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the scalability, error correction and practical problem solving are important challenges for quantum 
computing (Qc) as more emphasized by quantum supremacy (QS) experiments. Quantum path 
computing (Qpc), recently introduced for linear optic based Qcs as an unconventional design, targets 
to obtain scalability and practical problem solving. it samples the intensity from the interference of 
exponentially increasing number of propagation paths obtained in multi-plane diffraction (MPD) of 
classical particle sources. QPC exploits MPD based quantum temporal correlations of the paths and 
freely entangled projections at different time instants, for the first time, with the classical light source 
and intensity measurement while not requiring photon interactions or single photon sources and 
receivers. In this article, photonic QPC is defined, theoretically modeled and numerically analyzed 
for arbitrary fourier optical or quadratic phase set-ups while utilizing both Gaussian and Hermite-
Gaussian source laser modes. problem solving capabilities already including partial sum of Riemann 
theta functions are extended. important future applications, implementation challenges and open 
issues such as universal computation and quantum circuit implementations determining the scope 
of Qc capabilities are discussed. the applications include QS experiments reaching more than 2100 
feynman paths, quantum neuron implementations and solutions of nonlinear Schrödinger equation.

The scalability of quantum resources including qubits and quantum gates, improved error correction capabili-
ties and practical problem solving ability are the most important challenges for modern quantum computing 
(QC). Recent quantum supremacy experiments (QS) of Google as a success milestone for the human history of 
computing emphasize the importance of these properties in their set-up with 53 qubits and 20 cycles reaching 
Hilbert space size of ≈ 266 Feynman paths making it significantly difficult to classically calculate their  result1,2. 
QS experiments target to show the computational capability of QCs such that feasible computations obtained 
with QCs require significant resources to perform with classical  computers3. In the global and highly competi-
tive race including technology giants, a wide variety of but quite complex hardware architectures are used. For 
example, Google, IBM and Rigetti Computing use superconducting circuits while Microsoft using topological 
anions generated by frozen nanowires, Ion-Q using ion traps at room temperature and D-Wave using quantum 
annealing  technology4. On the other hand, both the challenges of scalability and practical problem solving capa-
bility continue to exist such that QCs that can show significant advantages in practical problem solving compared 
to conventional computers require much more resources such as thousands of logical qubits and hundreds of 
thousands physical  qubits5. Therefore, building QC system architectures which are more tolerant to noise and 
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decoherence combined with capabilities of error correction, practical problem solving, low hardware complexity 
and resource scalability is significantly important for near-term advantages of QC.

Linear optic (LO) based QCs (LOQCs) have a special place among the existing QC architectures due to 
easy manipulation of photons, unique features of photons not interacting with the environment in terms of 
decoherence, working at room temperature and maturity in classical optics for  centuries7–9. For example, boson 
 sampling10 as a candidate for LOQC based QS promises experimental implementation of QS in the future while 
the recent experimental achievements in Ref.11 improve the complexity of the solved problems gradually reaching 
Hilbert space size of ≈ 248 . However, the existing LOQC candidates for QS have still the fundamental challenges 
of scalability of the resources, e.g., the requirement of single photon sources and receivers, and practical prob-
lem solving capability, e.g., matrix permanents in boson sampling. Furthermore, multi-photon entanglement 
resources and quantum circuits are challenging to create due to the difficulty in the interaction of photons with 
each other. Multi-plane diffraction (MPD) based QC system denoted by quantum path computing (QPC) as 
shown in Fig. 1 is recently proposed in Ref.6 as one of the simple LOQC architectures targeting to realize scal-
ability and practical problem solving capabilities. Sampling from the interference of exponentially increasing 
number of propagation paths and the freely entangled projections at different time  instants12 are utilized for 
QC purposes, for the first time, by exploiting coherent and classical sources such as standard laser sources. 
Exponentially increasing number of Feynman paths with respect to the given amount of slits and diffraction 
planes makes the classical calculation of the interference output significantly  hard6. The unique form of temporal 
correlation freely available among the exponentially increasing number of Feynman paths in the MPD set-up is 
denoted as quantum path entanglement (QPE) in Ref.12 as a novel resource to exploit for QC based on the coher-
ence and superposition of the classical light  source13,14. In fact, a quantum mechanical propagator for photons 
with the form of the classical Fresnel diffraction integral is verified in Ref.15 such that the classical intensity of 
the field is proportional to the probability density of photon detection for the position observable transversal to 
the propagation and in the limit for large number of quanta. Therefore, FO based set-up exploits classical light 
source and its intensity measurement while exploiting quantum temporal correlations in a unique MPD design. 
QPC promises a significant alternative to cope with the fundamental challenges of scalability of multi-photon 
entanglement resources and the complex requirements of single photon sources and detection mechanisms 
observed in conventional linear optical QC  systems9,16–18. It has important all-in-one advantages combining the 
utilization of the classical sources, i.e., either fermion or boson, hardware simplicity based on diffraction slits 
and detection with conventional photon counting intensity detectors without requiring simultaneous detection 
of multiple photons in multiple  registers10.

Besides that, another QC architecture related to multi-slit structures is denoted as duality computer (DC) 
which exploits duality parallelism for performing different gate operations on the sub-wave functions through 
sub-waves corresponding to each  slit19–22 while utilized in various machine  learning23 and photonic chip 
 applications24. The quantum wave divider (QWD) divides wave functions into sub-waves. In addition, sub-sub-
waves can also be obtained in a multi-level QWD while quantum wave combiner (QWC) is utilized to combine 
the waves after performing operations on each path. It is firstly required as an open issue to explicitly model 
the theoretical computational complexity and QC capabilities of a multi-level version of DC with respect to the 
targeted QWD/QWC configurations before comparing with MPD design. For example, combined operations 
of uniform QWD/QWC in a DC leaving the state unchanged is not comparable with MPD modifying the state 
with diffractions as time evolves. Single level complexity discussions in the DC related literature include the 
requirement of an extra  qudit20,21 for simulating DC device with an ordinary quantum computer which is not 
comparable with the tensor product structure of MPD requiring multiple qudits. The division of each wave into a 
sub-wave and then into a sub-sub-wave could require an exponentially increasing number of slit resources mak-
ing it challenging as discussed next for Ref.25. On the other hand, DC based architectures have a long history and 
maturity along two decades with many capabilities and applications including practical database search without 
requiring extra  resources19 verified with quantum circuit modeling in Ref.20. DC utilizes linear combination of 
unitaries (LCU) for QC while becoming one of the five major techniques for designing quantum  algorithms26, 
in multi-party secure  computation27 and HHL quantum  algorithm28.

Figure 1.  QPC set-up composed of N − 1 diffraction planes, FSP between the planes and a single sensor plane 
on which exponentially increasing number of propagation paths  interfere6.



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:10968  | https://doi.org/10.1038/s41598-020-67364-0

www.nature.com/scientificreports/

Furthermore, simple optical setups exploiting wave-particle duality and interferometers have the cost of expo-
nential complexity of resources either in time, space or energy domains to achieve QC advantages as discussed in 
Ref.6. For example, wave particle (WP)  computer29 exploits full optical interconnections of an N × N input signal 
array with an N × N output signal creating N4 channels with a tensor product. WP computer also utilizes a filter 
array between the input and output to increase the number of connections in an additive manner with respect to 
the connections in each inter-planar region. Such architectures, including also Ref.25 for a slit based modeling, 
provide advantages of parallelism compared with classical models without exploiting temporal correlations of 
quantum histories and their tensor product  structure12. They utilize the tensor product only for a single inter-
planar propagation, i.e., a single measurement plane directly detecting propagation from the input array. The rich 
set of two and three dimensional alternative optical interconnection architectures and opto-electronic computing 
are discussed in detail in Ref.30 by also including multi-stage interconnection topology. Analog Fourier optics 
(FO) and its digital equivalent, i.e., digital FO architectures composed of smart pixel arrays of two-dimensional 
electronic processing units connected with optical interconnections, exploit speed and parallelism advantages of 
the optical  design31. Furthermore, programmable directed logic networks are discussed in Ref.32 by emphasizing 
the energy efficiency of optical architectures.

On the other hand, QPC formulation is performed for electron based set-up in Ref.6 while theoretical studies 
modeling QPE in Ref.12 and classical optical communications in Ref.33 formulate free space propagation (FSP) of 
light. They do not generalize to arbitrary set-ups of FO, i.e., first order centered optical or quadratic-phase systems 
including arbitrary sections of free space, thin lenses, graded index media and spatial  filters34 and mathematically 
characterized as linear canonical transforms (LCTs)35. LCTs are linear integral transforms including the Fresnel 
and fractional Fourier transform (FRFT), scaling, chirp multiplication and some other operations as special 
cases while being equivalent to spatial distribution of light in phase-space optics for quadratic-phase  systems34. 
Besides that, previous MPD studies utilize Gaussian sources without extending to Hermite-Gaussian (HG) beams 
compatible with the standard laser sources within the paraxial  approximation36. Photonic QPC formulation is 
not available while important applications of QPC other than the partial sum of Riemann theta function (RTF) 
and period finding presented in Ref.6 are not discussed and theoretically analyzed yet.

Diffractive and phase space optics are also getting attention in quantum technologies with periodic single 
plane diffraction for implementing quantum logic gates using quantum Talbot  effect37, for testing D-dimensional 
(qudit) Bell inequality with free space entangled quantum  carpets38 and for the evaluation of entanglement over 
the entire transverse field distribution of the  photons39 while without any discussion regarding the MPD based 
advantages. Proposed theoretical modeling and system design of photonic QPC with widely available optical 
components, e.g., thin lenses, free space and diffraction planes as a form of spatial filtering, provide a unique 
opportunity to exploit conventional FO for QC. The large amount of theoretical and experimental maturity in 
FO since the last century is combined with MPD based system design to realize scalable and low complexity 
QC systems with important capabilities and global resources for efficient implementation and development.

