In this proof of concept study of LNM, we have reaffirmed that epilepsy secondary to intra-axial mass lesions is a 
brain network-wide phenomenon. We have shown the potential involvement of canonical resting-state networks 
and suggested the possibly higher vulnerability of the Limbic and Frontoparietal Networks toward epilepto-
genicity. Most importantly, we have demonstrated that LNM can be feasibly applied to large mass lesions. Given 
the methodological limitations of LNM and the preliminary nature of our study, despite our validation with an 
independent dataset from the literature, larger prospective studies with age- and pathology-matched controls 
are needed to validate this approach prior to its broader scale application in epilepsy and large mass lesions. 
LNM could potentially obviate the need for DTI and fMRI, providing significant cost and practical advantages 
to the clinical and research workflow.
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