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Selection and identification 
of a novel bone‑targeting peptide 
for biomedical imaging of bone
Jinho Bang1,4, Heesun Park1,3,4, Jihye Yoo2, Donghyun Lee2, Won Il Choi1, Jin Hyung Lee1, 
Young‑Ran Lee1, Chungho Kim3, Heebeom Koo2* & Sunghyun Kim1*

The global burden of bone‑related diseases is increasing in the aging society; thus, improved bone 
targeted imaging for their early identification and treatment are needed. In this study, we screened 
novel peptide ligands for hydroxyapatite, a major inorganic component of teeth and bones, and 
identified a peptide enabling in vivo bone targeting and real‑time fluorescence bone detection. To 
isolate peptides highly specific for hydroxyapatite, we used negative and positive selection from a 
randomized 8‑mer peptide phage library and identified hydroxyapatite‑specific peptides (HA‑pep2, 
HA‑pep3, and HA‑pep7). Among these three peptides, HA‑pep3 showed the highest binding capacity 
and superior dissociation constant towards hydroxyapatite surfaces over time (~ 88.3% retained 
on hydroxyapatite after two weeks). Furthermore, HA‑pep3 was highly specific for hydroxyapatite 
compared to other calcium salt‑based materials. Using this superior specificity, HA‑pep3 showed 
higher accumulation in skull, spine, and joints in comparison with scrambled control peptide during 
real‑time whole‑body imaging. Ex vivo analysis of the major organs and bone from mice demonstrated 
that the fluorescence intensity in bone was about 3.32 folds higher in the case of HA‑pep3 than the 
one exhibited by the scrambled control peptide. Our study identified a novel approach for targeting 
ligands for bone specific imaging and can be useful for drug delivery applications.

Bone-related diseases are imposing an increasingly heavy burden in the aging society, and they are particularly 
difficult to treat due to their complex anatomical characteristics. More than 50% of the United States population 
aged 50 years and older is diagnosed with osteoporosis or low bone  mass1. Therefore, imaging techniques for the 
early detection of bone-related disorders are important for their timely identification and treatment. The most 
widely used bone imaging technologies are X-ray and computed tomography (CT). However, they are potentially 
harmful due to ionizing radiation exposure, especially when prolonged or frequent imaging is  required2. Fluo-
rescence imaging can achieve high selectivity and sensitivity, and it is widely used in the biological sciences for 
both in vitro and in vivo  analysis3,4. Recently, the development of fluorescence imaging applications for the early 
detection of bone-related diseases has received increasing attention, because of both advances in the fluorescence 
microscopy technology and potential risks associated with X-ray and CT  imaging5–7.

Hydroxyapatite,  Ca5(PO4)3(OH), is a polymorph of calcium phosphate  (Ca3(PO4)2), in which two hydroxyl 
groups have been replaced by phosphate groups. Hydroxyapatite, a major inorganic component of teeth and 
bones, is currently the most commonly clinically used implant material in due to its structure and unique func-
tional  properties8.

Many targeting ligands for bone or hydroxyapatite imaging have been developed in recent  years9,10 including 
phosphonate derivatives or oligopeptides with repeating sequences of acidic amino acids (Asp or Glu). Phospho-
nate derivatives, and especially bisphosphonates, have been widely applied as bone-targeting ligands in various 
imaging agents for the diagnosis and therapy of many bone-related diseases, and they exhibit high affinity for 
 hydroxyapatite11,12. However, bisphosphonates also have some limitations including poor bioavailability, long 
half-life in vivo, and side effects such as ulcers, osteonecrosis of the jaw, and musculoskeletal  pain13. Acidic oli-
gopeptides with poly-Glu or poly-Asp amino acids have an affinity to hydroxyapatite in vitro and are selectively 
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targeted into the bone in vivo14–16. However, despite intensive research efforts, targeting peptide ligands suitable 
for in vivo bone imaging are extremely rare, because acidic oligopeptides lack specificity and because ligands only 
recognize bone matrix with positively charged calcium. Therefore, the development of novel targeting molecules 
with high selectivity for in vivo bone fluorescence imaging is necessary.

