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the compositional homogeneity 
of the metal particle 
during vapor–liquid–solid growth 
of nanowires
Jonas Johansson1*, niels chr. overgaard2 & Martin H. Magnusson1

the vapor–liquid–solid (VLS) mechanism is probably the most versatile method to fabricate 
semiconductor nanowires and several investigations assume a compositionally homogeneous 
catalyst particle. in this investigation we address the compositional homogeneity of the catalyst 
particle during growth of nanowires. Using diffusion calculations, we show that the particle is indeed 
homogeneous during VLS growth, but can have a strong concentration gradient during vapor–solid–
solid growth, that is, growth with a solid particle. We also show that the response to a concentration 
change is extremely fast, meaning that if the concentration at the surface of the particle changes, the 
entire particle reaches this new concentration effectively instantaneously.

The vapor–liquid–solid (VLS) growth mechanism was first proposed by Wagner and Ellis in  19641 to explain Si 
whisker growth. Later, in the 1970′s, Givargizov contributed significantly to the understanding of the VLS mecha-
nism. He investigated the nanowire diameter dependence of the growth rate, both in terms of the Gibbs–Thom-
son effect and in terms of side facet  diffusion2. In the early 2000′s whisker growth had a renaissance, to a great 
extent spurred by Hiruma’s research in the 1990’s3, and the whiskers grown since then are often orders of magni-
tude thinner and are more commonly referred to as nanowires. Such nanowires, made of III–V semiconductors 
and fabricated using liquid metal alloys (often gold- or group III-based) as catalyst particles, are being widely 
investigated in several application areas, where  photovoltaics4 and solid state  lighting5 are two major ones.

These and other applications demand highly controllable fabrication, which requires a thorough understand-
ing of the nanowire growth process. This fact, often spurred by scientific curiosity, has motivated many efforts 
in developing theories for VLS growth, see for  instance6 for an overview. Many of these theories include the 
composition of the metal catalyst  particle7–9, which is often  explicitly10, or implicitly, assumed to be homogene-
ous. This is summarily justified by the notion that the diffusion through a small liquid drop should be sufficiently 
fast to make the assumption of a homogeneous composition valid. In most cases, as we will show, this is indeed 
true and the assumption is valid. However, a quantitative analysis of the compositional homogeneity of the metal 
particle during VLS growth has until now been missing.

Warranted by the importance of this knowledge, we here introduce a measure for this homogeneity in the 
form of a dimensionless number, which turns out to be related to the Damköhler number and to the mass transfer 
Biot number. We calculate this number and show that in typical cases of VLS growth, it is indeed safe to assume 
that the catalyst particle is homogeneous. Moreover, we estimate the time it takes to homogenize a liquid catalyst 
particle. More precisely, we calculate the time it takes for a particle with zero initial concentration to reach a 
concentration at the solid–liquid growth interface that approaches the concentration at the surface, that is, at 
the liquid–vapor interface. Based on our results, we conclude that diffusion through the liquid catalyst particle 
is rarely the limiting factor in VLS growth of nanowires.

catalyst particle homogeneity
We start our analysis by introducing a measure for the relative maximum concentration difference in the catalyst 
particle during steady state nanowire growth. This measure also describes the compositional homogeneity of the 
particle. Here we assume that the growth proceeds continuously with the steady state axial growth rate, which 
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thus sets the rate that atoms from the liquid incorporate into the solid. The measure is a dimensionless number, 
χ , that we define as

where cmax and cmin are the maximum and minimum concentrations of nanowire-constituting atoms in the par-
ticle, respectively. From this definition it is clear that 0 ≤ χ ≤ 1 , where χ = 0 indicates a compositionally homo-
geneous particle and χ = 1 accounts for the maximum attainable concentration gradient through the particle.

