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An entropy‑based framework 
to analyze structural power 
and power alliances in social 
networks
Andreas Dellnitz1* & Wilhelm Rödder2

Power is a central phenomenon in societies. So for ages, numerous power perceptions in philosophy 
and sociology have existed. Measuring power of an actor in its social fabric is a difficult issue, however. 
After sketching first attempts for this in social network analyses, we develop a new power theory. To 
this end, we distinguish between vertices in the network and actors acting in vertices. Vertices get 
structural power potential from their position in the net. In an entropy-driven model such potential 
can be calculated for all vertices; for selected networks, the method is exemplified. Actors in vertices 
can deploy power potential once they have respective personal skills, and dominate actors in adjacent 
vertices. If chosen with suitable care, an alliance of actors can even dominate the whole network. The 
findings are applied to the famous 9/11-network with 34 vertices and 93 edges.

A short survey of power perceptions in history.  Power is a central phenomen in societies: Who exerts 
power on whom, to which degree, using which resources and at which costs. Following Witte1 even in the animal 
kingdom we observe manyfold power relations perhaps indicating an evolutionary setting. In occidental cul-
tures, the issue of power was and is omnipresent. Linguistic terms with different etymologic roots like Anweald, 
Auctoritas, Macht, Maht, Potentia, Potestas, Pouvoir, Power refer to this. According to Platon exertion of power 
is part of human nature. Aristoteles brings into focus hierarchical dominance structures like slavery, despotism 
and political sovereignty. Often the consideration of power served as a justification of brute force executed by 
church or state, e.g. Padua2, Ockham3, Hobbes4, Marx5, then broaden this narrow view. So Ockham as well as 
Marx detect estate/capital as an instrument of power. Witte perceives different power systems1

•	 according to their extent (individual, micro, meso, macro),
•	 according to quality (affective, cognitive, conative).

This distinction then adds up to different forms of social power: expert power, information power, power by 
pressure, power by reward.

In all aspects presented so far there was little attempt to measure power. Jakob Moreno in 1925 emigrated from 
Vienna to the US and wrote his pioneering article6 “Who shall survive: a new approach to the problem of human 
interrelation”. For the first time sociological relations between actors were illustrated by graphs. Further research 
of sociologists made graphs a successful tool to measure structural characteristics of the social fabric, like central-
ity, closeness, betweenness, etc. But only in the 1960s did the very question come up of how to measure power.

Power in social networks.  Social Networks (SN) are sets of actors and their manifold relations. Graphs, 
hypergraphs and multigraphs are modern tools to illustrate such networks. A first introduction we find in the 
textbooks of Jansen7 or Scott8; the reader interested in more sophisticated mathematical models might tend 
to study the compendium of Newman9. Importance, prestige, reputation or roles of actors can be analysed in 
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graphs, and the findings offer respective indices. Even if mankind, for ages, was and is interested in power, the 
issue in SN appears only in the 1950s10. Emerson11 gives a descriptive model of power, and his findings are 
enhanced by Zegler12. Such approaches give explications of fiefdom, instruments and resources of power, respec-
tive costs, etc.; an exact measure of power is still missing. But already Emerson11, and later Cook et al.13, as well 
as Bonacich14, perceived the necessity of a real world experimental design to measure power: exchange networks. 
In laboratory experiments, subjects negotiated with others for “profit points”. After a long run of transactions 
in such an exchange process the power index of each subject was the total profit accumulated13. Bonacich14 fol-
lowed Katz15 and accomplished a mathematical model which confirmed those experimental results. Bozzo and 
Franceschet16 say—perhaps in reference of Emerson—on page 76 that “an actor is powerful if it is connected to 
powerless actors”. From this basic concept they develop complex mathematical equations. However, the strict 
numerical reciprocity between power and non-power at least is doubtable.

Power theory, of course, is widely reflected and studied in political social networks. Because of its considerable 
list of references and because of its graph-orientation we name the work of Smith et al.17. Following Bonacich, 
the authors distinguish between “power as access” and “power as control”. They therefrom derive two forms 
of influence among actors: positive (a powerful actor is backing its neighbour) and negative (a powerful actor 
is subduing its neighbour). Their developments result in an ambitious parametric model—yet the calibration 
might turn out difficult.