Combinatorial phage display is powerful methodology for the isolation of peptides with high selectivity and 
binding affinity to both organic and inorganic  materials17–19. The identification of peptides binding specifically 
to hydroxyapatite provides opportunities for bone targeting imaging optimization.

In this report, we screened novel peptides with strong binding affinity and specificity for hydroxyapatite 
from a randomized 8-mer peptide phage library. After isolating hydroxyapatite binding peptide candidates, 
we investigated the kinetics of their binding to and release from hydroxyapatite, and selected the most effec-
tive peptides for bone-targeting fluorescence imaging. Then, we studied the in vitro specificity of HA-targeting 
peptides to several calcium-based minerals and demonstrated in vivo performance of the peptides in mice after 
an intravenous injection. To the best of our knowledge, this is the first report describing the isolation of novel 
hydroxyapatite-binding peptides with high specificity for use in bone-specific imaging.

Results
Overview of in vivo bone imaging using the novel peptide ligand. To isolate highly specific pep-
tides to hydroxyapatite, we used negative selection, which can remove weakly or nonspecifically binding pep-
tides from the phage library (Fig. 1). The randomized 8-mer peptide library was pre-incubated in other calcium-
based materials, such as calcium carbonate or calcium phosphate, to eliminate nonspecifically bound phages. 
We then performed positive phage display selection with hydroxyapatite. After the completion of negative and 
positive selection, hydroxyapatite specific peptides with fluorescent probes were synthesized and administered 
to mice by a tail vein injection. Finally, we can see the real-time bone-specific in vivo imaging using a whole-
body fluorescence imaging system.

Phage selection of hydroxyapatite‑binding peptides. We screened hydroxyapatite-specific peptides 
from a randomized 8-mer peptide phage library, which was constructed by NNK codon-based randomization 
(N = A or C or G or T; K = G or T). The combinatorial peptide library was composed of 1 × 108 independent 
peptide clones and was displayed by the N-terminus of the pIII protein of M13 bacteriophage. In vitro phage-
display screening with negative and positive selection was used to isolate highly specific peptides that can bind 
to hydroxyapatite during four rounds of biopanning. To increase the selection stringency, the number of wash-
ings was increased from five to ten for each round of selection using 0.05% PBST (Phosphate Buffered Saline 
with Tween 20). Significant enrichment of hydroxyapatite binders (40-fold increase) was obtained after four 
rounds of biopanning (Fig. 2a), and at that stage ten peptide phages were selected for binding to hydroxyapatite 
using the output/input phage ratio (Fig. 2b). DNA sequencing revealed that all 10 clones had unique sequences. 
Among them, three peptide molecules with output/input phage ratios of more than 20 were selected for further 

Figure 1.  Overview of the screening of hydroxyapatite specific peptides and in vivo bone-targeting imaging.
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characterization and were labeled HA-pep2, HA-pep3, and HA-pep7. Their sequences are presented in Table 1. 
The molecular weight of the three peptides with 8 amino acids was almost 1,000 Da and all of them included 
positive amino acids (Lysine, Arginine, Histidine). Interestingly, all three peptides showed positive net charge 
with an isoelectric point (pI) of 11.7, 11.0, and 8.6, respectively. We analyzed secondary structure of peptides 
using GOR (Garnier-Osguthorpe-Robson) protein secondary prediction method. As a result, HA-pep2 consists 
of 75% random coil and 25% extended strand. HA-pep3 has 62.5% random coil and 37.5% extended strand. HA-
pep7 shows 100% random coil structure. Therefore, the binding affinity of peptides is increased according to the 
increase of extended strand secondary structure.

Binding/release studies of HA‑binding peptides. We analyzed the fluorescent signal of FITC-labeled 
peptide solutions before and after incubation with hydroxyapatite, to quantify the binding ability of the three 
selected peptides to hydroxyapatite (Fig. 3a). At dose 3 μg/mL, HA-pep3 showed the highest fluorescent signal 
(HA-pep2: 63,153.5, HA-pep3: 140,010.3, HA-pep7: 28,020.6, positive peptide(E7): 57,292 and Negative: 6,592).