In order to find cmax and cmin we aim to solve the steady state diffusion equation,

with the geometry and the boundary conditions defined in the caption of Fig. 1. In Eq. (2), ∇2 is the Laplacian 
and D and c are the diffusivity and the concentration of the nanowire species in the liquid particle, respectively. 
Thus, we consider the following boundary value problem

with Ŵ = G/(D�) , where G is the axial growth rate of the nanowire and � is the molecular volume of the nano- 
wire species in the solid phase. Since c is, per definition, a harmonic  function11, its maximum and minimum 
values are attained on the boundary of the domain. Using the symmetry of the domain it is easy to see that 
cmax = cS and cmin = c(0) , the latter being the concentration at the origin (the center of the growth interface), 
which we from now on denote c0 . The homogeneity coefficient defined in Eq. (1) becomes

Here we note that both of the concentrations in Eq. (6) are excess concentrations, meaning that the true 
concentrations are cS + ceq at the surface and c0 + ceq is the minimum interface concentration, where ceq is the 
equilibrium solubility of the species in the metal particle. Most importantly, we also assume that the precursor 
material supply is efficient enough to ensure a constant surface concentration, cS , during some finite time interval, 
which is longer than the average time it takes for the species to diffuse through the particle.

The problem at hand is to determine an expression for χ in terms of R , Ŵ , and cS . However, with the geometry 
and boundary conditions according to Fig. 1, Eqs. (3–5) have no analytic solution using the standard technique 
of separation of variables. So, in order to determine an expression for c0 , we first solve Eqs. (3–5) for simpler 
geometries, with the hope of finding a suitable generalization. These analytic calculations are outlined in the next 
section. Here we only mention the general result, which is that c0 = cS − aŴR , where a is a constant with a value 

(1)χ =
cmax − cmin

cmax
,

(2)D∇2c = 0,

(3)∇2c = 0 in B+(R)

(4)c = cS on S+(R)

(5)∂c/∂z = Ŵ on U(R),

(6)χ =
cS − c0

cS
.

Figure 1.  Schematic illustration of the geometry of the hemispherical catalyst particle with the coordinate 
system and boundary conditions indicated. The notation for the different parts of the domain are: B+(R) is the 
interior of the hemisphere, S+(R) is the curved surface of the hemisphere where c = cS , and U(R) is the growth 
interface where ∂c/∂z = Ŵ . In the center of the growth interface (the origin), c = c0 . The subscript “ + ” refers to 
the upper hemispace.
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that depends on the geometry of the catalyst particle. Inserting this into Eq. (6), we can express the homogeneity 
coefficient as a proportionality,

In Table 1, we have listed the values of a for the different dimensionalities and geometries considered. For 
the hemisphere, we show that a = 1/2 in a separate section. The readers without interest in the details of our 
calculations can skip directly to the “Discussion of catalyst particle homogeneity” section without missing any-
thing of essence to our conclusions.

Analytic calculations
Here we show the analytic solutions to Eqs. (3–5) for a few simple geometries and we start with the trivial one 
dimensional case:

The solution to this boundary value problem is c(z) = cS − Ŵ(R − z) and the homogeneity measure in Eq. (7) 
is given by χ = ŴR/cS , that is, a = 1.

Next we solve Eqs. (3–5) in two dimensions, that is, for a semicircle instead of a hemisphere as in Fig. 1. 
With boundary conditions corresponding to those in Fig. 1, but with reduced dimension, we get the solution,

where we have used planar polar coordinates so that r =
√
x2 + z2 and θ = arctan (z/x) . The smallest interface 

concentration is also in this case found in the origin, c(0, θ) = cS − 2ŴR/π , resulting in the homogeneity measure 
χ = 2ŴR/(πcS) , that is, a = 2/π . While these two cases can serve as approximations to the diffusion profile with 
hemispherical boundary conditions (Fig. 1), they are also interesting in their own right. The one-dimensional 
case corresponds to VLS film  growth12 and the two-dimensional case could be relevant for VLS growth of flat, 
fin- or sail-like  structures13.