In this article, QPC set-up is defined, theoretically modeled and numerically analyzed for FO with arbitrary 
LCTs between diffraction planes. QPC system exploiting diffraction in an unconventional manner maintains 
photonic advantages including decoherence and noise while avoids the need to interact with multiple photons by 
eliminating many problems encountered in multi-photon entanglement and circuit implementations. Further-
more, the quantum nature of FO is discussed based on the  experimental15,40 and  theoretical41 studies verifying 
the validity of Fresnel diffraction formulation for quantum optical propagation. Classical monochromatic light 
sources of both Gaussian and Hermite-Gaussian (HG) beams are utilized compatible with the standard laser 
sources within the paraxial  approximation36. LCT based design which provides more flexibility is numerically 
compared with FSP in terms of improvement on the detection efficiency and the interference complexity defined 
with the magnitudes of the interfering paths and negative volume of Wigner distribution  function6,42.

Important future applications of photonic QPC are, for the first time, introduced and theoretically modeled 
in an introductory and brief manner. These include the feasibility of QS experiments compared with alternative 
technologies, adapting certified random number generation protocols for the photonic QPC  architecture43–46, 
quantum neural network (QNN) implementations and making the solutions of nonlinear Schrödinger equation 
(NLSE) easier. The detailed modeling and utilization of photonic QPC for these applications are presented as 
open issues.

The potential of QS experiments with photonic QPC is presented in this article to reach more than 2100 Feyn-
man paths in a scalable set-up with several tens of diffraction planes while requiring experimental implementa-
tions for better modeling and verifying the scalability for large scale QPC set-ups. A feasible method is proposed 
to exponentially increase the number of Feynman paths with the cost of linearly increasing number of planes 
and slits allowing to obtain significantly large Hilbert space. However, it is an open issue to verify QS capability 
both complexity theoretically and experimentally based on the promising results in Ref.6 and the modeling in 
this article such as by performing analogous modeling and experiments in Refs.10,11  and47 achieved for Boson 
sampling. Moreover, QPC with Gaussian sources results in unique mathematical forms of wave functions on the 
sensor plane in (16) to be exploited for the solutions of the partial sum of  RTF48–51, period  finding52 and Dio-
phantine  approximation53 similar to the algorithms and methods in Ref.6 but with much more design flexibility 
due to LCTs, diversity of the tools and maturity in the science of FO. HG sources result in different forms in (25) 
and (27) while closely related to the standard RTF form and requiring future studies to exploit for the solutions 
of numerical problems in various scientific disciplines. On the other hand, open issues and challenges for FO 
based QPC design are discussed to determine the scope of the proposed design for QC purposes, e.g., universal 
quantum computation capability, implementations of quantum circuit gates and basic search algorithms such 
as Grover search.

Neural networks (NNs) exploiting the quantum advantages, i.e., QNNs, improve the capabilities of classical 
NNs with quantum interference and superposition for deep learning  applications54 in various  disciplines55. On 
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the other hand, linear and unitary framework of quantum mechanics results in the challenges of implementing 
non-linear and dissipative dynamics of classical neural  networks55. The state-of-the-art neuron implementa-
tions utilize various methods to introduce non-linearity including quantum  measurements55,56. The quantum 
interference among the exponentially increasing number of paths and the entanglement denoted as QPE in 
Ref.12 are promising for designing and practically implementing novel design of QNNs. QPC set-up has inher-
ently nonlinear formulation with respect to slit positions to encode the input and it operates on the quantum 
superposition of the inputs. Besides that, implementations of diffractive NNs utilizing single-layer57,58 and all-
optical multi-layer diffractive  architectures59 do not exploit interference among the paths or quantum domain 
advantages. Photonic QPC succeeds to combine the implementations of QC and QNNs with the same hardware 
design of MPD as a uniquely valuable unconventional hardware architecture.

NLSE solution is very important in the analysis and performance measurement of fiber optic  cables60,61. It 
is also necessary for the solution of nonlinear Fourier transform (NLFT) which is a transformation that finds a 
wide range of applications with increasing  importance60. NLSE and NLFT play a similar role for nonlinear and 
integration equations compared with the role of the FT in linear systems. NLFT is a transformation system for 
expressing the signal in the time plane by using nonlinear periodic waves or  solitons60. It is also referred to as 
scattering transform. NLSE is expressed as  follows60,61:

where q(x, t) is the solution wave function that provides the periodic boundary condition ( q(x + l, t) = q(x, t) 
and period l > 0 ) and κ is some variable. In this article, the speed up in NLSE solution is conjectured by exploit-
ing RTF summations in QPC.

The remainder of the paper is organized as follows. We firstly define and theoretically model photonic QPC 
and its extension for FO followed by the discussion of the performance based on Wigner distribution function. 
Then, future applications including QS, quantum neuron implementation and solution of NLSE are introduced, 
theoretically modeled and the challenges are discussed. Numerical analysis for photonic MPD is provided and 
then open issues for realizing photonic QPC are presented.

Results
Quantum path computing with optical multi-plane diffraction and coherent light 
sources. MPD set-up introduced in Ref.6 as shown in Fig.  1 is extended to optical implementations for 
QC by using coherent laser sources and conventional photodetectors. The set-up is composed of N − 1 dif-
fraction planes with Kj slits on each plane for j ∈ [1,N − 1] and a single sensor plane indexed with N while 
the central position of a slit is given by Xj,i for i ∈ [1,Kj] as shown in Fig.  1a. Each slit is assumed to apply 
a spatial filtering of G(Xj,i , β̃j,i , xj) ≡ exp

(
− (xj − Xj,i)

2 / (2 β̃2
j,i)

)
 , i.e., slit mask function, where β̃j,i deter-

mines the slit width. The wave function on jth plane is denoted with �j(xj) which is the wave form after dif-
fraction through the previous planes, i.e., with the indices k ∈ [1, j − 1] , while before diffraction through the 
slits on jth plane. There is an exponentially increasing number of propagation paths through the slits until to 
the final sensor plane, i.e., Np ≡

∏N−1
j=1 Kj , while nth path includes the diffraction through a single slit on each 

plane with the corresponding wave function �j,n(xj) on jth plane. Assume that nth path passes through the 
slit indexed with sn,j on jth plane and we define the path vectors �xTN−1,n ≡

[
X1,sn,1 X2,sn,2 . . . XN−1,sn,N−1

]
 and 

�xTN−1,�s ≡
[
X1,s1 X2,s2 . . . XN−1,sN−1

]
 where �s ≡

[
s1 s2 . . . sN−1

]
 and (.)T is the transpose operation. The map-

ping between the path index n and slit index sn,j for the path is defined with the function n = fs2n(�s) where sn,j is 
predefined for each n. Furthermore, �0k is the column vector of length k with all zeros and 0k is the square matrix 
of all zeros with the size k × k . Similarly, rectangular matrices are shown with 0k,l . In the rest of the article, a 
parameter B depending only on �βN−1,n ≡ [β̃1,sn,1 . . . β̃N−1,sn,N−1 ] but not on �xN−1,n is denoted with B̃j,n on each 
jth plane including .̃  over the symbol. Therefore, if the slits are chosen with the same β̃j,sn,j = βj specific to each 
plane, then B̃j,n becomes independent of n and is converted to the notation Bj.

MPD set-up shown in Fig. 1 is utilized for QC denoted by QPC in Ref.6 by sampling the interference of expo-
nentially increasing number of interfering paths. The capability to theoretically characterize QPC with quantum 
FO provides future applications for both QC and quantum information theory by exploiting energy efficient 
combination of optical elements. Intensity sampling on the sensor plane (I[k]) for the MPD set-up in Refs.6,12 
generates a black-box (BB) function fBB[k] with the following special form to utilize in solutions of important 
and classically hard number theoretical problems:

where k ∈ Z , Ts ∈ R
+ is a sampling interval, Ã�s ∈ R

− , B̃�s ∈ R
+ and ϒ̃�s ∈ C . The complex valued matrix 

H̃�s ≡ H̃R,�s + ı H̃I ,�s and the vector �̃h�s ≡ �̃c�s + ı
�̃
d�s have the values depending on β̃j,i for j ∈ [1,N − 1] and 

i ∈ [1,Kj] corresponding to the specific selection of slits in the path �s , inter-plane durations for the particle 
propagation, particle mass m (for electron based set-ups in Refs.6,12), beam width σ0 of the Gaussian source 
wave packet and Planck’s constant � . The calculation of (2) in an efficient manner is significantly hard while 
two different methods utilizing (2) for practical problems are introduced. Solution for the partial sum of RTF or 
multi-dimensional theta function is the first application with importance in number theory and  geometry48–51. 

The second method utilizes MPD with the phase term �̃d
T

�s �xN−1,�s in exp
(�̃
h
T

�s �xN−1,�s k Ts

)
 for period  finding52 and 

the solution of specific instances of SDA  problems53.

(1)ı

δq(x, t)

δt
+ δ2q(x, t)

δx2
+ 2 κ |q(x, t)|2 q(x, t) = 0

(2)fBB[k] ≡ I[k] ≡
∣∣∣∣

K1∑

s1=1

. . .