To investigate the concentration-dependent effect of the peptides, we measured the fluorescent signal after 
incubation with hydroxyapatite of 0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 30 μM of the three peptides (Fig. 3b). HA-pep3 
clearly had higher HA-binding affinity in comparison with the other peptides and reached saturation above 
10 μM. For binding affinity, hydroxyapatite was interacted with FITC-labeled HA-pep3 and positive peptide 
(E7) at different concentrations (0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 30 μM in PBS) for 1 h. As shown in Fig. 3b 
and Figure S1, the HA-pep3 and positive peptide (E7) have a dissociation constant (Kd) of ~ 5 μM and ~ 15 μM, 
respectively.

We investigated binding activity at 5 min, 10 min, 30 min, 1 h, 2 h, and 6 h, to assess the effect of incubation 
time prolongation. HA-pep2, HA-pep3, and positive peptide (E7) began to fast binding and each binding amount 
was 93.7 ng/cm2, 181.7 ng/cm2, 92.96 ng/cm2 at 5 min. However, HA-pep7 showed slow binding and the binding 

Figure 2.  Phage selection of hydroxyapatite binding peptides from a randomized 8-mer peptide phage library. 
(a) Ratio of output/input phages after one, two, three, and four rounds of selection against hydroxyapatite. (b) 
The ratio of the output/input phage of hydroxyapatite-specific positive clones after the fourth biopanning.

Table 1.  Summary of representative binding peptides (HA-pep2, HA-pep3, and HA-pep7) to hydroxyapatite. 
Blue = basic, red = alcohols, green = aliphatic, orange = aromatic, black = all others, c = random coil, e = extended 
strand.

Number of functional amino acid residues

Peptide Sequence Basic Alcohols Aliphatic Aromatic PI Secondary structure

HA-pep2   4 1 2 0 11.7 ccccceec

HA-pep3   3 2 0 1 11.0 cccceeec

HA-pep7   1 2 1 2 8.6 cccccccc
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amount was 56.42 ng/cm2 at 5 min. In additions, the amount of HA-pep2, HA-pep3, HA-pep7, and positive 
peptide (E7) increased with the incubation time prolongation and had 177.8 ng/cm2, 340.9 ng/cm2, 172.3 ng/
cm2, and 245.4 ng/cm2 peptide molecules on HA after 6 h, respectively (Fig. 3c).

To identify the release kinetics of the three peptides, we performed release tests for 14 days under 37 °C 
(Fig. 4). HA-pep3 exhibited the lowest burst release at 11.7% of the total binding amount, and it preserved over 
88.3% of the immobilized molecules after two weeks. HA-pep2, HA-pep7 and positive peptide (E7) exhibited 
similar release bursts at 31% ,31.4% and 28% of the total binding amounts. HA-pep3 exhibited better release 
kinetics toward hydroxyapatite over time (~ 88.3% retained) than positive peptide E7 (~ 72% retained)16. Thus, 
considering the binding ability and release kinetics, HA-pep3 is the most promising peptide for use as a target-
ing ligand.

Specificity of HA‑pep3. The specificity of HA-pep3 and acidic oligopeptide (poly-Glu amino acids), an 
established HA-binding peptide, were measured specificity assay in the same molar mass (mass/mol wt) of the 

Figure 3.  Binding studies of FITC-labeled HA-specific peptides. (a) HA-binding test of selected peptides 
(HA-pep2, HA-pep3, HA-pep7), positive peptide(E7) and negative peptide. (b) Binding assay of HA-binding 
peptides in different concentrations and (c) incubation times.
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biologically relevant calcium salts hydroxyapatite (HA,  Ca5(PO4)3(OH)), calcium carbonate (CC,  CaCO3), cal-
cium phosphate (CP,  Ca3(PO4)2), and calcium pyrophosphate (CPP,  Ca2P2O7). FITC-labeled HA-pep3 and acidic 
oligopeptide were incubated for 3 h in various calcium salts and were thoroughly washed using 0.05% PBST 
(Phosphate Buffered Saline with Tween 20). We then visualized bound peptides utilizing a fluorescence imaging 
system and measured the fluorescent signal quantitatively.