Whether power of an actor is mainly based on the position in the network or on personal skills, is a central 
question in sociology18. Cook et al.13 on page 287 come to the conclusion: “Relative positional dependence across 
the network of connected exchange relations determines power...”. We agree but generalize. A vertex’s structural 
power comes from the network’s structure and its position therein. An actor acts in a vertex and deployes struc-
tural power via its personal skills. And this combination of both aspects will allow for a new theory of power.

This paper is organized as follows: In “Narrative motivation” section, we give a narrative introduction to the 
new concept followed by symbolics in “Probabilistic conditionals and structural power” section. “Structural 
power of vertices” section transforms the idea into a mathematical framework enabling the calculation of struc-
tural power for all vertices in a network. “Structural power in selected networks” section analyzes numerous 
networks; the results are compatible with those of Cook et al.13, Easley and Kleinberg18, Bonacich14. A vertex 
has structural power, the actor in the vertex deploys it. An alliance of deploying actors can dominate the whole 
net. All this is developed in “Deployment of structural power” section. In “Power alliances in networks” section, 
we apply the new method to the well-known 9/11 network. “Resumé and the road ahead” section is a summary 
and shows possible future research.

Structural power in in a probabilistic conditional framework
Narrative motivation.  We distinguish between vertices and actors in networks. Only this separation per-
mits a fruitful merger of structural and personal power and redounds to a new theory of power. Our concept 
follows four rules: 

1.	 Structural power of a vertex exclusively depends on its position in the network.
2.	 If an actor is fully able to exert his personal power on any other actor, the latter is powerless.
3.	 An actor like in 2. is always able to completely deploy a vertex’s structural power. The greater this structural 

power, the greater the actor’s influence in the net.
4.	 The aggregation of 1. to 3. creates a scientifically profound power pattern in the net.

1. meets the findings of Emerson11, Cook et al.13, Easley and Kleinberg18. Results will be presented for numerous 
networks in “Structural power in selected networks” section. Rule 2. follows the logic of Bozzo and Franceschet16. 
Rule 3. is possible disposabilty of powerful actors in any vertex. The postulation can be weakend anytime, but 
for the sake of intelligibility of the model we maintain it.

Personal power comes from an actor, structural power comes from a vertex. The latter is essential in our work 
and will be modeled in an information theoretical framework. This is what the next section is about.

Mathematical model.  Probabilistic conditionals and structural power.  Rules 1. to 4. of “Narrative mo-
tivation” section result in the following mathematical framework. Consider an undirected graph with vertices 
V = {V} , |V| = n , and corresponding edges. Each vertex Vi ∈ V is a boolean variable Vi = 1 or Vi = 0 . The 
semantics reads: For Vi = 1 the vertex houses an actor with full personal power, for Vi = 0 the actor is power-
less. v = (V1 = 0/1,V2 = 0/1, . . . ,Vn = 0/1) are repsective 2n configurations. On {v} we install probability 
distributions Q . They are the medium conveying power relations in the net. From all possible Q we choose the 
ones which obey probabilistic conditionals Q(Vj = 0 | Vi = 1) = 1. for all adjacent vertices Vi , Vj . | is the well-
established conditional operator. The semantics of such a conditional reads:

A conditional is of if-then-type; it does not imply facts. Postulating such conditionals for all adjacent vertices 
and in either direction illuminates the whole net’s possible power patterns. The next section gives further details.

If an actor in Vi had full personal power (Vi = 1)
and

if it were able to exert this power fully on an actor in Vj (1.),
then

the actor in Vj would be absolutely powerless (Vj = 0).



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:10697  | https://doi.org/10.1038/s41598-020-67542-0

www.nature.com/scientificreports/

Structural power of vertices.  For {v} and Q like in the last section, we solve the optimization problem (1)

H(Q) is the entropy in Q . H measures the conditional structure in a distribution: The less events in {v} condition 
each other, the greater H19. Maximizing H is a prudent form of generating Q ; not intended dependencies are 
avoided. Equation (1) has a very stringent axiomatic justification; it is called the MaxEnt-principle20. For a more 
intuitive introduction also cf. Rödder et al.21. Q and all probabilistic structure therein is inferred from the given 
conditionals. This inference process is an established concept in artificial intelligence, see the fundamental work 
“Recall and Reasoning—an information theoretical model of cognitive processes”22.