KN−1∑

sN−1=1

e(Ã�s + ı B̃�s)(k Ts)2 ϒ̃�s e
�xTN−1,�s H̃�s �xN−1,�s e(

�̃
h
T

�s �xN−1,�s) k Ts
∣∣∣∣
2
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The basic unit of QC systems, i.e., the qubit, is defined on a two-state system where discretized degrees of 
freedom (DoF) of photons including path, transverse-spatial modes and time/frequency bins are exploited to 
create high-dimensional  entanglement62. For example, multi-slit structures are already utilized to define spatial 
qudits by projecting the wave function into the transverse position and momentum Hilbert spaces through 
slits and characterizing their properties using their propagation in free  space63,64. The qubit states in Ref.64 are 
expressed in the basis |l�, |r� representing the photons passing through either the left or the right slit. However, 
entangled multiple photons, e.g., photon pair A and B, are conventionally generated through spontaneous para-
metric down-conversion (SPDC) to realize multi-photon entangled state, e.g., 

(
1 /

√
2
) (

|lA�|rB� + |rA�|lB�
)
 . 

The fundamental difference of MPD based qudits from multi-photon slit based entangled spatial qudits is the 
utilization of the tensor product structure for each single photon in time domain rather than spatially among 
multiple photons obtained through  SPDC6. The projection events through the slits of consecutive planes are freely 
entangled at two different time instants denoted as QPE with the detailed modeling presented in Ref.12 based on 
consistent histories and entangled histories frameworks. The presented free entanglement in time domain provides 
an important advantage exploiting directly the classical light sources and not requiring the difficult coupling of 
multiple photons. The concept of free entanglement is introduced for boson sampling exploiting boson statistics 
of a number of indistinguishable bosons while they still require multiple photons, and generation and detection 
mechanisms for single  photons10.

History state in MPD is composed of diffraction events as  follows12:

where Pj,sn,j represents the projection operator through the slit indexed with sn,j , πn as 0 or 1 determines a com-
pound set of trajectories, ⊙ denotes tensor product operation and [ρ0] denotes the initial state. The analogy of 
MPD based multiple qubits with the general two qubit state of two photons is represented as shown in Fig. 2 in 
the basis of |U� and |L� for the upper and lower slits, respectively. The general state for the projection through 
two diffraction planes indexed with A and B is represented as follows:

where the amplitudes are denoted by aij , and i and j denote the projection through upper or lower slits. The 
A and B in the MPD set-up denote the indices of planes for the projection of a single photon at different time 
instants rather than the indices of two photons as in the entangled state of two spatial qubits of two photons. 
There are four different projection history states where the wave function whose intensity to be measured on 
the final detection plane, i.e., �3(x) , is described as the interference of four different wave function histories 
corresponding to each trajectory, i.e., �3,j(x) for j ∈ [1, 4]:

�3,1(x) corresponds to auu|UAUB� and the other components are defined as shown in Fig. 2. Each component 
depends in a complex manner on the slit geometries as modeled by the RTF. QPC applications of MPD based high 
dimensional entangled states do not include any measurement by closing or opening slits but a final measurement 
on the detector plane obtaining the complicated interference pattern of exponentially many Feynman  paths6.

QPC based on FO promises expanding the set of solvable problems both with LCT based general system 
design and also the sources including HG beams. Furthermore, a discussion is included to utilize non-Gaussian 
slits with the proposed mathematical modeling in the Open Issues and Discussion section. Propagation through 
Fourier optical systems based on Fresnel diffraction is modeled emphasizing the quantum nature of Fresnel dif-
fraction and FO in the Methods section. Next, MPD modeling is proposed for Fresnel diffraction and arbitrary 
LCT based optical systems by utilizing the proposed kernels.

(3)
∑

n

πn
[
PN−1,sn,N−1

]
⊙

[
PN−2,sn,N−2

]
⊙ . . .⊙

[
P1,sn,1

]
⊙ [ρ0]

(4)|�3� ≡ auu|UAUB� + alu|LAUB� + all|LALB� + aul|UALB�

(5)�3(x) = �3,1(x) + �3,2(x) + �3,3(x) + �3,4(x)

Figure 2.  MPD based two-qubit state represented with four quantum histories of a single photon with the 
tensor product structure in time domain in analogy with the entangled state of two spatial qubits of two 
photons.
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Quantum path computing with fourier optical systems. The set-up in Fig.  1 defined with FSP 
and electron based theoretical formulation is extended to optical systems of LCT as shown in Fig. 3. The ker-
nel of one dimensional (1D) quadratic-phase system or LCT converting the input signal f (x0) to the output ∫∞
−∞ dx0 K

(a,b,c,d)
LCT (x1, x0) f (x0) is represented as follows:

In matrix notation, it is shown with the following unit-determinant matrix:

where a d − b c = 1 and the matrix for the composition of two consecutive systems represented by M1 and M2 
is calculated by the multiplication M2 M1 . The kernel matrices KFS(x1, x0) and KHO(x1, x0) denoting FSP kernel 
in phase-space  optics34 and the kernel based on quantum mechanical harmonic oscillator (HO) modeling of 
the evolution of light wave  function15 (in analogy with FRFT implementation), respectively, are defined in the 
Methods section while discussing quantum FO. Some simple examples of LCT matrices for propagation of length 
Lj,j+1 between jth and (j + 1) th planes are given as  follows34:

where MS scales with �j+1(xj+1) ≡ (1 /
√
aj,j+1)�j(xj+1 / aj,j+1) , the kernel for ML is e−ı π x21 / (� f ) and 

m� ≡ 2π � / (� c) is defined in the Methods section after discussing (47).
The varying forms of wave functions on the measurement plane extending (2) are modeled which are prom-

ising to be utilized in QC applications. It is presented next such that obtained forms are similar to (2) while 
having higher flexibility of system design. The theoretical modeling of BB functions for quantum HO based or 
FRFT based light propagation modeling with Gaussian sources is presented next with the wave function in (16). 

(6)K
(a,b,c,d)
LCT (x1, x0) ≈

√
1

b
e
−ı π
4 e

ı π
b (d x21 −2 x1 x0+ a x20)

(7)MLCT =
[
a b
c d

]

(8)Free space propagation: MFS ≡
[
1

2π � Lj,j+1

m� c

0 1

]

(9)Fourier transform: MFT ≡
[
0 1
−1 0

]

(10)Fractional Fourier transform of order α : MFRFT ≡
[
cos(α) sin(α)
− sin(α) cos(α)

]

(11)Thin lens of focal length f : ML ≡
[

1 0

− 1
� f 1

]

(12)Scaling: MS ≡
[
aj,j+1 0

0 a−1
j,j+1

]

Figure 3.  Photonic QPC architecture composed of classical light source, MPD set-up composed of N − 1 
diffraction planes with Kj slits on jth plane, general LCT phase-space optics represented with the matrix 
elements LCTj,j+1 between the planes indexed with j and j + 1 , and a single sensor plane on which exponentially 
increasing number of propagation paths interfere. Each LCTj,j+1 is implemented with sections of FSP for the 
lengths of La,j,j+1 and Lb,j,j+1 , and a thin lens of focal length fj,j+1 between them.
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Gaussian source case is also extended to arbitrary LCTs. Similarly, the wave functions for arbitrary LCTs with 
HG sources are presented in (25) and (27) next.

An arbitrary LCT with the matrix parameters {aj,j+1, bj,j+1, cj,j+1, dj,j+1} is implemented in phase-space optics 
by consecutive applications of FSP of length La,j,j+1 , then thin lens of focal length fj,j+1 , and another FSP of length 
Lb,j,j+1

35. LCT matrix MLCT is calculated as follows:

where τ ⋆a,j ≡ La,j,j+1 / c and τ ⋆b,j ≡ Lb,j,j+1 / c , and the middle matrix is for the effect of thin  lens34. FRFT with 
scaling is a special case of LCT as discussed in the Methods section. Therefore, FSP, FRFT and arbitrary LCT 
based QPC set-ups are implemented with the universal configuration in Fig. 3.

QPC with Fresnel diffraction and FRFT by using Gaussian sources. Firstly, two special cases of LCTs are consid-
ered, i.e., FSP of light and propagation modeled with FRFTs denoting graded-index media propagation as the 
solution of the quantum HO in Ref.15. Furthermore, we assume that the source distribution has a Gaussian form 
of �0(x0) = exp

(
− x20 / (2 σ

2
0 )
)
/
√

σ0
√
π  while HG waveforms as eigenfunctions of  FRFTs34 are considered 

for the general case of LCTs in the next section. It is assumed that the optical system between the planes results 
in the kernels KFS(x1, x0) and KHO(x1, x0) defined in (45) and (47) based on Fresnel diffraction integral for free 
space and quantum HO  solution15, respectively. The definition and the derivation of HO based kernel with the 
following kernel matrix for the propagation duration of t01 are detailed in the Methods section while we are dis-
cussing the quantum mechanical modeling of FO, i.e., denoting with quantum FO:

The important observation is that iterative integration with KHO(x1, x0) results in the final intensity distribution 
of MPD with the same form of KFS(x1, x0) while with different algorithms for calculating the iteration parameters 
as shown in Table 1 in the Methods section. The kernel KFS(x1, x0) has the same form with Km,FS(x1, x0) used 
for QPC modeling in Ref.6 by replacing the electron mass m with the photon equivalent mass m� . Therefore, the 
same formulations are utilized for the cases of FS and HO solutions while modeling the sampled wave function 
on the sensor plane with iterations and the resulting structure of problem solving capabilities.

The wave function for nth path on the sensor plane for the general case of non-uniform slit widths is given 
by the following by using the iterative formulation:

It is further simplified by extraction of �xN−1,n dependent parts and summing the contributions from each path 
as follows:

where ϒ̃G
N ,n ≡ χ0

(∏N−1
j=1

√
ξ̃j,n

)
 , and the complex vector �̃hN−1,n and the matrix H̃HO/G

N−1,n are defined in the Meth-
ods section for the HO case with simplified formulation compared with the case for electron based FSP set-up 
in Ref.6. The corresponding iteration parameters are given in Table 1 in the Methods section.

