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incorporating hybrid models 
into lysine malonylation sites 
prediction on mammalian 
and plant proteins
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Jorng‑tzong Horng1,4* & tzong‑Yi Lee2,5*

Protein malonylation, a reversible post-translational modification of lysine residues, is associated with 
various biological functions, such as cellular regulation and pathogenesis. In proteomics, to improve 
our understanding of the mechanisms of malonylation at the molecular level, the identification of 
malonylation sites via an efficient methodology is essential. However, experimental identification of 
malonylated substrates via mass spectrometry is time-consuming, labor-intensive, and expensive. 
Although numerous methods have been developed to predict malonylation sites in mammalian 
proteins, the computational resource for identifying plant malonylation sites is very limited. In 
this study, a hybrid model incorporating multiple convolutional neural networks (CNNs) with 
physicochemical properties, evolutionary information, and sequenced-based features was developed 
for identifying protein malonylation sites in mammals. For plant malonylation, multiple CNNs and 
random forests were integrated into a secondary modeling phase using a support vector machine. The 
independent testing has demonstrated that the mammalian and plant malonylation models can yield 
the area under the receiver operating characteristic curves (AUC) at 0.943 and 0.772, respectively. The 
proposed scheme has been implemented as a web-based tool, Kmalo (https ://fdbla b.csie.ncu.edu.tw/
kmalo /home.html), which can help facilitate the functional investigation of protein malonylation on 
mammals and plants.

Lysine malonylation (Kmal), a reversible post-translational modifications (PTMs), can be identified by mass 
spectrometry and database  searching1. Several studies have indicated that PTMs play critical roles in regulating 
cellular functions and are related to a lot of disease  progression2–5. For instance, type 2 diabetes has been reported 
to be regulated by malonylation, particularly the pathways associated with fatty acid metabolism and the  glucose6. 
Both mitochondrial and enzymes urea cycle have been shown to be regulated by protein  malonylation7. Addi-
tionally, it is confirmed that lysine malonylation is a new type of histone PTM and the unusual modification of 
histones induces diseases, such as  cancer8. In plants, malonylation has been shown to be a critical reaction in the 
metabolisms of xenobiotic phenolic glucosides in tobacco and  Arabidopsis9. Meanwhile, previous experiments 
targeting lysine malonylaome in Oryza sativa and Triticum aestivum L. have demonstrated a dominate presence 
of malonylated proteins in the metabolic processes which include the tricarboxylic acid (TCA) cycle, carbon 
metabolisms, photosynthesis, and glycolysis/gluconeogenesis10,11.

A number of computational methods have been introduced to predict malonylation sites based on machine 
learning approaches. Xu et al. developed the first web-server, Mal-Lys, to predict Kmal sites for M. musculus 
 proteins12. Specifically, the support vector machine (SVM) and minimum redundancy maximum relevance 
(mRMR) technique were adopted to develop the prediction model by considering features from the peptide 
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fragments, including the position specific amino acid propensity, sequence order information, and physicochemi-
cal properties. Xiang et al. used pseudo amino acids as features to construct an SVM-based  classifier13. Wang 
et al. took multiple organisms into consideration to build a novel online prediction tool, MaloPred, for the iden-
tification of malonylation sites in E.coli, M. musculus, and H. sapiens, separately, by integrating not only protein 
sequence information and physicochemical properties, but also evolutionarily similar  features14. Taherzadeh et al. 
further investigated whether different species require different prediction models to maximize the  accuracy15. 
By training the models using data from mice and testing them on other species, they found similar underlying 
physicochemical mechanisms between mice and humans, but not between mice and bacteria. It should be noted 
that their SVM-based web server, SPRINT-Mal, was the first online malonylation sites prediction tool to take 
into account the predicted structural properties of the proteins. Zhang et al. provided systematic comparisons 
of sequence-based features, physicochemical-property-based features, and evolutionary-derived features in the 
identification of Kmal sites for E. coli, M. musculus, and H. sapiens,  respectively16. Random forest (RF), SVM, 
LightGBM, K-nearest neighbor (KNN), and logistic regression (LR) were adopted to generate optimal feature 
sets. The integration of the single-method-based models through ensemble learning was found to improve the 
prediction performance in independent tests. Ahmed et al. proposed a new hybrid resampling method for highly 
imbalanced  data17. Furthermore, deep learning approach has recently been widely applied to biological sequence 
 analysis18–21. Chen et al. first constructed an integration of the deep learning model based on long short-term 
memory (LSTM) with an RF classifier for the prediction of mammalian malonylation  sites22. Due to the strong 
capability of the deep learning methodology to learn sparse representation, this methodology showed a superior 
performance compared to traditional machine learning model. In addition to the malonylation site, many com-
putational methods have been developed for the prediction of various PTM sites based on protein  sequences23–28.