As shown in Fig. 5a, HA-pep3 demonstrated stronger affinity and higher specificity for hydroxyapatite com-
pared with other calcium salts. There was very low adhesion of HA-pep3 to calcium carbonate, implying that 
HA-pep3 is not selectively interacting with calcium only. Importantly, we also observed that HA-pep3 did not 
bind to calcium phosphate, indicating that HA-pep3 was not recognizing the phosphate group only of the 
mineral. Indeed, the selective hydroxyapatite-binding of HA-pep3 demonstrated that the HA-pep3 interaction 
is dependent on both the chemical composition of the mineral and the defined physical arrangement of these 
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Figure 4.  Release kinetics of HA-binding peptides and positive peptide (E7) on hydroxyapatite.

Figure 5.  The specificity of (a) the HA-pep3 and (b) acidic oligopeptide as positive peptide for the biologically 
relevant calcium salts. HA = hydroxyapatite, CC = calcium carbonate, CPP = calcium pyrophosphate, 
CP = calcium phosphate.
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components on the surface. We performed a competitive binding study with 10-, 50-fold excess unlabeled HA-
pep3 and FITC-labeled HA-pep3 in hydroxyapatite. As shown in Figure S2, the signal of FITC-labeled HA-pep3 
with 50-fold excess unlabeled HA-pep3 was reduced from 24,956 to 8,130 (67% reduction). As a result, we 
demonstrated that HA-pep3 is specific for hydroxyapatite.

However, the acidic oligopeptide(E7) had no specificity for hydroxyapatite; it showed a higher binding signal 
on calcium pyrophosphate than on hydroxyapatite (Fig. 5b). Therefore, HA-pep3 enables the fluorescence detec-
tion of hydroxyapatite as a bone-targeting probe with high sensitivity unlike acidic oligopeptide(E7).

In vivo bone‑targeting imaging of HA‑pep3. The biocompatibility of HA-pep3 is important for assess-
ing the feasibility of its in vivo application. Therefore, we performed HA-pep3 cytotoxicity assessment in osteo-
blastic Saos-2 osteogenic cells for 24 h, 48 h and 72 h (Fig. 6a and Figure S3). The cell viability was measured 
using various concentrations of HA-pep3 ranging from 1 nM to 100 μM. HA-pep3 exhibited no cytotoxicity 
even at high concentrations (100 μM). Next, we analyzed HA-pep3 in vivo application feasibility. We used Cy5.5 
dye with near-infrared wavelength for in vivo imaging, to minimize tissue  adsorption20. After Cy5.5 dye labeling, 
scrambled peptide and HA-pep3 were injected into the tail vein of nude mice. During real-time whole-body 
imaging, the accumulation of Cy5.5-HA-pep3 in the skull, spine, and joints was higher than that exhibited by a 
scrambled control peptide (Fig. 6b) at both 3 and 6 h after injection. Ex vivo analysis of the major mice organs 
and bone showed similar trends with bone-targeted binding of Cy5.5-HA-pep3 (Fig. 6c). The fluorescence inten-
sity in bone was about 3.32 folds higher for Cy5.5-HA-pep3 than for a scrambled sequence (Fig. 6d). We also 
observed high accumulation of Cy5.5-HA pep3 in spine after intravenous injection to wild type C3H/HeN mice 
(Figure S4).

We used X-ray function of in vivo imaging machine, IVIS Lumina XRMS and performed X-ray imaging of 
the mice with Cy5.5-HA pep3. With x-ray images, we could observe the high fluorescence intensity at spine 
(Figure S5a). In additions, we compared its biodistribution in vivo to our Cy5.5-HA pep3 and E7 positive pep-
tide after intravenous injection. In Figure S5, our HA pep3 showed superior bone targeting and accumulation 

Figure 6.  In vivo application of the HA-pep3. (a) Viability of Saos-2 cells treated with HA-pep3. (b) In vivo 
fluorescence imaging of BALB/c nude mice at 3 and 6 h after intravenous injection of Cy5.5-scramble peptide 
and Cy5.5-HA pep3. Skin, skull, spine, and joint are marked as dashed lines. (c) Ex vivo fluorescence imaging 
of bone and major tissues using the HA-pep3 and scramble peptide. (d) Fluorescence signal intensity graph of 
HA-pep3 and scramble peptide in bone and major tissues.
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compared to the known calcium binding and HA binding peptide (E7 peptide). In addition, we performed blood 
analysis to determine clearance of our peptide in vivo (Figure S6). Most of HA pep3 disappeared in blood after 
12 h showing its short circulation time which is advantageous for minimizing background signals. These data 
demonstrate the potential of HA-pep3 for successful use as a bone-targeting probe for in vivo imaging.