The restrictions are probabilistic conditionals. Q then is the distribution with maximal entropy among all Q 
feasible in (1). H(Q ) is the remaining uncertainty about (conditional) structural power relations in the net: If all 
vertices are isolated, i.e. for an empty set of restrictions, it counts − log2 1/2

n = n . If only one configuration is 
feasible in (1), H vanishes; only one structural power pattern is left.

The probabilities Q(Vi = 1) , for i = 1, . . . , n , allow for the calculation of all vertices’ structural power. It is 
well known that − log2 Q(Vi = 1) is the information a system receives when Vi = 1 becomes true. Any textbook 
on information theory relates to that23,24. In our context, this information gain is realized when an actor exerts 
its full personal power in the vertex and makes the probability Q(Vi = 1) to 1. The information gain measures 
change of (conditional) power relations in the net19 and our observations in “Deployment of structural power 
and dominance” section. The higher the change potential of a vertex, the more influence an actor would have in 
the net. This is a good reason for the following definition.

Definition 1  spi = −log2Q(Vi = 1), i = 1, . . . , n , is (structural) power potential in the network, any vertex Vi.

For a three-vertex-path network we exemplify.

Example 1  Figure 1 shows a three-vertex-path with undirected edges.

Corresponding restrictions in Eq. (1) read

Conditionals in parentheses are redundant as they follow from the left ones. If any vertex houses a powerful 
actor (V = 1) , and if this actor fully dominates the adjacent vertices’ actors, then these are powerless (V = 0) ; 
see also our narrative explanations in the previous section.

Table 1 shows the contingency table of Q.

Structural power of nodes V1,V2,V3 counts  sp1 = −log21/5 = 2.322 ,  sp2 = −log22/5 = 1.322 , 
sp3 = −log22/5 = 1.322 . The results confirm our intuition: V1 has greatest structural power, V2 and V3 are 
next.�  ⋄

The following section presents structural power for a set of selected networks.

Structural power in selected networks.  For all nets from Figs. 2 and 3, we now determine structural power for all 
vertices and compare the results with those of other methods. Figure 2a, b name and visualize the nets, Table 2 
gives all results. The leading column indicates nets, the headline vertices, the entries in the matrix are sp-values 
and rankings. To solve (1) for all nets, we use the optimization software SPIRIT25. After presenting the data, 
results of the new method are compared with those of Cook et al.13, Easley and Kleinberg18, as well as Bonacich14.

The nets 1, 2, 6 are complete graphs whose vertices have equal structural power, see Table 2 and the statements 
of Cook et al., p. 281. Net 3 is the star; here vertex V1 shows the highest, and the peripheral vertices equal and 
lower power. This confirms our intuition and the statements of Cook et al., again on p. 281. The nets 4, 5, 8 are of 

(1)
Q = argmax H(Q) = −

∑
v
Q(v)log2Q(v)

s.t. Q(Vj = 0 | Vi = 1) = 1. ∀ i �= j and adjacent.

Q(V2 = 0 | V1 = 1) = 1. (Q(V1 = 0 | V2 = 1) = 1.)

Q(V3 = 0 | V1 = 1) = 1. (Q(V1 = 0 | V3 = 1) = 1.).

V1

V2 V3

Figure 1.   Three-vertex-path.
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type vertex-path with 3, 4 and 5 vertices. In the first net, V1 has highest structural power, in the second one V2,V3 
are best and in the five-vertex-path V2,V3 outplay V1 , and V4,V5 are last. Easley and Kleinberg18 confirm these 
results on page 345 and so do Cook et al.13 on p. 287 ff. We note that in the five-vertex-path centrality and power 
definitely differ. Power in the nets 10, 11, 13 was determined by simulation instead of laboratory experiments. For 
nets 11, 13 the sp-method shows matchable results, not so for net 10. Here the results of the new method match 
those of Bonachic but not those of computer simulations. For nets 7 and 8, also Easley and Kleinberg18 confirm 
our results. Net no. 13—the locomotive—impressively highlights the difference between centrality and power. 
V3 has CD = 4 , CB = 12 , CC = 0.1 and hence is “pretty central”. Its power sp3 = 2.43 is significantly smaller than 
that of vertex V4 , however, and even than that of V6 , cf. numbers and ranking in Table 2.