To improve our understanding of the mechanism of malonylation, it is necessary to identify the malonylation 
sites accurately in advance. However, the experimental identification was mainly performed using mass spec-
trometry, which is time-consuming, labor-intensive, and expensive. Computational approaches could be used to 
effectively and accurately identify malonylation sites. Currently, existing computational approaches mostly rely 
on feature engineering, while deep learning is capable of excavating the underlying characteristics from a large-
scale training dataset. Additionally, although the biological functions of malonylation in plants require attention, 
the currently existing tools have only taken into account malonylation sites in humans, mice, and bacteria. An 
efficient methodology for the identification of malonylation sites in more organisms would greatly improve the 
understanding of the mechanisms of malonylation. Therefore, the primary purpose of this study was to develop 
hybrid models combining CNN and machine learning algorithms for the prediction of malonylation sites in 
mammals and plants, respectively. Meanwhile, a user-friendly web tool, which includes an optimal classifier, was 
established for individual use in the identification of malonylation sites.

Results
Sequence analysis. As shown in Fig. 1, the amino acid compositions (AACs) of the malonylation and non-
malonylation peptides varied between Glutamic acid (E), Glycine (G), Serine (S), and Valine (V) in mammalian 
proteins. On the other hand, the AACs in the plant proteins varied between Glutamic acid (E), Aspartic acid 
(D), Arginine (R), and Tryptophan (W). Only the composition of Glutamic acid (E) varied in both mammalian 
and plant proteins.

WebLogo was mainly used to analyze the frequencies of occurrence of every position around the malonyla-
tion  sites29. In Supplementary Fig. S1, mouse and human, both mammals, tended to have similar patterns. 
More specifically, the malonylation peptides had higher frequencies in the cases of Lysine (K), Leucine (L), and 
Glutamic acid (E) in mammalian proteins. As shown in Fig. 2, using the  TwoSampleLogo30 of malonylation and 
non-malonylation peptides, the enrichment of amino acids neighboring the malonylation sites across species 
was observed. Lysine (K) was found to be significantly enriched at multiple positions in both H. sapiens and M. 
musculus proteins, particularly at positions from 1 to 19 and positions 27, 28, and 29. Meanwhile, leucine (L) was 
found to be depleted at positions 9, 10, and 13. On the other hand, T. aestivum proteins showed a very different 
pattern when compared to H. sapiens and M. musculus proteins for arginine (R) enrichment at positions 10, 12, 
13, 14, 21, 28, and 29 and no evidence of serine (S) depletion. The two sample logo for H. sapiens to M. musculus, 
H. sapiens to T. aestivum, and M. musculus to T. aestivum is shown in Fig. 3, which indicates that T. aestivum 
is different from the mammals. Subsequently, the data of the H. sapiens and M. musculus proteins could be 
combined to build a prediction model for mammals, thereby building another prediction model for T. aestivum.

Feature analysis. Pearson’s correlation coefficient (PCC) was employed to evaluate the dependency 
between the label and the feature in the training dataset. It should be noted that the PCC values always range 
from + 1 to –1. A value greater than zero denotes a positive association, whereas a value less than zero denotes a 
negative association. A value equal to zero indicates that there is no correlation. Therefore, the larger the absolute 
value of the PCC value, the stronger the correlation.