For the sake of completeness we write down the solution to the two dimensional boundary value problem for 
a rectangular boundary with sides of height R and a top edge of width 2R . At the sides and the top edge c = cS 
and at the bottom edge ∂c/∂z = Ŵ . With these boundary values, the solution to Eq. (2) is

where �n = (n+ 1/2)π . The smallest interface concentration is given by c0 = cS − 2ŴR
∞
∑

n=0

(−1)n

�2n
tanh

�n ≈ cS − 0.675ŴR , resulting in χ ≈ 0.675ŴR/cS ( a ≈ 0.675).
Finally, we generalize the rectangular boundary and solve Eq. (2) in three dimensions with cylindrical bound-

ary conditions. That is, we assume that the catalyst particle is shaped like a cylinder of radius R and height R . The 
concentration at the top circular area and at the side surface is cS and at the bottom circular area (the nanowire 
growth interface) we have the flux boundary condition ∂c/∂z = Ŵ , similar to the previous cases. With these 
boundary conditions, the solution to Eq. (2) is given by

where J0 and J1 are the zeroth and first order Bessel functions of the first kind, respectively. The parameter α0n is 
the nth zero of J0 . The minimum concentration at the growth interface can be calculated as 
c0 = cS − 2ŴR

∞
∑

n=1

tanh α0n
α20nJ1(α0n)

≈ cS − 0.524ŴR , resulting in χ ≈ 0.524ŴR/cS ( a ≈ 0.524).

(7)χ = a
ŴR

cS
.

(8)D
d2c

dz2
= 0, c(R) = cS,

dc

dz
(0) = Ŵ.

(9)c(r, θ) = cS + Ŵr sin θ − ŴR
2

π

(

1+
∞
∑

n=2

1+ (−1)n

1− n2

( r

R

)n
cos nθ

)

,

(10)c(x, z) = cS − 2ŴR

∞
∑

n=0

(−1)n

�2n

sinh (�n[1− z/R])

cosh �n
cos

(

�n
x

R

)

,

(11)c(r, z) = cS − 2ŴR

∞
∑

n=1

J0(α0nr/R)

α2
0nJ1(α0n)

sinh (α0n[1− z/R])

cosh α0n
,

Table 1.  The proportionality constant, a , in Eq. (7) for different model dimensionalities and geometries.

Dimension Geometry a

1D Line, length R 1

2D Rectangle, height R 0.675

2D Semicircle 2/π ≈ 0.637

3D Cylinder, height R 0.524

3D Hemisphere 1/2
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Scaling analysis
Since we have seen that the homogeneity index can be written in the form of Eq. (7) for all the investigated cases, 
we use a scaling approach to show that this proportionality is general and therefore valid for the more realistic 
geometry in Fig. 1. The problem at hand, Eqs. (3–5), contains a characteristic length scale, R , and a characteristic 
concentration, cS . Based on this we introduce the dimensionless variables x = R−1

x and u(x) = c−1
S c(Rx) . With 

these variable changes, Eqs. (3–5) transform into

where we have dropped the overbars and derivatives are taken with respect to the dimensionless variables. The 
parameter γ is given by γ = RŴ/cS . In terms of the new variables, the homogeneity coefficient becomes

We will now express χ in terms of γ , which is the only parameter left in the problem. Let uγ denote the solu-
tion to Eqs. (12–14) for a given scaled flux γ . Specifically, if γ = 0 then u0(x) = 1 in B+(1) . Suppose that we have 
found u1(x) , then we can construct uγ as

which is clearly harmonic and satisfies the boundary conditions. Since it is a solution, it is the unique  solution14. 
Inserting uγ (0) = 1− γ [1− u1(0)] into Eq. (15) we arrive at

which proves Eq. (7), since γ = ŴR/cS , and the proportionality constant a can be identified as a = 1− u1(0).
It is easy to verify that the proportionality in Eq. (17) holds for any reasonable domain if the part of the 

boundary where the flux γ is defined can be described using one characteristic length scale. However, a will be 
different for differently shaped domains and it can only be analytically calculated in certain special cases, as we 
have seen. In Fig. 2 we show numeric calculations of the proportionality constant, a , which serves as a shape 
factor, for different values of the contact angle, θ , describing the shape of the liquid metal particle. The value of 
a remains finite for the full range of θ , with a approaching zero in the small θ limit and a ≈ 0.63 as θ approaches 
180°. We also see that a = 0.5 at θ = 90◦ and in the next section we will show that this is an exact result.