The consistency between results in experimental exchange nets and the sp-method only at a first glance is 
surprising. Exchange networks determine power by disposable force of transactions upon actors whereas the 
sp-method focuses on suppression as the driving force of power. Apparently, the vehicle “exchange” very consist-
ently detects power structures in networks, but unfortunately is restricted to very small nets.

The sp-method measures structural power in vertices, but how can an actor deploy this power? The next 
section gives the answer.

Deployment of structural power and dominance
Deployment of structural power.  Once power of vertices is calculated, all classical methods sketched so 
far end in these results. Not so for the new sp-method. Because of the separation of vertices and actors, housed 
in vertices, the analysis can and must proceed: What happens when an actor deploys the structural power of a 
vertex? And if it does, how does this deployment alter the network? How does it alter the remaining structural 
power in the vertices?

•	 Increasing the probability Q(Vi0 = 1) to 1. means deployment of structural power in vertex Vi0 and its exer-
tion on actors in adjacent vertices.

Table 1.   Contingency table of Q for the three-vertex-path.

V1 V2 V3 Q

1 1 1 0

with Q(V1 = 1) = 1/5

Q(V2 = 1) = 2/5

Q(V3 = 1) = 2/5

1 1 0 0

1 0 1 0

1 0 0 1/5

0 1 1 1/5

0 1 0 1/5

0 0 1 1/5

0 0 0 1/5

V1 V2

1) Dyad

V1 V2

V3

2) Triad

V2 V3

V1

V4

3) Star

V1

V2 V3

4) Three-vertex-path

V2 V3

V1 V4

5) Four-vertex-path

V2 V3

V1

V4

6) Quadriad

V3

V1 V2

V4

7) Spade

Figure 2.   Selected networks.
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•	 Because of structural dependencies expressed in restrictions of problem (1), this makes actors in adjacent 
vertices powerless.

•	 Furthermore, this act has an impact on the whole conditional structure in the network—and not only on 
neighbors of Vi0.

To realize this deployment, solve

The following example shows respective results for the locomotive network. Corresponding Eqs. (1) and (2) you 
find in “Supplementary material”.

Example 2  Solving (1) for the locomotive net yields Q(Vi = 1) , i = 1, . . . , 8 , like in Fig. 4. The probabilities are 
the entries in the bars Vi = 1 . Q(V4 = 1) = 0.116 is smallest and, consequently, sp4 = −log2Q(V4 = 1) = 3.104 
shows greatest structural power, see Fig. 5.

Now solving (2) like in "Supplementary material" means deployment of structural power in V4 . This results 
in probabilities like in Fig. 6 and remaining structural power like in Fig. 7.

The bar V4 = 1 now shows 0 and for adjacent vertices 1, 2, 3, 5 the bars show ◦◦ . Neither structural power in 
V4 nor in adjacent vertices is deployable further on.

The numbers in the headings of Figs. 5 and 7 are entropies and hence remaining uncertainty about power 
relations in the net. Before deployment we had H(Q) = 5.426 and afterwards remains H(Q

(4)
) = 2.322 . The 

difference H(Q)−H(Q
(4)
) equals the amount of information sp4 = −log2Q(V4 = 1) = 3.104 put into the 

network.�  ⋄

(2)

Q
(i0) = argmax H(Q) = −

∑
v
Q(v)log2Q(v)

s.t. Q(Vj = 0 | Vi = 1) = 1. ∀ i �= j and adjacent.

Q(Vi0 = 1) = 1.

V1

V2 V3

V4 V5

1) Five-vertex-path

V1 V2 V3

V4

V5

2) T

V7

V3

V1

V2 V4

V5 V6

3) Cook (d)

V10 V9

V4

V1

V5 V2 V3 V8

V6 V7

4) Cook (e)

V11 V10

V12 V4 V3 V9

V13 V1 V8

V2

V5 V6 V7

5) Cook (f)

V1 V2 V7

V4 V3 V6

V5 V8

6) Locomotive

Figure 3.   Selected networks (continued).
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After this process vertices V1 , V2 , V3 , V4 , V5 are all completed, not so V6 , V7 , V8 . They build the remaining 
subgraph to be dealt with in the next step, see Example 2 (continued).

Example 2 (continued).
The vertices of the subgraph 

Table 2.   sp-method, structural power and rankings.