The top ten PCC values of each feature in the mammalian dataset are shown in Supplementary Table S1 and 
Fig. 4, respectively. The AACs of “E”, “G”, “V”, and “S” are relatively correlated to malonylation, as shown in Fig. 4. 
Furthermore, the attributes related to amino acids “E”, “G”, and “S” are also found in the top 5 PCC values of the 
pseudo-amino acid composition (PAAC) group, indicating that these amino acid may be highly correlated with 
malonylation in mammalian proteins. As for the position-specific features, the top 3 PCC values in the one hot 
encoding group were as follows: (i) whether the residue next to the central “K” from the downstream was “G”; 
(ii) whether the residue next to the central “K” from the downstream was also “K”; (3) whether the residue next 
to the central “K” from the upstream was “G”. All three attributes focus on the position next to the central “K”. 
The same position tendency can be observed in the AAindex group. All of the highest PCC values focused on 
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position 18 (the residue adjacent to central “K” in the downstream position). In the position-specific scoring 
matrix (PSSM) group, position 13 (the 4th residue adjacent to the central “K” in the upstream position) had 
higher PCC values.

In terms of plant proteins, the top ten PCC values of each feature are shown in Supplementary Table S2, 
and Fig. 4. The listed features are very different from those of the mammalian proteins. The amino acids “R”, 
“D”, and “W” are only relatively correlated to the plant protein labels. The amino acid “E” is the only one that 
appears in both organism groups. The positional importance in the plant group is not significant compared to 
the mammalian group. However, the top PCC values in the AAindex group indicate that malonylation may be 
positively correlated with side chain hydropathy (ROSM880102) and the transfer of free energy from oct to wat 
(RADA880102).

Functional analysis. We used the classification system PANTHER to analyze the functional distribution 
of malonylated  proteins31. Figure  5 shows that H. sapiens and M. musculus shared a highly common func-
tional distribution in terms of biological processes. Both were statistically enriched in the cytosol (GO:005829), 
intracellular (GO:0005622), intracellular part (GO:00044424), cytoplasm (GO:0005737), and cytoplasmic part 
(GO:0044444). In terms of the cellular components, both H. sapiens and M. musculus were statistically enriched 
in the cellular metabolic process (GO:0044237). The common processes in which all three species were statisti-
cally enriched were the cytoplasm (GO:005737) and the organic substance metabolic process (GO:0071704).

Determination of the window size and the model of each feature. Supplementary Fig. S2, shows 
the AUC performance of each feature with a different window size of peptides. For the mammalian model, the 
feature AAINDEX, one hot vector, and PSSM resulted in the best AUC using CNN models with a window size 
of 37, 33, and 35, respectively. Feature AAC and PAAC showed their best AUC using RF models with a window 
size of 33. Details of the performance are shown in Table 1. Importantly, the models were only tested after the 
models were chosen. In other words, the test results did not play any role in the model selection.

The performance of our proposed hybrid model in mammalian proteins is shown in Table 1. After determin-
ing the best window size of each feature and the aggregation methods, we used a tenfold cross-validation method 
to compare the performance after the addition of more features. AAINDEX, PSSM, and One hot encoding were 

Figure 1.  The AACs of malonylation and non-malonylation sites in mammalians (upper) and plants (bottom).
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found to result in the best AUC. The performance of our proposed hybrid model in plant proteins is shown in 
Table 2. The ensemble model resulted in a great improvement.

Comparison with other existing malonylation site prediction tools in terms of predictive per‑
formance. We compared our model with other proposed computational prediction models. Table  3 and 
Fig. 6 demonstrates the comparative results. It should be noted that the peptides were removed from the inde-
pendent dataset if the peptides were in the training dataset of the proposed computational prediction models. 
In total, 19,212 (683 positive sites, 18,529 negative sites) and 20,312 (1,251 positive sites, 19,061 negative sites) 
peptides were identified for the Kmal-sp16 H. sapiens model and  LEMP22, respectively. These results indicate that 
the model proposed here was comparable to existing other tools.