(12)∇2u = 0 in B+(1)

(13)u = 1 on S+(1)

(14)∂u/∂z = γ on U(1),

(15)χ = 1− u(0).

(16)uγ (x) = (1− γ )u0(x)+ γ u1(x),

(17)χ = γ [1− u1(0)],

Figure 2.  The proportionality constant a as a function of the contact angle θ as defined in the inset, calculated 
by finite element modelling and explicit calculation of the homogeneity index according to Eq. (6). Note that 
in the limit as θ → 180

◦ , the radius of the largest modelled particle is almost 100 times the wire radius R , but a 
nonetheless remains limited to 0.63.
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Homogeneity coefficient for the hemisphere
We now turn to the case of the hemisphere. In order to compute a in this case, the new dependent variable 
w(x) = u1(x)− z is introduced. Notice that the function w is harmonic and is a solution to the boundary value 
problem

The boundary condition on U(1) is homogeneous, which allows us to symmetrize the problem about the 
plane z = 0 . In other words, we seek a solution w̃ to the following Dirichlet problem on the entire unit sphere, 
B(1) with surface S(1),

It is well-known that such a problem has a unique solution w̃ , which is infinitely differentiable on B(1) and 
extends continuously onto the boundary S(1) . Furthermore, the reflected function w̃

(

x, y,−z
)

 is also a solution 
to Eqs. (21–22). Since the solution is unique it follows that w̃ is an even function with respect to reflection about 
the plane z = 0 and therefore ∂w̃/∂z = 0 for z = 0 . If we define w to be the restriction of w̃ to B+(1) , then w is 
the desired solution to Eqs. (18–20).

It is clear that u1(0) = w(0) = w̃(0) and the latter can be computed using the mean value theorem for har-
monic  functions11:

where dσ is the surface-area measure on S(1) and |S(1)| = 4π (the surface-area of the unit sphere). We know that 
w̃ = 1− |z| on S(1) and inserting this in Eq. (23) and using, for instance, spherical coordinates it is a trivial task 
to compute w̃(0) = 1/2 . From this follows that a = 1− w̃(0) = 1/2 for the hemisphere in Fig. 1.

Discussion of catalyst particle homogeneity
In this section, we will discuss the homogeneity coefficient, χ , and relate it to nanowire growth experiments, both 
VLS and vapor–solid–solid (VSS) growth. We will also relate χ to other dimensionless numbers.

Since the previously outlined analytically solvable cases can serve as approximations to the more realistic 
problem, the values of a are collected in Table 1, for easy comparison. Here we see that the one-dimensional 
approximation, Eq. (8), gives an error of a factor of two, which can still be acceptable, given the extreme simplic-
ity of this approximation. The cylinder approximation overestimates χ by only 5% and the semicircle one with 
27%. In the next section we will indeed use the one-dimensional approximation when calculating the time it 
takes to refill the particle.

Before we can discuss the homogeneity of the catalyst particle we need to estimate the parameters in Eq. (7). 
Typical growth temperatures for GaAs nanowires are 400–700 °C and the diffusivity of metal atoms in metal 
solvents are all in the range  10–9–10–8  m2/s, depending on temperature and materials  combination15. So, for our 
order of magnitude estimation it will suffice to set DGa ≈ 5 × 10–9  m2/s for the diffusivity of Ga in a liquid Au–Ga 
alloy. This agrees well with the DFT calculation of the Ga diffusivity in liquid Au, 3 × 10–9  m2/s, presented in 
Ref.16. We also set the diffusivity of As in the Au–Ga liquid to DAs ≈ 5 × 10–9  m2/s. This is consistent with the 
approximation used by Roy and  Chhabra15,