Discussion
It is well established that peptide targeting ligands are advantageous in achieving high signal to noise due to rapid 
renal excretion and in being very specific to the target. Furthermore, they exhibit no apparent adverse effects, 
such as immunogenicity and cytotoxicity. In nature, acidic peptide sequences derived from bone matrix proteins, 
osteopontin, and bone sialoprotein, are known to bind strongly to bone mineral  surfaces21–23. The repeating 
units of Glu or Asp have high affinity to hydroxyapatite, which is implicated in the coordination of calcium ions 
in a hydroxyapatite crystal  lattice24. Due to this property, the use of acidic oligopeptides in various biomedical 
applications, such as HA  powder25,26,  discs27, HA-Ti  implants28. and bone  allografts29, has been reported. Thus, 
acidic oligopeptides conjugated to fluorescent probes were utilized to evaluate their affinity for HA both in vitro 
and in vivo15. The in vivo analysis in mice showed that probes with six or more acidic repeat sequences were 
accumulated into the bone. In addition, acidic oligopeptide conjugated drug delivery carriers were developed 
for bone targeted  therapy30,31. The use of acidic oligopeptides for bone imaging is an attractive option, because 
they exhibit no apparent side-effects and have a shorter half-life in vivo compared to bisphosphonates.

However, our study demonstrated that acidic oligopeptide has poor specificity for several calcium salts-based 
materials. For bone targeting and imaging, peptide ligands with improved specificity are required. Therefore, we 
screened novel peptides with strong affinity and high specificity for binding hydroxyapatite from a randomized 
8-mer peptide phage library using the methods of negative and positive selection. Hydroxyapatite-binding pep-
tides screened from phage display or combinatorial peptide libraries have been reported  previously32–34. However, 
most of these peptides have been used to control the nucleation and mineralization of hydroxyapatite formation. 
To the best of our knowledge, this is the first report describing the isolation of novel hydroxyapatite-binding 
peptides and their use for bone-specific in vivo imaging.

After phage-display selection, the peptides HA-pep2, HA-pep3, and HA-pep7 were identified as having strong 
and specific affinity to hydroxyapatite. Our data show that HA-pep3 has the best HA-binding properties among 
the three isolated peptides. Compared to acidic oligopeptide (E7) as a positive control, HA-pep3 demonstrated 
higher binding ability to hydroxyapatite (HA-pep3: Kd = 5 μM vs positive peptide (E7): Kd = 15 μM). In addition, 
HA-pep3 had a higher dissociation constant toward hydroxyapatite surfaces over time (~ 88.3% retained) than the 
one reported for acidic oligopeptide (~ 72% retained). Moreover, HA-pep3 is highly specific for hydroxyapatite 
compared to other calcium salt based materials, such as calcium carbonate, calcium phosphate, and calcium 
pyrophosphate, whereas acidic oligopeptide is nonspecific.

Surprisingly, amino acids such as Glu(E) and Asp(D), known for their binding affinity to hydroxyapatite, 
are not present in HA-pep3 (KNFQSRSH), and the net charge of the peptide is highly positive (pI = 11.7). The 
binding mechanism between HA-pep3 and hydroxyapatite requires future investigation. HA-pep3 with positive 
net charge did not show any cytotoxicity up to 100 μM compared to cytotoxicity at 10 μM for the poly-arginine 
oligopeptide with positive net  charge35. HA-pep3 is safer, because it is composed of positive charge amino acid, 
hydrophobic and hydrophilic amino acids. These properties represent an attractive feature for in vivo targeting 
and imaging utilization.