Web interface of Kmalo. A web-based tool, Kmalo, has been developed to perform the prediction of pro-
tein malonylation sites. Users can predict malonylation sites in either mammalian or plant proteins. After sub-
mitting a protein in FASTA format via uploading a file or pasting the sequences into the tool, users will receive 
a job ID with which they can retrieve their results once the prediction process is finished. The results can be 
conveniently copied, printed directly, or downloaded in several formats, including CSV, XMSL, PDF. Snapshots 
of the tool’s website are shown in Supplementary Fig. S3.

Discussions and conclusion
An increasing amount of studies are currently working towards improving our understanding of the mechanism 
of protein lysine malonylation. The role of this post-translational modification in a wide range of cell functions 
has drawn the attention of many research groups. In certain biological processes, malonylation is associated 
with the development of disease. However, laboratory experiments for the validation of malonylation sites are 
often time-consuming and expensive. In this study, we proposed a machine learning-based methodology for the 
prediction of malonylation sites, in hopes of reducing the economic and temporal efforts required by traditional 
methods. To obtain potential hidden information in the sequences, we applied a deep learning-based method-
ology to help extract interactive information from the evolutionary information, physicochemical properties, 
or simply the protein fragments, which were encoded by PSSM, AAindex, and one hot vector. Then, the two 

Figure 2.  The two sample logo of malonylation sites in (a) H. sapiens, (b) M. musculus, and (c) T. aestivum.
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commonly used features for the identification of PTM sites, AAC, and PAAC were combined with the extracted 
information to obtain the final features.

Some previous studies have suggested building a malonylation sites prediction model for mammals using 
mouse and human proteins. Taherzadeh et al. proposed three machine learning-based models for predicting 
malonylation sites in humans, mice, and bacteria  separately15. They used mouse proteins to test the model trained 
using human proteins, and used human proteins to test the model trained using mouse proteins. Both resulted 
in comparatively similar performances. This suggested that malonylation in mouse and human proteins have 
similar physicochemical mechanisms, which is consistent with the feature analyses shown in Fig. 2, Fig. 3 and 
Supplementary Fig. S1. Therefore, we constructed a predictor for the identification of malonylation sites using 
both mouse and human proteins in a single model.

Recent studies have revealed that malonylation sites impact the functional processes not only in mouse and 
human cells, but also in plant  cells10,11. In fact, this study is the first to build a computational method for the 
identification of malonylation sites in plant proteins. We found that a complicated deep learning-based approach 
could lead to an overfitting problem. This could be due to the limited amount of data. As such, we modified 
our framework to make it more suitable for training only a small amount of data. After a series of experiments, 
we discovered that assembling the prediction results from the models trained by different features resulted in a 
robust model. Compared to the majority votes strategy, when combined with another SVM model, the former 
ensemble method resulted in a better performance.

In this study, we constructed hybrid models combining CNN and machine learning algorithms, includ-
ing RF and SVM, in order to predict malonylation sites in mammals and plants, respectively. The competitive 
performance compared to the existed tools showed that the proposed hybrid scheme indeed generated useful 
information from raw protein sequence data. Therefore, the framework we proposed is expected to inspire others 
to develop novel computational methods on the related issues.

Figure 3.  The two sample logo of malonylation sites in (a) human to mouse, (b) human to wheat, and (c) 
mouse to wheat.
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Materials and methods
We created a useful identification system for the identification of malonylation sites, represented by a flow chart 
of steps, as shown in Supplementary Fig. S4,. Detailed explanations for each process described in the chart are 
provided in the following sections.

Dataset preparation. In this study, we collected the mammalian proteins from protein lysine modifica-
tions database (PLMD)32 and LSTM-based ensemble malonylation predictor (LEMP)22. PLMD is an online data-
base consisting of integrated protein lysine modifications, which includes 5,013 and 4,390 validated malonyla-
tion sites from 1841 H. sapiens and 1,466 M. musculus proteins, respectively. LEMP is a newer web tool and so 
far contains 5,288 malonylation sites and 88,636 non-malonylation sites for the prediction of malonylation sites 
in mammalian proteins. On the other hand, Liu et al.10 derived plant proteins from 342 malonylation sites in 
233 T. aestivum proteins.