We have not included the effects of special forms of KHO(xj+1, xj) with ω tj,j+1 = k π for k ∈ Z correspond-
ing to integer multiples of FRFT order 2 since the result is �j+1(xj+1) ≡ �j(±xj+1) (inserting ±xj+1 into �j(xj) 
)34. This case can be simply realized by assuming that spatial filtering operations of the slits on jth and (j + 1) th 
planes are combined on a single plane by also noting that whether the wave function is reversed or not. For 
example, multiple inter-plane propagation intervals can result in multiple reversals with the overall effect of the 
identity and combined spatial filtering of Gaussian slits.

QPC with arbitrary linear canonical transforming optical systems. Gaussian Sources The resulting final intensity 
of MPD propagation for the case of K (a,b,c,d)

LCT  ( bj,j+1 �= 0 ) with Gaussian sources has the same form with KHO while 
with different algorithms for calculating iteration parameters in Table 1 in the Methods section and replacing 
H̃

HO/G
N−1,n with H̃LCT/G

N−1,n  . Therefore, all the derivations utilized for KHO including the explicit forms of the wave func-
tion are applicable. We have not included K (aj,j+1, bj,j+1, cj,j+1, dj,j+1)

LCT  with bj,j+1 = 0 for simplicity. Two simple cases 
are scaling and chirp multiplication with aj,j+1 = dj,j+1 = 1 resulting in �j+1(xj+1) ≡ exp(ı π c x2j+1)�j(xj+1)

34.  
These cases further improve the flexibility of the LCT system to realize the desired transformation on the wave 
function.

A simple example is presented with explicit expressions as follows for K1 = 3 , K2 = 2 , N = 3 , bj,j+1 �= 0 for 
j ∈ [0, 2] , fixed slit width parameters β1 and β2 for simplicity and �xT2,n ≡

[
X1,sn,1 X2,sn,2

]
:

(13)MLCT ≡
[
1

2π � τ⋆b,j
m�

0 1

] [
1 0

− 1
� fj,j+1

1

] [
1

2π � τ⋆a,j
m�

0 1

]

(14)MHO =
[

cos(ω t) 2π � t01 sin(ω t)
m�

−m� sin(ω t)
2π � t01

cos(ω t)

]

(15)�G
N ,n(xN ) =χ0

( N−1∏

j=1

χj,n

)
e(ÃN−1,n + ı B̃N−1,n) x

2
N e(CN−1,n + ı DN−1,n) xN

(16)�G
N (xN ) ≡

Np−1∑

n=0

�G
N ,n(xN ) =

Np−1∑

n=0

ϒ̃G
N ,n e

�xTN−1,n H̃
HO/G
N−1,n �xN−1,n e(ÃN−1,n + ı B̃N−1,n) x

2
N e(

�̃
h
T

N−1,n�xN−1,n) xN
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where the following parameters are derived by using Table 1 in the Methods section:

where it is observed that the parameters are some rational complex polynomials of β1 , β2 and σ0 with the coef-
ficients in terms of polynomial expressions of aj,j+1 , bj,j+1 and dj,j+1 for j ∈ [0, 2] with varying orders of ( β1 , β2 , 
σ0 ): reaching (0, 2, 2) for pol1 ; (2, 2, 2) for pol2 ; (0, 0, 2) for pol3 ; (2, 0, 2) for pol4 ; (6, 4, 8) for pol5 , pol7 , pol8 and 
pol9 ; (8, 4, 8) for pol6 , (4, 2, 5) for pol10 ; (4, 2, 6) for pol11 ; (4, 4, 4) for pol12 , pol13 and pol14.

The highly complicated expressions for the polynomials are explicitly shown in Table 2 in the Methods sec-
tion such that they are obtained by using the iteration method in Table 1 in the same section. It is possible by 
using the explicit expressions directly to perform various gedanken experiments and computational complexity 
analysis with any number of slits and LCTs.

A simple numerical example is presented as shown in Fig. 4. The scaling property of thin lens is utilized in the 
Numerical Results section to improve the intensity of the diffraction on the final detection plane. For example, 
a simple Gaussian source beamwidth of σ0 = 20 ( µ m) and � = 650 (nm) shown in Fig. 4b is scaled by shifting 
the position of the lens of focal length 60 (mm) inside the interval of fixed length of L01 = La,01 + Lb,01 = t01 × c 
with t01 = 1 (ns) as shown in Fig. 4a. The shift is modeled with the ratio rL = La,01 / L01 . It is observed in Fig. 4c 
that the intensity of the wave function can be focused with respect to the positions of the slits on the first plane.

Hermite-Gaussian Sources  If the source is chosen as the standard HG waveform of 
�0(x0) = (21/4 /

√
W0 2l l!) exp

(
− π x20 /W

2
0

)
Hl(

√
2π x0 /W0) for K (aj,j+1, bj,j+1, cj,j+1, dj,j+1)

LCT  ( bj,j+1 �= 0 ) where 
Hl(x) ≡ (−1)l ex

2
dle−x2 / dxl is the lth order Hermite  polynomial34,65, then �N ,n(xN ) for nth path is obtained 

as follows by using the integral equality of HG functions in the Methods section:

where the parameters χ01 , χj,j+1,n , ũj,j+1,n , vj,j+1,n , g̃j,j+1,n and hj,j+1,n obtained in an iterative manner for 
j ∈ [1,N − 1] are calculated with simple algebra for nth path and shown in Table 3 in the Methods section. 
Simple algebraic manipulations of (22) to extract �xN−1,n dependent parts result in the following simplification:

(17)�G
3 (x3) =

5∑

n=0

ϒG
3 e�x

T
2,n H

LCT/G
2 �x2,n e(A2 + ı B2) x

2
3 e(

�hT2 �x2,n) x3

(18)H
LCT/G
2 =




pol1(β2, σ0)

pol2(β1,β2, σ0)
0

pol3(σ0)

ı pol2(β1,β2, σ0)

pol4(β1, σ0)

pol2(β1,β2, σ0)




(19)�hT2 =
[
pol5(β1,β2, σ0)

pol6(β1,β2, σ0)

pol7(β1,β2, σ0)

pol6(β1,β2, σ0)

]
+ ı

[
pol8(β1,β2, σ0)

pol6(β1,β2, σ0)

pol9(β1,β2, σ0)

pol6(β1,β2, σ0)

]

(20)ϒG
3 = −2 (−1)3/4

√
2π5/4

√
pol10(β1,β2, σ0)

pol11(β1,β2, σ0)

(21)A2 + ı B2 =
pol12(β1,β2, σ0)

pol13(β1,β2, σ0)
+ ı

pol14(β1,β2, σ0)

b23 pol13(β1,β2, σ0)

(22)�HG
N ,n(xN ) = χ01

( N−1∏

j=1

χj,j+1,n

)
eũN−1,N ,n x

2
N e vN−1,N ,n xN Hl(g̃N−1,N ,n xN + hN−1,N ,n)

Figure 4.  (a) The set-up with a single thin-lens of focal length 60 (mm), (b) Gaussian source with σ0 = 20 
( µ m) and � = 650 (nm), and (c) the distribution of the wave function on the first plane by shifting the 
lens inside the spatial interval of fixed total length L01 = t01 × c with t01 = 1 (ns) by varying the ratio of 
rL = La,01 / (La,01 + Lb,01).
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where χ̃a,j,j+1,n for j ∈ [1,N − 1] is defined in Table 3, the vectors �̃γN−1,n and �̃ηN−1,n , and the matrix H̃LCT/HG
N−1,n  

are defined in the Methods section. It is observed in (23) that each different path results in a different shift on 
Hermite polynomial determined with �̃ηTN−1,n �xN−1,n even for the uniform βj for each slit on jth plane. As a result, 
the final wave function on the sensor plane denoted with �HG

N (xN ) for the general case of non-uniform slit widths 
defined with β̃j,n for j ∈ [1,N − 1] and n ∈ [0,Np − 1] is given by the following:

where ϒ̃HG
N ,n ≡ χ01

(∏N−1
j=1 χ̃a,j,j+1,n

)
 e− ı π (N−2) / 4 and with the similarity to the form in (16) for the HO solution 

except multiplicative Hermite polynomial for each nth path. The complexity of calculating the Gaussian form in 
(16) is classically hard as thoroughly discussed in Ref.6 which requires to compute a special form of partial sum 
of RTF while the complex vector �̃hN−1,n and the matrix H̃HO/G

N−1,n varying for each path making it much harder 
compared with the computation of conventional partial sum of RTF. Therefore, the complexity characterization 
of computing �HG

N (xN ) is an open issue while it is expected to be significantly hard since each summation term 
depends on path index n with varying vector and matrix parameters while also including a product term of 
Hermite polynomial for each path making it harder.

If the uniform slit width case is chosen and the path independent variables are denoted with ϒ̃HG
N ,n = ϒHG

N  , 
χ̃a,j,j+1,n = χa,j,j+1 ,  H̃

LCT/HG
N−1,n = H

LCT/HG
N−1  ,  �̃γN−1,n = �γN−1 ,  ũN−1,N ,n = uN−1,N  ,  g̃N−1,N ,n = gN−1,N  , 

�̃ηN−1,n = �ηN−1 , then (25) is transformed into the following:

It is further simplified as follows by using the useful identity Hl(x + y) = (H + 2 y)l in Ref.66 where Hk ≡ Hk(x):

where 
(
H⋆(xN )

)k ≡ Hk(gN−1,N xN ) . The computational complexity of calculating �HG,U
N (xN ) is similarly 

expected to be significantly hard since the mathematical form is more complicated compared with the partial 
sum of RTF.