As an in vivo application, we labeled the HA-pep3 with Cy5.5 dye and injected it into the tail vein of 
mice. Biodistribution of the injected materials is determined by various factors including size, charge, and 
 hydrophobicity36. For successful in vivo imaging, the materials need to provide sufficient contact time with the 
target, fast and strong binding to the target, and minimization of non-specific binding to other tissues. Further-
more, the Choi group has shown that the chemical structure of labeled dye molecules plays an important role 
in determining the in vivo fate of  materials37,38. In this study, we used the commercially available Cy5.5 dye for 
labeling. Therefore, we expect that rational design of the resulting conjugate and selection or synthesis of novel 
dye molecules will further improve the bone-targeting ability of HA-pep3 in vivo.

Conclusions
In this study, we identified a peptide exhibiting high specificity binding to hydroxyapatite, a major inorganic 
component of teeth and bones, using negative and positive selection approaches from a randomized 8-mer 
peptide phage library. Unlike acidic oligopeptide, a well-known HA-binding peptide, HA-pep3 showed high 
specificity for hydroxyapatite in comparison with other calcium salts, highlighting the potential of HA-pep3 to 
serve as a bone-targeting probe for in vivo imaging. Our newly developed peptide is useful to bone imaging as 
well as a drug delivery system by conjugating this peptide on a drug carrier as a targeting ligand. We expect that 
efforts for the development of novel bone targeting peptides will open new avenues for improved targeted imag-
ing of bones, which will potentially benefit the diagnosis and treatment of skeletal diseases such as osteoporosis.

Methods
Ethics statement. The Animal Care Committee of Catholic University of Korea approved the animal 
experimental protocols. All animal experiments were conducted in accordance with the protocols approved by 
the Animal Research Ethics Committee at the Catholic University of Korea (Approval No. CUMC-2019-0003-
01). All experimental procedures performed followed the ethical guidelines on animal use.

Materials. Phosphate-buffered saline (PBS), Tween20, polyethylene glycol (weight-averaged molecular 
weight (MW) = 8,000  g  mol−1), LB agar, hydroxyapatite, calcium carbonate, calcium pyrophosphate, calcium 
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phosphate salts, and bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
All peptides used in this study were obtained from Anygen (South Korea). Normal saline (0.9%) was purchased 
from Daihan pharm. Co., Ltd. (Seoul, Yeongdeungpo-gu, Korea).

Phage selection of HA‑specific peptides. An 8-mer peptide phage library was constructed by NNK 
codon-based randomization (N = A or C or G or T; K = G or T). The randomized gene fragments (NNK)8 were 
double-digested with SfiI/NotI (New England Biolabs) and cloned into pIGT2 phagemid vectors (IgTherapy 
Co.). The cloned vectors were transformed into E. coli ER cells; the library was composed of 1 × 108 independent 
peptide clones. The peptide recombinant phage library was prepared using Ex 12 helper phage (Ig Therapy Co.), 
which is displayed by the N-terminus of the pIII protein of M13 bacteriophage.

Hydroxyapatite (HA) (2–3 mm wide and 2 mm thick) was used as the target during phage selection. 
Hydroxyapatite was incubated in blocking buffer (PBS containing 2% BSA) for 2 h at room temperature. Calcium 
carbonate and calcium phosphate salts, utilized for negative selection, were also incubated in blocking buffer. 
First, the prepared peptide recombinant phages (1 × 1011 plaque-forming units [PFU]) were added to calcium 
carbonate and calcium phosphate for negative selection for 1 h at 30 °C to remove nonspecific phages. Then, 
unbound phages were incubated in hydroxyapatite for positive selection for 1 h at 30 °C and were washed with 
PBS containing 0.05% Tween20 (five times since then round ten times). Bound phages eluted by incubation with 
0.2 M glycine–HCl (pH 2.0) for 20 min, followed by immediate neutralization with 1 M Tris (pH 9.0). For the 
next biopanning, the eluted phages were infected into E. coli ER (Stragagene) for 1 h at 37 °C, and helper phages 
(5 × 109 PFU) were added and prepared next recombinant phage library. At each step, the output/input phage 
ratio in all rounds of biopanning were measured. After the fourth biopanning, twenty clones with the highest 
output/input phage ratio were randomly selected. The clones were analyzed to DNA sequencing using a phagemid 
primer (5′-GQTTA CGC CAA GCT TTG GAG C-3′; Bioneer).