In order to prevent potential bias, a cluster database at a high identity with tolerance (CD-HIT)33 was used 
to reduce the redundancy at the cutoff threshold of 40% sequence identity. Then, the proteins were segmented 
into a fixed-length peptide fragment with a lysine (K) located at the center, denoted as:

Figure 4.  The PCC values of the features in mammalian (upper) and plant (bottom) proteins.
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where R is any of the 20 amino acids, and n represents the distance between the residue and the central K. The 
number of residues upstream and downstream of the center remained equal. In other words, the window size 
of each peptide was 2n + 1. If the length of the upstream peptide or downstream peptide was less than n, the 
dummy residue “X” would be used to fill the lacking residues. In this study, we considered window sizes from 
15 to 35 (n = 7, 8, …, 16, 17). Then, we used CD-HIT-2D on positive and negative data to eliminate redundancy. 
Since the mammalian peptides collected from LEMP were processed with a window size 31,  UniProt34 was 
employed to map the peptides to determine their residues for window sizes 33 and 35. Therefore, the mamma-
lian proteins were composed of LEMP and the processed PLMD data; the redundant peptides were removed. 

R−nR−(n−1) . . .R−2R−1KR1R2 . . .Rn−1Rn,

Figure 5.  The functional distributions of malonylated proteins for (a) H. sapiens, (b) M. musculus, and (c) T. 
aestivum, including GO terms in biological process, molecular functions and cellular components.
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After processing, 80% of the data were randomly selected to form the training dataset for the construction of 
the prediction model of the malonylation sites in mammalian peptides, and the remaining 20% of the data were 
selected for an independent testing dataset. Similarly, the same steps were used to process the wheat peptides in 
PLMD data. We randomly separated the wheat data with a ratio of 7:3 for training and test data for the predic-
tion of malonylation sites in plants. Related works suggest a window size around 25 is suitable for predicting 
malonylation sites in mammalian proteins. However, little related works have suggested that a varying window 
sizes for the development of a malonylation site prediction model in plants. Consequently, we considered window 

Table 1.  The performance of tenfold cross validation and independent testing for our proposed hybrid 
model in mammalian proteins. Since the hybrid model with RF models did not perform well, the final hybrid 
model did not incorporate them. PSSM position specific scoring matrix, AAC  amino acid composition, PAAC  
pseudo-amino acid composition, CNN convolutional neural network, RF random forest, NN neural network, 
ACC  accuracy, SEN sensitivity, SPE specificity, MCC Matthews correlation coefficient, AUC  area under the 
receiver operating characteristic curve.

Feature Dimension Window size Model ACC SEN SPE MCC AUC 

One hot encoding 30 × 21 31 CNN 0.713 0.712 0.714 0.233 0.784

AAINDEX 32 × 46 33 CNN 0.730 0.544 0.743 0.147 0.741

PSSM 33 × 20 33 CNN 0.707 0.707 0.707 0.216 0.775

AAC 21 23 RF 0.620 0.598 0.623 0.143 0.654

PAAC 34 17 RF 0.624 0.612 0.628 0.210 0.671

Tenfold cross validation
Ensemble with NN (without RF models) 0.764 0.653 0.661 0.174 0.742

Independent testing
Ensemble with NN (without RF models) 0.866 0.910 0.864 0.480 0.943

Table 2.  The performance of tenfold cross validation and independent testing for our proposed hybrid model 
in plant proteins. PSSM position specific scoring matrix, AAC  amino acid composition, PAAC  pseudo-amino 
acid composition, CNN convolutional neural network, RF random forest, NN neural network, ACC  accuracy, 
SEN sensitivity, SPE specificity, MCC Matthews correlation coefficient, AUC  area under the receiver operating 
characteristic curve.