The set-up parameters including the slits, lenses and inter-plane distances are required to be tuned in order 
to obtain the desired vectors �̃hN−1,n , �̃γN−1,n , �̃ηN−1,n and matrices H̃HO/G

N−1,n , H̃LCT/G
N−1,n  and H̃LCT/HG

N−1,n  in (16), (25) 
and (27) for the targeted number theoretical problems. Next, Wigner distribution is defined where its negative 
volume is regarded as an indicator of non-classicality.

Wigner distribution, negativity and path magnitudes. The momentum domain wave function 
�p,j(pj) is defined as Fourier transform of spatial representation of wave function �j(xj) on jth plane as follows:

The distribution of energy through space-momentum phase-space is described by Wigner distribution function 
defined as  follows6,42:

The negative volume of Wigner function defined in Ref.42 and utilized in Ref.6 to describe the increasing non-clas-
sicality or time-domain entanglement resources in Ref.12 is described as Vj ≡ 

( ∫ ∫
|Wj(xj , pj)| dxj dpj − 1

)
/ 2 . 

On the other hand, the probability of the particle to be detected on jth plane, i.e., to be diffracted through (j − 1) th 
plane, is computed as follows:

(23)
�HG

N ,n(xN ) =χ01

( N−1∏

j=1

χ̃a,j,j+1,n

)
e
− ı π (N−2)

4 e�x
T
N−1,n H̃

LCT/HG
N−1,n �xN−1,n

× e(
�̃γ T

N−1,n �xN−1,n) xN eũN−1,N ,n x
2
N Hl(g̃N−1,N ,n xN + �̃ηTN−1,n �xN−1,n)

(24)�HG
N (xN ) =

Np−1∑

n=0

�HG
N ,n(xN )

(25)=
Np−1∑

n=0

ϒ̃HG
N ,n e

�xTN−1,n H̃
LCT/HG
N−1,n �xN−1,n eũN−1,N ,n x

2
N e(

�̃γ T

N−1,n �xN−1,n) xN Hl(g̃N−1,N ,n xN + �̃ηTN−1,n �xN−1,n)

(26)ϒHG
N euN−1,N x2N

Np−1∑

n=0

e�x
T
N−1,n H

LCT/HG
N−1 �xN−1,n e( �γ

T
N−1 �xN−1,n) xN Hl(gN−1,N xN + �ηTN−1 �xN−1,n)

(27)

�
HG,U
N (xN ) = ϒHG

N euN−1,N x2N

Np−1∑

n=0

e( �γ
T
N−1 �xN−1,n) xN e�x

T
N−1,n H

LCT/HG
N−1 �xN−1,n (H⋆(xN ) + 2 �ηTN−1 �xN−1,n)

l

(28)�p,j(pj) =
1√
2π �

∫
dxj �j(xj) exp

(
− ı xj pj / �

)

(29)Wj(xj , pj) =
1

π �

∫
dy�j(xj − y)�∗

j (xj + y) e
ı 2 pj y

�

(30)PE(j) ≡
∫

dxj |�j(xj)|2
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In this article, the increasing interference complexity and non-classical nature of MPD based time-domain 
entanglement resources are assumed to be characterized by utilizing Vj and by observing the magnitudes of the 
interfering paths defined as PE,n(j) ≡

∫
dxj |�j,n(xj)|2 for each nth path. Therefore, more paths with large magni-

tudes and Vj emphasize increasing interference and non-classicality. Characterizing the correlation between the 
distribution of path magnitudes and Vj is an open issue since the behavior is highly set-up specific as observed 
in the Numerical Results section. On the other hand, path magnitudes throughout the whole plane may not 
reflect their localized characteristics such as effecting some sample locations more compared with the others. 
Therefore, it is an open issue to characterize the interference complexity in terms of the intensity distribution 
of the paths while the path magnitudes are taken as a reference for simplicity in this article. Next, the potential 
future applications of QPC architecture based on FO are presented.

future applications. Applications for quantum supremacy and certified random number generation. The 
scalable structure of QPC with coherent light sources and low complexity FO promise the large scale implemen-
tation of QS experiments. Recently, some experiments are performed with 53 qubits with superconductor based 
architectures of Google as a milestone for the human history of computational  capabilities1,2. In this article, we 
propose that a similar experiment could be formulated in the QPC set-up as the problem of finding the distribu-
tion of light intensity on the photodetector array plane by randomly generated slit positions and widths analogi-
cal to random circuit  sampling45,67. Figure 5a shows the system architecture that is similar to the randomly gen-
erated quantum gates. The aim is to perform a complexity analysis of a randomly generated QPC architecture. 
The total number of Feynman paths is expressed as follows for L diffraction planes:

Suppose that energy decreases by 1/s ( s > 1 ) to a total of 1/sL and the number of significant paths decreases by 
1/r ( r > 1 ) leading to a decrease in the total number of effective paths by 1/rL approximating the final intensity 
distribution. Therefore, if we define the number of paths that can be realized for unit source energy with Ñpath , 
then the following is obtained:

(31)Npath =
( L−1∏

i=1

i

)
mL−1 kL

(32)Ñpath =Npath
1

sL
1

rL

(33)=
( L−1∏

i=1

i

)
mL−1 kL

1

sL
1

rL

Figure 5.  (a) The special QPC design with N− 1 planes diffracts the quantum wave function expanding with 
planes consisting of a linearly increasing number of slits. The positions of the planes ( dj ), the number of slits (k) 
in the first plane and the linear increment ratio m, i.e., the number of slits growing with j ×m× k , allow flexible 
design according to the width of the laser beam. (b) The virtual qubit Hilbert space size corresponding to the 
number of Feynman paths versus the number of planes for varying gain variable (G). QS experiments of Google 
have recently been performed with ≈ 266 Feynman  paths1. Even at significant loss rates of the QPC system, 
thanks to dozens of planes, the Hilbert space size reaches hundreds of virtual qubit levels and achieves very 
strong QS capability. It is promising as an alternative system design for next generation QS experiments.
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If we measure the Hilbert space size created by the total number of paths by defining the virtual qubit number 
and assuming s ≡ 2s

∗ , r ≡ 2r
∗ , m ≡ 2m

∗
22 (assuming the minimum of m = 8 with m∗ = 1 ), k ≡ 2k

∗ , then the 
following definition is obtained:

The basic expression determining the size of the Hilbert space is denoted with the gain G = m∗ + k∗ − s∗ − r∗ . 
It provides the cumulative effect of increasing number of paths due to the linearly increasing number of the slits 
with the coefficient m and the initial number of the slits k combined with the decreasing number of paths due 
to the inter-plane attenuation coefficients s and r for the effective number of the paths. As shown in Fig. 5b for 
L = N − 1 , even at very low gain rates, e.g., G = −5 with m∗ = 1 , that is, where the spreading energy drops 
very quickly and the number of significant paths is too low, the number of virtual qubits reaches hundreds. Fur-
thermore, m∗ + k∗ , which can be designed flexibly in a multi-slit architecture, is adapted against the low gain. 
In addition, even with N = 10 planes, Hilbert space size of approximately reaching hundreds of virtual qubits is 
obtained for the case of high gain G. For example, assume the worst case situation such that diffracted photon 
forms a large amplitude path by diffracting through a locally limited number of slits on the next plane denoted 
by the parameter r̃  . In other words, the slit locations distant apart on consecutive planes will not form a large 
amplitude path and the number of effective paths increases as the multiplication by r̃j after diffracting through 
j consecutive planes (by assuming there is enough number of closely spaced slits on the next plane). This can 
be adjusted by increasing the inter-plane distance such that each diffracted beam will expand to a larger area 
on the consecutive plane. Moreover, assume that the slits are placed close enough to keep the probability of the 
diffraction through the next plane roughly constant, i.e., 1 / s , as observed in MPD simulation studies in Ref.6. 
Then, if the condition s < r̃  is satisfied, the number of effective paths will increase with the multiplication by 
(̃r / s)j through j consecutive planes. For example, effective number of paths in Ref.6 is observed to be increasing 
with (̃r / s)3 > 70 even by removing many effective paths (Fig. 7(b) in Ref.6). In other words, assuming r̃ / s ≈ 22 
allows to reach 2100 effective Feynman paths with N ≈ 51 planes. Therefore, without requiring extensive simula-
tions, it is clear that the number of paths increases exponentially with specially adjusted set-up parameters of 
inter-plane distance, slit widths and distributions.

Each path will form a unique contribution to the overall intensity. There is no apparent way of calculating 
the exact final intensity other than identifying and summing the contribution of each path. Then, increasing the 
complexity of MPD set-up makes it harder to calculate the contribution of each path until reaching to the QS 
scale. It is possible to compare roughly with Google QS experiment where the computational complexity requires 
the calculation of 431 × 24 = 266 different Feynman paths for 53 qubits and 20 cycles (Table XI in Ref.1) as shown 
in Fig. 5b. Compared to the qpath = 66 , the proposed QPC system architecture suggests to perform future QS 
experiments with a simple system structure.

The open issues include the rigorous characterization of the computational complexity of sampling from 
MPD exploring the relations among the paths in terms of magnitude and distribution. Furthermore, the inter-
plane gain G is required to be both theoretically modeled and experimentally measured for random and large 
diffraction architectures. Another open issue is to analyze the modeling of the sampling problem of QPC with 
universal quantum circuits and to determine the computational complexity class, e.g., the relations with BQP10 
and complexity theoretical fundamentals of QS  experiments47. Experimental implementation requires slit design 
and manufacturing, sensitive photon detection due to the attenuation after large number of planes and spatially 
coherent light sources covering all the paths reaching to the detector plane. The number of slits, i.e., determined 
by the parameters k, m and N, is limited by the capability to realize significant number of small width slits, e.g., 
in micrometer scale, on an appropriate planar surface such as by patterning metallic slits on glass  substrate68. The 
beam width and inter-planar distances should be adapted for spatial coherence of the light diffracting through 
 planes12. However, the linear modeling of the architecture in Fig. 5a and the expansion of light beam through 
propagation allow to realize a feasible architecture in future experimental implementations.