where DAB is the diffusivity of solute A in solvent B, dA and dB are the respective atomic diameters, and DBB is 
the self-diffusivity of B. Combining Eq. (24) for the two cases: diffusion of Ga in Au–Ga and diffusion of As in 
Au–Ga, we can eliminate the atomic diameter and the self-diffusivity of Au. Then, since the van der Waals radii 
of Ga and As are almost equal ( rGa = 1.87 Å and rAs = 1.85 Å)17, the approximation DGa ≈ DAs is justified. Our 
estimation of DAs also agrees with the diffusivities of about 4 × 10–9  m2/s, extracted from liquid phase epitaxy 
 experiments18,19 but also measured by Dawson (see Ref.18). Next we approximate the surface concentration as 
cS = xSρ , where xS is the atomic fraction of the nanowire species, and ρ is the atomic density of liquid Au, ρ = 
5.3 × 1028 m-3. The volume of a Ga–As pair in the solid is given by � = 4.52 × 10–29  m3.

Now we can calculate χ for the growth of Au-catalyzed GaAs nanowires growing by the VLS mechanism. 
In order to find an upper limit for χ , we insert the highest axial growth rate that we are aware of, G ≈ 1 μm/s, 
observed for aerotaxy  growth10. We use a large nanowire radius, R = 100 nm and we let the growth be As limited, 
with an As concentration at the surface of 1 at%, xS = 0.01. For this set of parameters we get χ = 4 × 10–4, that is, 
the catalyst particle is very close to being homogeneous also for this extremely high growth rate. This means that 
it is always safe to assume that the particle is compositionally homogeneous for VLS growth and that the axial 

(18)∇2w = 0 in B+(1)

(19)w = 1− z on S+(1)

(20)∂w/∂z = 0 on U(1).

(21)∇2w̃ = 0 in B(1)

(22)w̃ = 1− |z| on S(1).

(23)w̃(0) =
1

|S(1)|

∫

S(1)

w̃(x)dσ(x),

(24)DAB =
dB

dA
DBB,
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growth rate is not limited by diffusion through the liquid catalyst particle. In Fig. 3 we show a numerical calcula-
tion of the concentrations in the catalyst particle for this set of parameters. Here it is clearly seen that the variation 
in concentration is extremely small and that the minimum concentration is at the center of the growth interface.

For the same set of parameters, we can in fact estimate what the growth rate would be if diffusion through 
the liquid were rate limiting. In this case we set χ = 1 and solve for the growth rate, resulting in the enormous 
growth rate G = 240 μm/s. It seems unlikely that crystalline nanowires can form with this high growth rate. On 
the other hand, diffusion through the particle can be rate limiting for VSS growth, where the diffusivity is orders 
of magnitude smaller. Persson et al.20 investigated gold catalyzed growth of GaAs nanowires using chemical 
beam epitaxy, and concluded that the growth proceeded by the VSS mechanism and was limited by Ga diffusion 
through the solid catalyst particle. Indeed, using the data from this investigation, we estimate a homogeneity 
index of χ ≈ 1 , indicating a strong concentration gradient in the particle, consistent with diffusion controlled 
growth. On the other hand, Koryakin et al.21 have investigated gold catalyzed growth of InAs nanowires at very 
low temperatures and also in this case, VSS growth was concluded. However, their relatively high diffusivity and 
their low growth rate led to a very low homogeneity index, χ ≈ 10−5 . That is, the particles seem homogeneous 
and diffusion through the bulk of the particle cannot be rate limiting. This is not in conflict with the conclusions 
of Koryakin et al., who found that the growth is limited by diffusion of As along the nanowire–catalyst interface, 
which limits the nucleation rate of new  layers21.