Feature Dimension Window size Model ACC SEN SPE MCC AUC 

One hot encoding 32 × 21 33 CNN 0.598 0.572 0.600 0.095 0.635

AAINDEX 26 × 30 27 CNN 0.637 0.577 0.642 0.121 0.673

PSSM 31 × 20 31 CNN 0.614 0.571 0.617 0.103 0.647

AAC 20 39 RF 0.654 0.632 0.656 0.161 0.720

PAAC 34 39 RF 0.661 0.633 0.663 0.166 0.718

Tenfold cross validation
ensemble with SVM 0.660 0.653 0.661 0.174 0.742

Independent testing
ensemble with SVM 0.691 0.682 0.692 0.195 0.772

Table 3.  The comparisons of our model with Kmal-sp amd LEMP for predicting malonylation sites in 
mammalian proteins, respectively. TP true positive, FP false positive, FN false negative, TN true negative, ACC  
accuracy, SEN sensitivity, SPE specificity.

Tool

TP FN

ACC SEN SPE Time consumingFP TN

Kmal-sp
270 190

0.597 0.587 0.598 Around 2 days
4,138 6,151

Kmalo (proposed)
303 157

0.674 0.659 0.675 Within minutes
3,349 6,940

LEMP
1,130 121

0.862 0.903 0.860 Within minutes
2,672 16,389

Kmalo
1,138 113

0.866 0.910 0.864 Within minutes
2,600 16,461
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sizes ranging from 11 to 39, a wider range than that was considered for mammalian peptides. The experimental 
datasets are summarized in Table 4 and Supplementary Fig. S5,.

Features extraction. Amino acid composition (AAC) encoding calculates the frequency of the residues 
(20 standard amino acids and one dummy amino acid “X”) surrounding the modification sites and has been 
widely used in various prediction  works14. Here, the site itself is not counted. As a result, each segment will be 
encoded as a 21-dimention vector.

Additionally, one hot encoding was used to express the sequence features. Specifically, the peptide was 
encoded as a two-dimensional matrix. The rows of the matrix were the amino acids in the peptide, and the 
columns were the 21 amino acids (with 1 dummy amino acid “X”). Every position in each row was filled with 
“0”, except the one that corresponds to the amino acid in the column, which was filled with “1”35 . This encoding 
method has been applied in many kinds of PTM site  prediction19,20.

Pseudo-amino acid composition (PAAC) encoding was considered in this study. This group of descriptors 
was first proposed by Shen and Chou (2008)36.  iFeature37 in Python was used to generate one of the encoding 
methods. The descriptor was used to integrate the information of the original hydrophobicity values, the original 
hydrophilicity values, and the original side chain masses of the 20 natural amino acids with the sequence-order 
information. As a result, PAAC not only considered the most adjacent residues, but also the adjacent plus λ 
residues. In this study, λ = 13.

The AAindex  database38 collects indices of the representing physicochemical properties of amino acids. In this 
study, we used  iFeature37 to encode each sample peptide. For each sample, the amino acid at each position was 
represented by 531 physicochemical properties, such that the vector of each encoding peptide was 531 × (L–1) 
dimensional (where L is the window size of the peptide; only the upstream and downstream were employed). 
Then, a feature-selection method was applied to remove the redundant properties and obtain the optimal phys-
icochemical property sets. iFeature was used to calculate the information gain of our AAindex-based feature, 
which was then added to the value of information gain for each physicochemical property at each position. With 
the highest summed-up value of information gain, 46 physicochemical properties were selected for mammalian 
proteins and 30 physicochemical properties for plant proteins. After reshaping the features, a two-dimensional 
matrix with 46 (or 30) columns and (L–1) rows for each sample fragment was obtained.

Position-specific scoring matrix (PSSM) profiles have been used in several related  works14–16. In this study, 
PSI-BLAST was performed with a default E-value cutoff in three iterations. The size of the profile was L × 20, 
where L represents the window size and 20 denotes the number of the standard amino acids. It should be 
noted that the PSSM profile of the fragment was directly used as the input of the deep learning model, without 
reshaping.