On the other hand, achieving QS experiments allows to adapt certified random number generation protocols 
for the QPC  architecture43–46. Although there are recent high speed, e.g., on the orders of several Gbit/s, random 
number generation protocols working in a local manner and exploiting the sampling of interference based inten-
sity fluctuations of laser pulses such as Refs.69  and70, the idea of randomness extraction from QS experiments 
proposed by  Aaronson43 in a way allowing to download from a remote and trusted public source is new. The user 
interacts with a remote QC and makes it to generate random bits without any trust to the QC itself. Similar to 
Aaronson’s protocol, it is possible to firstly collect random numbers from a trusted computer. Then, using these 
numbers, the widths and planar distributions of the slits are determined to have a random diffraction set-up by 
assuming that the mechanical structure of the device can be modified remotely. Then, intensity distribution in 
the photodetector array is measured. Therefore, both the random structure of MPD set-up and interference of 
the exponential number of paths result in a very difficult measurement output intensity to efficiently calculate 
with classical computers. However, it is an open issue whether it is possible to utilize the proposed remote QC 
device based on QPC similar to the Aaronson’s protocol which realizes sampling from the n-qubit output of the 
quantum circuit and performs Heavy Output Generation (HOG) tests. On the other hand, QPC does not allow 
to sample the probability of a single path but the interference of exponentially many number of paths. Therefore, 
it is a challenge and open issue to adapt the interference sampling operation in QPC for a similar complexity 
theoretical proof of randomness generation.

(34)qpath ≡ log2
(
Ñpath

)

(35)= log2
(
(L−1)!

)
− 2 −m∗ + L

(
2+m∗ + k∗ − s∗ − r∗

)
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Neuromorphic applications with quantum neuron implementations. In a classical artificial neuron implementa-
tion, the output is represented as O = f (

∑
i=1 wi xi + b) where f(.) is the nonlinear activation function, wi is 

the ith synaptic weight, xi is the ith input and b is the bias as shown in Fig. 6a. QPC based neuron has inherent 
nonlinearity with the form of f (�xT H �x + �xT �h + b) between the input slit position vector �x and output (O) as 
shown in Fig. 6b based on the MPD formulation for Gaussian sources in (16). The quadratic weighting �xT H �x , 
linear weighting �xT �h and bias b are fed into the nonlinear function f (.) ≡ exp(.) for the LCT set-up where 
H ≡ H̃

LCT/G
N−1,n  , �h ≡ �̃

hN−1,n xN , the bias b ≡ log(ϒ̃G
N ,n) + (ÃN−1,n + ı B̃N−1,n) x

2
N , �x ≡ �xN−1,n and x ≡ xN is the 

measurement position.
The example output through the slits Yj for j ∈ [1, 2] in Fig. 6b depends on interfering quantum superposi-

tion of input combinations as follows while assuming path independent forms of the variables for simplicity, i.e., 
H ≡ H

LCT/G
N−1  , �h ≡ �hN−1 xN and b ≡ log(ϒG

N ) + (AN−1 + ı BN−1) x
2
N:

where G(y,βN , xN ) is the slit mask function depending on the output slit y =Yi for i ∈ [1, 2] of the Nth plane 
and βN is the fixed slit width with path-independent assumption for simplicity. The parameters are possible to 
depend on each path with variable slit masks. Exponentially large number of synaptic chains (paths) through 
slit inputs, their quantum interference and simplicity to sample the intensity output |O|2 provide significant 
opportunities to exploit for quantum advantages.

The challenges include designing the quantum neuron based on the slit positions as inputs while changing 
the weight in a controllable manner. Besides that, extensive simulation studies are required to practically observe 
the quantum advantages for various problems. The positions of the slits are required to be modified dynamically 
with special designs. In addition, large scale QNN implementations both in simulations and experiments are 
required to observe the performances in various problems, e.g., pattern recognition or machine learning for 
very large problem sizes.

Solution of nonlinear Schrödinger equation. Finite-band solutions of NLSE in (1) are expressed with RTF as 
 follows60,61:

where Riemann spectrum is (Y, �k, �ω, �δ−, �δ+) , Riemann period matrix Y71 is calculated using �k and �ω together 
with nonlinear spectrum data (Appendix to Section 24 in Ref.51) and the partial sum of RTF denoted as �M 
converging to � for M → ∞ is defined as follows:

where Ŵ is a complex matrix, �y is a complex vector and �aT ≡ [a1 a2 . . . aN−1] . As shown in Ref.6, if j ∈ [1,N − 1] 
and aj ∈ SM ≡ [−M,M], we select Xj,i ∈ SM �xj and also if the slit widths are kept constant for each plane, then 

(36)O ≡
∑

y∈[Y1,Y2]
G(y,βN , xN )

∑

x1∈[X1,1,X1,2]

∑

x2∈[X2,1,X2,2]
. . .

∑

xN−1∈[XN−1,1,XN−1,2]
f (�xT H �x + �xT �h + b)

(37)q(x, t) = q(x0, t0) e
ı k0 x− ı ω0 t

�
(
− ı Y, ı π

2 (
�k x + �ω t + �δ−)

)

�
(
− ı Y, ı π

2 (
�k x + �ω t + �δ+)

)

(38)�M(Ŵ, �y) ≡
M∑

a1=−M

. . .

M∑

aN−1=−M

e−π �aT Ŵ �a e2π �yT �a

Figure 6.  (a) Classical artificial neuron implementation with the weight and input vectors of �w and �x , 
respectively, activation function f(.), bias b and the output O. (b) QPC based design of QNNs with quadratic 
weighting relationship of �xT H �x + �xT �h+ b and nonlinear activation f (.) ≡ exp(.) having quantum 
superposition and interference combining the inputs.
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A�s , B�s , ϒ�s , Hs , �c�s and �d�s values become path independent, i.e., AN−1 , BN−1 , ϒN , HN−1 , �cN−1 and �dN−1 while the 
superscript (.)LCT/G removed for simplicity, and (2) is transformed as follows for x ≡ k Ts:

where Ŵ̂ ≡ −DHN−1D / π and the diagonal matrix D is formed of the elements {�x1, �x2, . . . ,�xN−1} . In 
other words, we can achieve the absolute value of the partial sum of particular RTF by using the measurement 
result on the sensor plane. Although the calculation of RTF function is classically quite  difficult6,51, it has impor-
tant applications in areas including geometry, arithmetic and number  theory50, nonlinear spectral theory for 
ocean and water  sciences51, cryptography and the solution modeling of  NLSEs60,61.

Measurements in the QPC system allow to obtain information about |q(x, t)| . The most important challenge 
for utilizing QPC in the solutions of NLSE is to determine the set equation parameters (Y, �k, �ω, �δ±) which can 
be implemented with specific QPC design. Theoretical modeling and extensive simulations are required to 
examine all the practical sample parameters and systems in the literature where NLSE solutions are achieved 
with RTF based solution.

Next, numerical simulations are achieved to analyze the effects of FO based components such as lenses and 
HG sources on the intensity distribution obtained with QPC. Simulation studies for large scale implementations 
of QPC for future applications are open issues.

numerical results
MPD set-up with two diffraction planes and single sensor plane is numerically analyzed for both Gaussian and 
HG sources with beam width and waist sizes of σ0 = 20µ m and W0 = 200µ m, respectively. The set-up is shown 
in Fig. 7 with N = 3 planes. The source waveforms are shown in Fig. 8a,b, respectively. HG order is set to l = 10 
with highly oscillatory and negative initial V0 of 1.076. The wavelength of the light is chosen in the red spectrum 
of � = 650 nm while the low cost laser sources are commercially available in a wide spread manner.

Two different set-ups composed of LCT and FSP systems as shown in Fig. 7a,b, respectively, are compared 
where the LCT system includes thin lenses between the diffraction planes while not included in the FSP system. 

(39)I[k]
e2AN−1 k2T2

s |ϒN |2
=

∣∣∣∣�M

(
Ŵ̂ + Ŵ̂

T

2
,
xD (�cN−1 + ı

�dN−1)

2π

)∣∣∣∣
2

)b()a(

Figure 7.  Photonic QPC set-up with Gaussian and HG classical monochromatic light source with � = 650 nm, 
two planes for diffraction with the number of slits K1 = 11 and K2 = 27 , respectively, and specific set-up of (a) 
LCT and (b) FSP design with the only difference of the existence of thin-lenses of focal length of 63 mm in the 
LCT system.

(a) (b) (c)

Figure 8.  (a) Gaussian and (b) Hermite–Gaussian (order l = 10 ) source waveforms with σ0 = 20µ m and 
W0 = 200µ m, respectively. (c) Slit positions with K1 = 11 and K2 = 27 slits (d) and the widths β̃j,i for j ∈ [1, 2] 
and i ∈ [1,Kj].
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The kernel based on HO in (47) giving FRFT as a special case of general LCT formulation is not numerically 
analyzed since LCT based system is a more general version while various combinations including FRFT systems 
are applicable with the formulation in Tables 1 and 3 in the Methods section. Therefore, two different set-ups with 
the kernels KFS in (48) and Ka,b,c,d

LCT  in (6) for the inter-plane propagation are compared for the same design of set-
up in terms of the properties of the slits and planes. Inter-plane distance vector is given by �LT ≡ [31.5 30.75 0.9] 
(cm). The distances of the first plane to the first lens and the second plane to the second lens are denoted with 
the vector �LTa ≡ [La,01 La,12] where both the distances are set to 21 cm while the lenses of the focal length 
�f T ≡ [f01 f12] = [63 63] mm focus the light intensity to more compact areas on the consecutive planes compared 
with FSP. It is assumed that the propagation between the second and third planes includes only FSP without any 
thin lens to simplify the set-up. K1 = 11 and K2 = 27 slits are used on the first and second planes, respectively. 
The slit positions and widths on the first plane, as shown in Fig. 8c,d, respectively, are adapted to the maximum 
intensity locations of HG source propagation on the first plane in LCT system while the ones on the second 
plane are chosen uniformly with the separation of 40µ m and the width of β̃2,j ≡ β2 = 8µ m. Ka01, b01, c01, d01

LCT  and 
Ka12, b12, c12, d12
LCT  are calculated by using (13).