So far we have used a steady state model, meaning that the flux into the particle equals the flux out of the 
particle, which is equivalent to the growth rate. In certain experimental situations this steady state is broken so 
that the supply of material is smaller than the growth rate. This happens if the total amount of excess material in 
the seed particle is not large enough to complete one layer, that is if cS < 2

√
3/
(

a2LR
)

 for a cylindrical nanowire 
growing in a {111}-direction with a hemispherical particle, where aL is the lattice constant. This corresponds to 
xS < 2

√
3/
(

a2LRρ
)

 , which evaluates to approximately 0.002 for R = 100 nm and 0.02 for R = 10 nm. Thus, for 
sufficiently thin wires, the excess amount of material in the catalyst particle will not suffice to complete a layer.

This leads to a situation where the layer nucleates and grows using both the (small) initial supply in the 
particle and the flux from the vapor phase. When this small initial supply is consumed, the concentration in the 
particle reaches a certain critical concentration related to a minimum in the Helmholtz free  energy22, which we 
here estimate as ceq ( c0 = 0 ), which in any case should be the lower limit of this concentration. After this the 
growth rate of the remaining part of the layer is limited by the flux from the vapor phase and will thus proceed 
slower than initially. For VLS growth, this effect is known as the “stopping effect”23. As we will show in the next 
section, the timescale for diffusion through the liquid is fast enough for steady state diffusion to set in almost 
immediately after the concentration is changed. Here we also mention that even in the case when the amount of 
material in the particle is sufficiently large so that there is no “stopping effect”, there can still be some temporal 
variation of the concentration and thus of the supersaturation, which gives rise to anti-correlation of nucleation 
events, so called nucleation anti-bunching24.

Finally, we discuss χ in terms of other dimensionless numbers. The Damköhler number is defined as the 
reaction rate constant divided by the diffusion rate constant, Da = kr/kd

25. If the nanowire growth rate can be 
described as a pseudo first-order process, the reaction rate constant can be written as kr = G/(�c0) . The diffu-
sion rate constant is given by kd = D/(aR) . This leads to

Using Eq. (6) we substitute c0 = cS(1− χ) in Eq. (25) to arrive at Da = χ/(1− χ) , or

As the Damköhler number measures the growth rate in comparison to the diffusion rate, this can be a con-
venient route to estimate the catalyst particle homogeneity. We immediately see that if Da ≪ 1 , which it is for 

(25)Da = a
GR

D�c0
.

(26)χ =
Da

1+ Da
.

Figure 3.  Numeric calculation of the concentration in the catalyst particle for the parameters D = 5 × 10–9  m2/s, 
cS = 5.3 × 1026 m-3, � = 4.52 × 10–29  m3, G = 1 μm/s, R = 100 nm. The color scale indicates the (very small) 
concentration gradient.
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VLS growth, then χ ≈ Da. On the other hand, for materials systems where Da ≫ 1 , χ ≈ 1 and the growth is 
limited by diffusion through the particle.

Another relevant dimensionless number is the mass transfer Biot number, Bim . It is defined as the mass 
transfer rate at the interface divided by the mass transfer rate in the  bulk26. Since the interface mass transfer in 
this system is identical to the growth rate, we have that Bim = Da.

Diffusion time
In this section we calculate the time it takes to diffuse through the particle and refill it again to some small super-
saturation after a stopping event, so that growth can proceed. To calculate this time, we use the one-dimensional 
approximation and we change the coordinate system as compared to Eq. (8), so that the particle surface is located 
at z = 0 and that the interface is located at z = R . The concentration is still the excess concentration (so that 
c = 0 means that the true concentration is ceq ). Since we will calculate the refill time, we solve the time depend-
ent diffusion equation with a zero flux boundary condition at the interface, emulating a situation where growth 
has stopped, according to

In the similar, standard case, no flux boundary condition is imposed and then the solution is given by

where erf x is the error function, defined by erf x = 2√
π

x
∫
0
exp

(

−y2
)

dy . The solution to the original problem, 
Eq. (27), can be constructed by summing translated as well as translated and reflected error function solutions 
according to Eq. (28), so that all conditions in Eq. (27) are  met27, which leads to

where ζ = z/R and r = R/
(

2
√
Dt

)