Characterization of HA‑binding peptides. FITC-labeled peptides HA-pep2, HA-pep3, and HA-pep7 
were synthesized (Anygen). For binding tests, hydroxyapatite was interacted with FITC-labeled peptides at dif-
ferent concentrations (0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 30 μM in PBS) for 1 h. The hydroxyapatite was also incu-
bated in 2 μg/mL FITC-labeled peptide PBS solution for different time periods (5 min, 10 min, 30 min, 1, 2, and 
6 h). Release tests were carried out on the hydroxyapatite after incubation in 2 μg/mL FITC-peptide PBS solu-
tion for 14 days. The release test was performed in incubation at 37 °C. All tests were carried out in triplicates, 
and original hydroxyapatite was used as negative control. The presence and quantification of the peptide on the 
HA surface were assessed by measuring the residual fluorescence of the solution (excitation: 488 nm; emission 
526 nm) using a Gemini EM fluorescence microplate reader (Molecular Devices, Sunnyvale, CA).

Calcium salts specificity experiments. Hydroxyapatite (HA, 502.31  g/mol), calcium carbonate (CC, 
100.08 g/mol), calcium pyrophosphate (CPP, 254.053 g/mol), and calcium phosphate (CP, 310.2 g/mol) salts 
were incubated with HA-pep3 and with acidic oligopeptide as positive control (2 μg/mL) in PBS at room tem-
perature for 3 h. Calcium salts were washed three times with 0.05% PBST (Phosphate Buffered Saline with Tween 
20) by centrifugation, transferred to a 96-well black plate, and assessed with a fluorescence imaging system. All 
fluorescence images were collected at identical exposure times and are displayed with equal normalization.

Cytotoxicity assay of HA‑pep3. Saos-2 osteosarcoma osteogenic primary cell line was purchased from 
the Korean cell line bank. Cells were cultured in RPMI1620 medium with L-glutamine (300 mg/L), 25 mM 
HEPES, and 25 mM NaHCO3 supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL 
penicillin, and 100 μg/mL streptomycin. The cell lines were cultured at 37 °C and up to 5%  CO2 in humidified 
atmosphere. All reagents and cell culture media were purchased from the WELGENE Company, South Korea. 
HA-pep3 cytotoxicity was examined using WST-1 assay. The peptide was dissolved in deionized water and fur-
ther diluted in RPMI medium to prepare working concentrations of 1, 10, 100, 1,000, 10,000, and 100,000 nM. 
The cells were cultured in 96-well plates at a density of 2 × 104 cells per well. After 24 h incubation, the cells were 
treated with different sample concentrations and incubated for further 24 h. Then, 50 μL WST-1 solution was 
added to each well, and the plate was re-incubated for 4 h. Finally, the absorbance was measured at 450 nm using 
a microplate spectrophotometer (Tecan Infinite 200). All assays were carried out in triplicates.

In vivo and ex vivo imaging. All animal studies were approved by the Institutional Review Board of the 
Catholic University of Korea (approval No. CUMC-2019-0003-01). BALB/c nude mice (4 weeks old, OrientBio, 
Seongnam city, Korea) and wild type C3H/HeN mice were used for in vivo imaging. Cy5.5-scramble peptide or 
Cy5.5-HAp peptide (5 mg/kg of peptide in 100 µL physiological saline, n = 3) were administered to the mice by a 
tail vein injection. Subsequently, mice were anesthetized by isoflurane inhalation, and whole-body imaging was 
performed with an IVIS Lumina XRMS (PerkinElmer Inc., Waltham, Massachusetts, USA) set at 660/710 nm at 
3 and 6 h post-injection. All images were analyzed with Living Image 4.5 software (PerkinElmer Inc., Massachu-
setts, USA). Three hours post-injection, bone, muscle, skin, and major organs (heart, lung, spleen, and kidney) 
were dissected and imaged similarly using IVIS Lumina XRMS. X-ray images of the mice were obtained simulta-
neously by same machine. As control, E7 peptide was also labeled and teste in vivo similarly. We collected blood 
samples of 10 μL from mice at different time points (1, 3, 6, and 12 h) after intravenous injection of Cy5.5-HA 
pep3. The fluorescence intensity of Ce6 in samples was measured by IVIS Lumina XRMS.
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