FSP has less control over the propagation of light compared with LCT based FO. FSP spreads the light without 
any tuning to the slit positions by reducing the probability of the photon to reach to the consecutive planes after 
diffraction. Therefore, in numerical analysis, LCT is shown to improve the probability of photon detection on 
the sensor plane ( PE ) and also the negative volume of Wigner function compared with FSP. The vectors of PE(j) 
and Vj composed of the values on the first, second and third (sensor) planes for Gaussian sources are denoted 
with �PG,FSPE  and �VG,FSP , respectively, for FSP while with �PG,LCTE  and �VG,LCT for LCT. The cases with HG sources 
are denoted with the superscript of HG. It is an open issue to adapt LCT parameters with respect to any given 
set-up including inter-plane distances, slit locations and widths in a way to maximize the interference and the 
probability of the photon reaching to the sensor plane.

Hermite–Gaussian sources. The waveforms on the three planes in spatial domain are shown in 
Fig. 9a–c,e–g for FSP and LCT cases, respectively. It is observed that LCT focuses the light better on the slit 
locations while FSP reduces PE significantly. �PHG,LCTE = [1 0.515 0.202] is much more improved compared with 
�PHG,FSPE = [1 0.042 0.0062] . The magnitudes of the interfering paths are shown in Fig. 9d,h, for j = 2 and j = 3 , 
respectively, while Wigner distributions on the second and third planes scaled with � are shown in Fig.  9i,j 
for FSP and, (k) and (l) for LCT. It is observed that LCT provides significantly larger path magnitudes while 

Figure 9.  HG source with the order of l = 10 and W0 = 200µ m is utilized where the resulting spatial domain 
waveforms on the planes with the indices (a) j = 1 , (b) j = 2 and (c) j = 3 for FSP, and (e) j = 1 , (f) j = 2 and 
(g) j = 3 for LCT. PE(n, j) for (d) j = 2 and (h) j = 3 . Scaled Wigner distribution �×Wj(xj , pj) for FSP on the 
planes with (i) j = 2 and (j) j = 3 , and for LCT with (k) j = 2 and (l) j = 3.
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�VHG,LCT = [1.076 1.47 2.17] is also improved compared with �VHG,FSP = [1.076 1.28 1.25] . Observe that HG 
source has already negative Wigner volume of 1.076 which is much further improved by LCT set-up compared 
with FSP.

Gaussian sources. The waveforms in spatial domain for Gaussian sources are shown in Fig. 10a–c,e–g for 
FSP and LCT cases, respectively. �PG,LCTE = [1 0.35 0.124] and �PG,FSPE = [1 0.077 0.0161] values are obtained 
where the magnitudes of the interfering paths are shown in Fig. 10d,h, for j = 2 and j = 3 , respectively. Similar 
to the HG sources, LCT improves diffraction probabilities significantly compared with FSP. Wigner distribu-
tions scaled with � are shown in Fig. 10i–l having different characteristics compared with HG case in Fig. 9i–l. 
It is similarly observed that LCT provides significantly larger path magnitudes. �VG,LCT = [0 0.842 1.426] and 
�VG,FSP = [0 1.21 0.93] are obtained with increasing interference complexity through diffraction on consecutive 
planes in LCT case while starting with purely classical Gaussian source of zero negative Wigner volume. V2 of 
0.842 for LCT is smaller than 1.21 for FSP on the second plane. This is due to the both the specific set-up param-
eters and more diverse distribution of the path magnitudes in LCT after diffraction from the first plane as shown 
in Fig. 10d. It becomes more difficult on the third plane to correlate the distribution of the path magnitudes 
shown in Fig. 10h with VN = V3 shown in Fig. 10j,l. In other words, complexity behaves differently compared 
with the transmission probability while requiring simultaneous maximization depending on specific set-up as 
an open issue as discussed in the Results section while presenting Wigner distribution analysis.

open issues and discussion
There are some open issues to best exploit photonic QPC method based on MPD and FO. Mathematical for-
mulation correlating specific set-up parameters to path magnitude distribution and negative volume of Wigner 
function is an open issue. Iterative formulation of the vectors �̃hN−1,n , �̃γN−1,n , �̃ηN−1,n and the matrices H̃HO/G

N−1,n , 
H̃

LCT/G
N−1,n  and H̃LCT/HG

N−1,n  in (16), (25) and (27) are complicated as shown in the Methods section with complicated 
parameters and iterations in Tables 1 and 3. Therefore, adapting the physical set-up parameters to the desired 
form of partial sum of RTF for the target number theoretical problem, and characterizing the path distributions 
and the negative volume of Wigner function explicitly are important open issues.

In the proposed formulation, the qubits are obtained through the tensor product structure of projections at 
different time instants on the contrary with the spatial encoding and entanglement of multiple photons. However, 

Figure 10.  Gaussian source with σ0 = 20µ m is utilized where the resulting spatial domain waveforms on the 
planes with the indices (a) j = 1 , (b) j = 2 and (c) j = 3 for FSP, and (e) j = 1 , (f) j = 2 and (g) j = 3 for LCT. 
PE(n, j) for (d) j = 2 and (h) j = 3 . Scaled Wigner distribution �×Wj(xj , pj) for FSP on the planes with (i) 
j = 2 and (j) j = 3 , and for LCT with (k) j = 2 and (l) j = 3.
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the histories of photon trajectories are not formulated for realizing conventional quantum gate implementations. 
Implementations of the quantum circuit gates are required to obtain universal QC architectures. Therefore, 
proposed QC formulation is limited to utilization of the interference of exponentially increasing number of 
Feynman paths based on the superposition and coherence properties of light source. Implementations of quan-
tum circuits and fundamental search algorithms such as Grover search are future works to clarify the potential 
future scope of QPC based computing architectures in terms of universal QC capabilities. On the other hand, 
FO based QPC implementation has two main advantages resembling Boson sampling advantages in a different 
 context10: (a) not utilizing multiple photons as qubits getting rid of the coupling disadvantages while exploiting 
single photon trajectories and (b) utilizing the free entanglement, for the first time, of the classical light obtained 
through freely available temporal correlations among the projections at different time instants. Boson sampling 
compared with QPC utilizes still multiple indistinguishable photons (but not as qubits) while requires single 
photon generation and detection to exploit the free entanglement among indistinguishable photons through 
multi-mode interferometer with the regarding boson statistics.

Realizing perfectly Gaussian slits compared with the conventional rectangular apertures is an important open 
issue for matching the experimental results with the proposed theoretical model. However, any slit structure can be 
represented as a composition of Gaussian slits by using the method defined in Ref.72 and applied successfully in opti-
cal diffraction theory and  experiments73,74. The one dimensional slit mask function Ĝ(x) is represented as follows:

where ai and βi are found with optimization based on the experimental measurement results while increasing 
K provides more accurate results. If the perfect Gaussian slits are replaced with the superposition in (40), then 
the summations in (16), (25) and (27) should be made for each βi of the single slit. The functional form with 
partial sum of RTF should be calculated and summed for each combination of βi through all the slits. Therefore, 
non-Gaussian slits can possibly realize the solutions of much harder computational complexity problems as an 
open issue.

There are some factors effecting the degree of compatibility between the theory and practice. These include 
imperfection in optical set-up, e.g., finite size lens effects, planar thickness, characterization of slit functions, 
sources and detector efficiency. The theoretical model should be extended including all the set-up parameters 
having diverging effects on the final intensity distribution. Similarly, the effects of exotic paths, i.e., trajectories 
between the slits on the same plane, should be included in the mathematical model as thoroughly discussed in 
Refs.6,41,75. All these considerations potentially lead to unavoidable errors requiring quantum error correction 
studies adapted to QPC  architectures76. Another open issue is related to the utilization of the measurements on 
all the sensor planes for computational purposes not only the final sensor plane since they include diffraction 
through previous planes. Theoretical models are required to exploit the sensor measurement results.

Methods

Quantum fourier optics. In scalar diffraction theory, the first Rayleigh-Sommerfeld formula of the Huy-
gens-Fresnel principle for the propagation of light on planar surfaces is described as follows by using the Green’s 
 theorem77:

where UI (P1) is the wave amplitude at the point P1 , U is the distribution on the planar screen where diffrac-
tion occurs, � denotes the integration over the slit including its multiplicative effects on the wave amplitude, 
G− ≡ exp(ı k r01) / r01 − exp(ı k r̃01) / r̃01 is the Green’s function vanishing on the diffraction surface for the 
first type of solution of Rayleigh-Sommerfeld formula, r01 ≡ |�r0 − �r1| and k ≡ 2π / � for the monochromatic 
light source of wavelength � as shown in Fig. 1177. Assuming that r01 ≫ � , the following approximation holds 
in rectangular coordinates:

where the kernel KFS(�r1, �r0) for FSP is defined as follows:

(40)Ĝ(x) ≈
K∑

i=1

ai exp(− x2 / 2β2
i )

(41)UI (P1) =
−1

4π

∫∫

�

U
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where r01 =
√
z2 + (x1 − x0)2 + (y0 − y0)2 . The kernel for Fresnel diffraction integral is obtained by further 

approximation of r01 in the near-field for large z resulting in (45). This expression is the convolution integral 
conventionally used in phase-space optics for  FSP34.