Network

Vertex

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

1
sp 1 1

Ranking 1 1

2
sp 2 2 2

Ranking 1 1 1

3
sp 3.17 1.48 1.48 1.48

Ranking 1 2 2 2

4
sp 2.32 1.32 1.32

Ranking 1 2 2

5
sp 1.42 2 2 1.42

Ranking 3 1 1 3

6
sp 2.32 2.32 2.32 2.32

Ranking 1 1 1 1

7
sp 1.22 2.81 1.81 1.81

Ranking 4 1 2 2

8
sp 1.02 2.12 2.12 1.37 1.37

Ranking 5 1 1 3 3

9
sp 1.22 2.81 1.22 1.81 1.49

Ranking 4 1 4 2 3

10
sp 2.13 1.96 1.96 1.96 1.43 1.43 1.43

Ranking 1 2 2 2 5 5 5

11
sp 1.56 2.92 2.92 2.92 1.20 1.20 1.20 1.20 1.20 1.20

Ranking 4 1 1 1 5 5 5 5 5 5

12
sp 1.28 3.94 3.94 3.94 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Ranking 4 1 1 1 5 5 5 5 5 5 5 5 5

13
sp 2.10 2.10 2.43 3.10 1.18 2.62 1.26 1.26

Ranking 4 4 3 1 8 2 6 6

Figure 4.   Solution of (1) for the locomotive.
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V7 V6 V8

show sp7 = sp8 = 1.322 and sp6 = 2.322 , see Fig. 7. Now deploying the structural power of vertex V6 means 
solving (3).

The only feasible solution to this equation is the configuration

(3)

Q
(4,6)

= argmax H(Q) = −
∑

v
Q(v)log2Q(v)

s.t. Q(Vj = 0 | Vi = 1) = 1. ∀ i �= j and adjacent.

Q(V4 = 1) = 1.

Q(V6 = 1) = 1.

Figure 5.   Structural power of vertices for the locomotive.

Figure 6.   Solution of (2) for the locomotive.
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The uncertainty about structural power relations in the net reduces from H(Q
(4)
) = 2.322 to H(Q

(4,6)
) = 0 . Two 

actors in vertices V4 and V6 , if forming an alliance, can dominate the whole net.�  ⋄

How to find such alliances in general networks is the topic of the following section.

Power alliances in networks.  Basics on power alliances.  Following the reasoning of the last section, we 
now develop an algorithm in such a way that

•	 in a subset of all vertices deployment of structural power is realized. Such vertices are called dominant,
•	 only adjacent of dominant vertices become powerless,
•	 all vertices are either dominant or powerless,
•	 the number of dominant vertices is minimal.

Definition 2  A set of vertices achieving all bullet points is called a minimal power alliance.

To find a good power alliance, we could proceed as follows: 

1.	 Find a vertex with maximal sp.
2.	 Deploy structural power in such a vertex.
3.	 If H=0, then STOP.
4.	 Goto 1.

The following algorithm details steps 1. to 4.

(V1 = 0,V2 = 0,V3 = 0,V4 = 1,V5 = 0,V6 = 1,V7 = 0,V8 = 0).

Figure 7.   Remaining structural power after deployment in V4.
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Algorithm 1: Power alliance

solve (1) for a given net
let Q and H(Q) be an optimal solution to (1)
if H(Q) > 0 then

initialize an empty array I = ()
while H(Q) > 0 do

calculate spi = −log2Q(Vi = 1), i = 1, . . . , n
determine i0 = min[argmax

i
{mpi|0 < Q(Vi = 1) < 1}]

make I = (I; i0)
solve (1) with Q(Vi = 1) = 1 ∀i ∈ I

let Q
I
and H(Q

I
) be an optimal solution to the current problem

now replace Q = Q
I
and H(Q) = H(Q

I
)

end

(Vi = 1) ∀i ∈ I is the power configuration we searched for

else

the power configuration is already fixed
end

Whether Algorithm 1 always finds a minimal power alliance is an open question. As it uses the arg max-
function, it is of greedy type and might fail optimality in some networks.

Determining minimal power alliances is equivalent to solving the so-called min#MIS problem in graph 
theory26. Here, min#MIS means minimal cardinality Maximal Independent Set. For such problems, classical 
optimization software is disposable, e.g. MATLAB or GAMS. Equation (4) shows the respective binary optimi-
zation problem.