.
In Fig. 4, we plot (cS − c0)/cS , where c0 = c(R, r) , the concentration at the growth interface, as a function of 

r , our rescaled time variable. We see that as r decreases, or time increases, c0 approaches cS . The inset shows the 
concentration profiles, that is (cS − c)/cS as a function of ζ (where ζ = 0 at the surface and ζ = 1 at the growth 
interface), for different values of r . Using Fig. 4, we can calculate the time it would take for the excess interface 
concentration to increase from 0 to just below cS , that is, the time it takes to make the particle homogeneous. If 
we for instance choose c0 = 0.99cS as a homogeneity criterion (corresponding to χ = 0.01 ), then for D = 5 × 10–9 
 m2/s and R = 100 nm, we get t = 4 µs. If we instead require c0 = 0.999cS (or χ = 0.001 ), we get t = 6 µs for the 
same choice of parameters. It is interesting to note that this time is independent of the value of cS , depending 
only on the required ratio, c0/cS , and for relevant ratios for the homogeneity condition, it depends only weakly 
on this ratio.

Based on these time estimations we conclude that diffusion through the particle indeed occurs on a much 
faster time scale than it takes to grow a layer (0.5 ms/layer for Aerotaxy, typically much longer for MOVPE). 
This implies that after any change in surface concentration, the interface concentration approaches the surface 
concentration almost instantaneously, which in turn implies that the particle is always compositionally homo-
geneous, even if its concentration varies with time. Since we have used the one-dimensional approximation we 
expect the calculated times to be overestimated by a factor of two, which would make the homogeneity argument 
even stronger, and is in any case accurate enough for an order of magnitude estimation.

conclusions
We have investigated the compositional homogeneity of the metal catalyst particle during VLS (vapor–liq-
uid–solid) growth of nanowires. We have introduced a homogeneity measure in the form of a dimensionless 
number and using steady state diffusion calculations we show that the catalyst particle is homogeneous during 
VLS growth but that there can be a large concentration gradient through the particle in the case of VSS growth, 
that is, growth with a solid particle. We have also performed time dependent calculations, which show that the 
response to a concentration change can be considered instantaneous on the time scale relevant for VLS growth. 
To conclude, the catalyst particle is homogeneous even if the concentration can vary with time, depending on 
the growth conditions and the size of the particle. The growth rate is not limited by diffusion through the particle 
for VLS growth of nanowires.

Methods
The analytical, steady state solutions to the diffusion equation, Eq. (2), were obtained using the Fourier method, 
that is, separation of variables. The time dependent solution to the zero flux boundary problem, Eq. (27), was 
obtained by summing and subtracting translated and reflected as well as only translated error function solutions, 
which also satisfy the diffusion equation, so that the derivative at the specified location becomes zero and that 
the surface concentration still has the desired value. This technique has been described by  Crank27.

(27)
∂c

∂t
= D

∂2c

∂z2
, c(z, 0) = 0, c(0, t) = cS ,

∂c

∂z
(R, t) = 0.

(28)
cS − c(z, t)

cS
= erf

z

2
√
Dt

,

(29)

c0 − c(ζ , r)

c0
= erf ζ r+

∞
∑

n=0

[erf(−ζ r + 2(2n+ 1)r)− erf(ζ r + 2(2n+ 1)r)]+
∞
∑

n=1

[erf(ζ r + 4nr)− erf(−ζ r + 4nr)],
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The numerical solution to the hemispherical problem was performed with finite element modelling (FEM), 
using COMSOL Multiphysics  software28. Equations (3–5) were here solved numerically using a rotated two-
dimensional version of the geometry defined in Fig. 1, and a typical result for realistic parameter values is shown 
in Fig. 3 (solved in 3D for this illustrative plot). The parameter a for varying shapes of the seed particle (spherical 
segments with contact angle θ ) plotted in Fig. 2 was also calculated using FEM in a rotated 2D geometry, with 
the number of mesh elements at the particle–wire interface constrained to 100 regardless of particle size.
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