(45)≈ eı k z

ı � z
e
ı k
2 z

(
(x1−x0)

2+(y0−y0)
2
)

Figure 11.  Formulation set-up for first type of solution of Rayleigh–Sommerfeld diffraction through a slit �77.

Table 1.  Iteration parameters for FPI modeling of MPD with the kernels KHO and K (a,b,c,d)
LCT  for Gaussian 

sources.

Formula for KHO based MPD ( ω tj,j+1 / π �∈ Z) Formula for K (a,b,c,d)
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Recently, scalar diffraction theory and Fresnel diffraction integral are discussed in Ref.15 to be validly repre-
senting the evolution of light wave function modeled with the Hamiltonian of the quantized electromagnetic field 
H = (p̂2 + ω2 q̂2) / 2 as the Feynman’s path integral (FPI) solution of the quantum mechanical  HO78. Fresnel dif-
fraction nature of the propagation is verified with experimental photon counting studies for single photons. The 
wave function amplitude of light field in one dimension on a plane �(x0) is modeled to propagate into the ampli-
tude �(x1) on another plane (Eq. 16 in Ref.15 transformed into a simpler form) with the following formulation:

where the kernel based on HO is the following:

where c is the velocity of light, ω ≡ 2π c / � , ω t  = nπ for n ∈ Z , t01 is the propagation duration between the 
planes and m� ≡ � k / c is the defined equivalent mass of photon propagation. In addition, the approximated 
FSP kernel in (45) is simply converted to the following in 1D system:

The kernel for massive particles with the mass m such as an electron is expressed as  follows6, 78:

In other words, the formulation based on phase-space optics for photon and electron propagation wave ampli-
tudes have the similar form in (48) and (49) except an overall phase factor. The form in (48) is utilized in Ref.33 
for defining QSM while targeting only classical communications.

(46)�(x1) ≈
∫ ∞

−∞
�(x0)KHO(x1, x0) dx0

(47)KHO(x1, x0) ≡
√

m�

2π ı � t01 sin(ω t)
exp

(
ı m�

(
x21 cos(ω t) − 2 x1 x0 + x20 cos(ω t)

)

2 � t01 sin(ω t)

)

(48)KFS(x1, x0) ≈ ej k z
√

m�

2π ı � t01
e

ı m�
2� t01

(x1−x0)
2

(49)Km,FS(x1, x0) ≈
√

m

2π ı � t01
e

ı m
2� t01

(x1−x0)
2

Table 2.  Polynomial expressions in (18-21) for the case of N = 3 and Gaussian source with σ0 ( bj,j+1 �= 0 for 
j ∈ [0, 2]).
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The functions qj for j ∈ [1, 30] utilized while defining the polynomials are defined as follows:
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On the other hand, both the kernels KHO(x1, x0) and KFS(x1, x0) are special cases of LCTs defined for quad-
ratic-phase  optics34. As a class of linear integral transforms, they include as special cases the Fresnel transform 
and FRFT, simple scaling, chirp multiplication and some other operations. Spatial distribution of light in phase-
space optics for the class denoted by quadratic-phase systems is mathematically equivalent to LCTs (Chapters 3 
and 8 in Ref.34). These optical systems include arbitrary combinations of the sections of free space in the Fresnel 
approximation, thin lenses and sections of quadratic graded-index media. In Ref.15, FRFT nature of the kernel 
KHO(x1, x0) is shown both theoretically and experimentally while emphasizing the applicability of all the prop-
erties of Fourier analysis to quantum optics. In this article, propagation of the wave function is extended to the 
general case of LCTs providing flexibility to utilize arbitrary optical set-ups by enlarging the functional structures 
and number theoretical problems exploited in QPC. Furthermore, a better control is obtained for the energy 
flow of the light through the slits.

The kernel matrices for KHO(x1, x0) and KFS(x1, x0) are given as follows:

MHO has the same form with the propagation of light in quadratic graded-index media of having the refractive 
index distribution of n2(x) = n20(1− (x / χ)2) where n0 and χ are the medium parameters. The parameter matrix 
of the propagation through the quadratic graded-index medium of length dgri is given by the following (Sec-
tion 8.3.3 in Ref.34):

where α = dgri / χ . There is a FRFT relation between scaled versions of the input f̂ (x) and output ĝ(x) with 
FRFT order α as ĝ(x) = e−ı dgri / (2χ)�

−1 /4
χ fa(x /

√
�χ ) where f (x) ≡ �

1 /4
χ f̂ (x

√
�χ ) and fa(x) denotes the ath 

order FRFT of f(x). FRFT operation of order α is represented with the parameter matrix of a = d = cos(α) and 
b = sin(α) . As a result, MHO represents a FRFT relation between the input and output scaled with the parameter √
�χ  where the parameters are α = ω t and �χ ≡ 2π � t01 /m� while as a special case of LCTs.

(50)MHO =
[

cos(ω t) 2π � t01 sin(ω t)
m�

−m� sin(ω t)
2π � t01

cos(ω t)

]

(51)MFS =
[
1 2π � t01

m�

0 1

]

(52)Mgri =
[

cos(α) �χ sin(α)
− sin(α) / �χ cos(α)

]

Table 3.  Iteration parameters for FPI modeling of MPD with the kernel K (a,b,c,d)
LCT  for Hermite-Gaussian 

sources ( bj,j+1 �= 0).
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Matrix formulation for HO/LCT system with Gaussian sources. The following formulation is valid 
for both HO and LCT based design with Gaussian sources where the corresponding iteration parameters are 
defined in Table 1. The elements in the vector �̃hN−1,n = �̃cN−1,n + ı

�̃
dN−1,n are defined as follows:

where �̃vk,j,n for k ∈ [0, j − 1] is given as follows:

Here, the matrix multiplication 
∏k

i=1 Ui denotes U1 U2 . . .Uk for any matrix Ui for i ∈ [1, k] and p̃4,j,n , p̃5,j,n , ζ̃j,c,n 
and ζ̃j,d,n for j ∈ [1,N − 1] are defined in Table 1. Assume that diag {�y1, . . . , �yK } and diag {y1, . . . , yK } define the 
operators creating block diagonal matrices by putting the vectors �yj and the matrices yj for j ∈ [1,K] , respec-
tively, (all the vectors or the matrices having the same dimensions) to the main diagonal and making zero the 
remaining elements. The matrix H̃HO/G

N−1,n is more simplified as follows compared with the more complicated form 
achieved for electron based FSP in Ref.6:

where the diagonal matrices are defined as follows:

2× 2 block K̃j,b,n and 1× 2 vector �̃k
T

j,c,n for j ∈ [2,N − 1] are defined as follows:

ṼN−1,n is a lower triangular block matrix defined as follows:

Expanding H̃HO/G
N−1,n in terms of real and imaginary parts is achieved by finding the real and imaginary parts of p̃1,j,n 

for j ∈ [1,N − 1] and p̃3,j,n for j ∈ [2,N − 1] , and K̃j,b,n and �̃kj,c,n for j ∈ [2,N − 1] since ṼN−1,n is a real matrix. 
This is easily achieved by using the explicit forms of p̃1,j,n and p̃3,j,n in Table 1. Some variables and constants used 
in Table 1 (not defined in the table) are the following: ı ≡ √−1 , xj,n denotes Xj,sn,j , �0 = � t0,1 , αj = ω tj,j+1 for 
j ∈ [0,N − 1] , m̂j = m� / sin(ω tj,j+1) and �̃∗j,n as the conjugate of �̃j,n for real values of (aj,j+1, bj,j+1, cj,j+1, dj,j+1).

Polynomials for the example in (18-21) are presented in Table 2 for the simple case of N = 3 and Gaussian 
source. It is possible by using the explicit modeling to make various gedanken experiments and to perform 
complexity theoretical calculations.

Matrix formulation for LCT system with Hermite–Gaussian sources. Iteration parameters utilized 
in (22–26) are presented in Table 3. Some variables and constants used in Table 3 (not defined previously or for 
Table 1) are the following: τ̃a,j,n ≡ bj,j+1 ũj−1,j,n + ı π aj,j+1 for j ∈ [2,N − 1] , τa,1 ≡ b12 u01 + ı π a12 and 
Ŵ̃1,n = 2 β̃2

1,n b1,2 g
2
0,1 + τ̃1,n . The formulation in (22) is obtained by using the integral equality for Hermite 

polynomials (Section 16.5 in Ref.65) in an iterative manner along the planes:
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The parameters �̃ηN−1,n and γ̃j,j+1,n in �̃γ T

N−1,n ≡
[
γ̃12,n γ̃23,n . . . γ̃N−1,N ,n

]
 utilized in (23) are defined as follows 

by using the iterations in Table 3:

where the following are defined:

where �̃�
T

N−2,n is defined for N > 2 and γ̃j,j+1,n = N−1γ̃ ⋆
j,j+1,n while l γ̃ ⋆

j,j+1,n and ε̃j,j+1,n are defined as follows:

where γ̃12,n ≡ ṽa,12,n and ε̃12,n ≡ h̃a,12,n for N = 2 , and 1γ̃ ⋆
1,2,n ≡ ṽa,12,n . Finally, H̃LCT/HG

N−1,n  becomes equal to the 
following by using the iterations in Table 3:

where H̃LCT/HG,χ
k,n  is the following:
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