The ãij are entries of the adjacency matrix complemented by 1s in the diagonal. For an optimal solution to (4), a 
minimal power alliance then reads: If xi = 1 , make Vi a dominant vertex and non-dominant, otherwise.

In the next section, we apply Algorithm 1 and (4) to selected networks.

(4)

min
∑n

j=1 xj
s.t. ãijxi + ãijxj ≦ 1 ∀ i �= j and adjacent∑n

j=1 ãijxj ≧ 1 ∀ i

xi ∈ {0, 1} ∀ i.

1

2
3

4

5

6

7

89
10

11
12

13
14

15

16

17

18

19

20

2122 23

24

25
26 27

28

29 30

31

32

33

34

Figure 8.   9/11-network; reference27.
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Power alliances in selected networks.  First, we study the undirected graph of the terrorism network as presented 
by Latora and Marchiori27. It counts 34 vertices and 93 edges. The edges represent relations between actors like 
“who lived with whom”, “which hijackers ordered tickets at the same time”, “who had joint flight training with 
whom”, etc. Even if these relations are pretty inhomogenous, we follow earlier network analyses and consider 
respective edges as equal value. The network is shown in Fig. 8. Solving (1) for this 9/11-network results in 
structural power indices sp as in Table 3. Furthermore, the table shows centralities CD , CC , CB and rankings of 
all indices.

Vertex V1 is most central and has maximal structural power. Vertex V2 has rank 7 for CD , rank 4 for CC and 
rank 6 for CB ; only sp-ranking is a poor 14. Further inspection of Table 3 indicates very clearly the difference 
between centrality and power. The names of terrorists in vertices are given in Table 4.

To vertex V1 Mohammed Atta is assigned. Very likely, he was the head of all crash pilots. Power and centrality 
coincide. The actor in V2 was Salem Alhazmi. Salem Alhazmi was subordinate to pilot Hani Hanjour28. However, 
his closeness to Hani Hanjour gives him a high centrality but by no means a high power, namely rank 14, see 
above. While classical rankings only take into account the graphical structure of vertices and edges, sp does 
something more. It perceives or feels an actor’s powerlessness even when this actor is central in the social fabric.

As to alliances, Algorithm 1 yields ( V1 = 1 , V6 = 1 , V16 = 1 , V26 = 1 , V28 = 1 , V30 = 1 , V34 = 1 ). 6 out of 34 
actors dominate the whole network and this result is identical with that of (4), the min#MIS algorithm.

For all networks from Table 2, the results of Algorithm 1 and (4) also coincide, except for network 10. Hence, 
Algorithm 1 not always yields optimality, but has the advantage of transparency: In the 9/11-example, the first 
actor to be selected is in V1 , then the next in V6 , V16 , V26 , V28 , V30 , V34 , in this order. Knowledge about the impor-
tance of vertices in the net allows for a competent assignment of actors with personal skills. Hopefully, this eureka 
moment is present in any (non-)governmental organization.

Table 3.   Selected centrality measures and sp-indices.