Figure 6.  ROC curves on the independent testing for comparing with Kmal-sp (left) and LEMP (right).

Table 4.  The number of malonylation and non-malonylation sites used in this study. “ + ” means the testing set 
for Kmal-sp tool; “#” means the testing for LEMP tool.

Species

Training set Testing set Independent testing set

Positive Negative Positive Negative Positive Negative

H. sapiens or
M. musculus 5,006 76,264 1,252 19,066

460+ 10,289+

1,251# 19,061#

T. aestivum 196 2,394 82 1,195 82 1,195
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Hybrid model construction. The proposed hybrid models are composed of two parts. In the first part, 
a series of experiments were performed to develop the best prediction model for each single-feature category. 
Specifically, RF, SVM, and CNN were implemented for the one hot encoding features, including the AAC, PAAC, 
AAindex, and PSSM profiles, respectively. It should be noted that each model was trained with peptides rang-
ing from window size 15 to 35 in order to determine the proper length. RF models were constructed using the 
Python package “Scikit-learn”39 , where the number of decision trees was 500. Radial basis function kernel was 
chosen as the default kernel function for our SVM models. The window size of the optimal model with the high-
est area under the receiver operating characteristic curve (AUC) score was selected as the most suitable window 
size. A CNN model including two rounds of the convolutional layers and max pooling layers followed by three 
fully connected layers was designed. At this stage, 5 single-feature models for mammalian proteins and 5 single-
feature models for plant proteins were obtained. Herein, the ‘Tensorflow’ package in Python was used.

The second step involved the aggregation of the separated models trained with different features in order to 
make a final prediction. Three methodologies for aggregation were used: another neural network, SVM, and 
majority votes. For the mammalian proteins, considering the CNN model as a feature extractor and combined 
with the raw AAC, the feeding of the PAAC feature into another neural network obtained the best AUC. On the 
other hand, for the plant proteins, feeding the positive probability of each feature into a SVM model resulted in 
the best performance. The schemes of proposed model for mammalian and plant proteins are shown in Supple-
mentary Fig. S6, and Supplementary Fig. S7,, respectively. The cutoff values are 0.046 and 0.195 for mammalian 
and plant models, respectively.

Metrics of model evaluation. The following metrics were used to evaluate the performance of our mod-
els: sensitivity (SEN), specificity (SPE), accuracy (ACC), and Matthews correlation coefficient (MCC). The 
detailed definitions of these metrics are given below.

where TP denotes the true positives and refers to the number of positive labels that were correctly predicted by 
the classifier, TN denotes the true negatives and refers to the number of negative labels that were correctly pre-
dicted by the classifier, FP denotes the false positives and refers to the number of positive labels that were incor-
rectly predicted by the classifier, and FN denotes the false negatives and refers to the number of negative labels 
that were incorrectly predicted by the classifier. Additionally, the area under the receiver operating characteristic 
curve (AUC) was also considered in this study. It should be noted that a receiver operating characteristic curve 
(ROC) is a widely used visual tool for comparing predicted performances. It is able to demonstrate the trade-off 
between the true positive rate (TPR) and the false positive rate (FPR) at various threshold settings. Therefore, the 
AUC is frequently used when evaluating the overall predictive performance of a wide range of biological systems.

Development of the web-based prediction tool. The web-based prediction tool was mainly written in 
HyperText Markup Language (HTML), Cascading Style Sheets (CSS), JavaScript (JS), and HyperText Preproces-
sor (PHP). When a user submits data, this data will be saved as a text file named with a combination of the date, 
time, and five random characters or numbers in an automatically created folder in the server computer. A series 
of feature extractions will be performed and every feature will be saved as a text file in the same folder for further 
use. For the same reason, the prediction result will also be saved as a text file. If the user waits on the same page 
after having submitted their data, they will be automatically redirected to the results page. Otherwise, the user 
can use the job ID, with the same name as the automatically-saved input file, to retrieve his or her results.

Data availability
The datasets used and analyzed during the current study are available from the corresponding authors on rea-
sonable request.
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