Vi CD Rank CC Rank CB Rank sp Rank

i = 1 16 1 0.0185 1 319.9649 1 6.5507 1

i = 2 7 7 0.0161 4 84.4331 6 2.5609 14

i = 3 10 3 0.0169 3 203.9172 2 4.7788 4

i = 4 4 20 0.0127 19 64.0000 9 1.8958 21

i = 5 14 2 0.0172 2 170.1335 4 5.4295 3

i = 6 10 3 0.0145 7 194.9201 3 5.4652 2

i = 7 7 7 0.0159 5 116.3470 5 3.5505 5

i = 8 8 6 0.0141 9 67.5500 7 3.2372 8

i = 9 9 5 0.0159 5 65.2157 8 3.1152 10

i = 10 7 7 0.0137 11 30.2262 12 2.9222 12

i = 11 4 20 0.0125 22 0.0000 25 1.5967 25

i = 12 6 11 0.0128 18 36.9657 11 3.1817 9

i = 13 3 24 0.0101 31 0.0000 25 1.7906 22

i = 14 3 24 0.0101 31 0.0000 25 1.7906 22

i = 15 1 32 0.0099 33 0.0000 25 1.0330 33

i = 16 3 24 0.0115 28 2.1667 22 2.2662 16

i = 17 2 30 0.0111 30 0.0000 25 1.4041 29

i = 18 3 24 0.0122 25 0.0000 25 1.3265 30

i = 19 5 16 0.0143 8 29.8651 13 1.5567 26

i = 20 7 7 0.0133 14 11.5833 16 3.4491 6

i = 21 5 16 0.0127 19 0.0000 25 1.9909 19

i = 22 6 11 0.0130 17 4.0000 20 2.6440 13

i = 23 5 16 0.0127 19 0.0000 25 2.0591 17

i = 24 4 20 0.0141 9 25.4246 14 1.4130 28

i = 25 6 11 0.0133 14 48.9479 10 3.4024 7

i = 26 4 20 0.0125 22 10.5017 17 2.2728 15

i = 27 3 24 0.0118 26 4.4184 19 1.7057 24

i = 28 2 30 0.0115 28 3.4667 21 1.3193 31

i = 29 6 11 0.0135 13 0.9167 23 2.0286 18

i = 30 6 11 0.0132 16 4.8333 18 2.9671 11

i = 31 3 24 0.0123 24 0.9167 23 1.2454 32

i = 32 5 16 0.0137 11 23.2857 15 1.9141 20

i = 33 1 32 0.0116 27 0.0000 25 1.0155 34

i = 34 1 32 0.0090 34 0.0000 25 1.4515 27
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Structural power is a new concept in power theory, detached from any costly laboratory experiments. Identify-
ing alliances then is a natural continuation of this concept. All these findings can be realized even for networks 
comprising umpteen vertices.

Resumé and the road ahead
Power is an omnipresent phenomenon in human societies and an ongoing concern for sociologists, politicians 
and economists. In this paper, we first give a short overview of power perceptions in history. Sociologists very 
early analyzed power relations and detected their central determinants: instruments of power, fiefdom, power 
resources, costs of power, etc. A general method to measure power was missing for a long time. Only from the 
1960s attempts were made to fill this gap: It was the birth of exchange networks. An actor is powerful when it 
has many alternatives of action to negotiate with others.

In this paper, an abstract concept of measuring power in networks—beyond the exchange idea—is devel-
oped. The position of a vertex is the only determinant of its structural power. To realize this concept, we use a 
probabilistic-conditional framework. Elementary postulations concerning power relations lead to a mathematical 
optimization problem allowing for the calculation of all vertices’ structural power. The findings are applied to 
numerous selected networks. Furthermore, we separate actors from vertices. How an actor housed in a vertex 
exerts influence on other actors is the next step of our research.

To find dominating alliances of actors in networks is a further topic of this paper. For the famous 9/11-net-
work, we determine such alliance and analyze respective results.

There are open questions left for further research:

•	 Can an actor housed in a vertex always fully deploy the vertex’s structural power? And what if it cannot? Is 
the new method able to treat partial deployment?

•	 Can positive and negative relations among actors be modeled in our probabilistic framwork? And if so, how 
to check for consistency in the net; is this consistency equivalent to Harary et al.’s balance structure29 in 
networks? What about structural power of vertices in such signed networks?

These are promising issues for further research.

Received: 27 February 2020; Accepted: 9 June 2020

Table 4.   Vertices and names of actors in the 9/11-network.

V1 V2 V3

Mohammed Atta Salem Alhazmi Hani Hanjour

V4 V5 V6

Mamoun Darkazanli Marwan Al-Shehhi Nawaf Alhazmi

V7 V8 V9

Hamza Alghamdi Satam Suqami Abdul Aziz Al-Omari

V10 V11 V12

Fayez Banihammad Majed Moqed Khalid Almihdhar

V13 V14 V15

Abdussattar Shaikh Osama Awadallah Mohamed Abd

V16 V17 V18

Rayed Mohammed Abdullah Faisal Al Salmi Ahmed Alnami

V19 V20 V21

Lotfi Raissi Ziad Jarrah Ramzi Omar

V22 V23 V24

Said Bahaji Zakariya Essabar Ahmed Al Haznawi

V25 V26 V27

Saeed Alghamdi Nabil al-Marabh Raed Hijazi

V28 V29 V30

Mohand Alshehri Wail Alshehri Waleed Alshehri

V31 V32 V33

Shaykh Saiid Ahmed Alghamdi Habib Zacarias Moussaoui

V34

Mamduh Mahmud Salim
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