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Detecting differences in the 
topology of scale-free networks 
grown under time-dynamic 
topological fitness
Dimitrios Tsiotas1,2,3

The fitness model was introduced in the literature to expand the Barabasi-Albert model’s generative 
mechanism, which produces scale-free networks under the control of degree. However, the fitness 
model has not yet been studied in a comprehensive context because most models are built on invariant 
fitness as the network grows and time-dynamics mainly concern new nodes joining the network. This 
mainly static consideration restricts fitness in generating scale-free networks only when the underlying 
fitness distribution is power-law, a fact which makes the hybrid fitness models based on degree-driven 
preferential attachment to remain the most attractive models in the literature. This paper advances 
the time-dynamic conceptualization of fitness, by studying scale-free networks generated under 
topological fitness that changes as the network grows, where the fitness is controlled by degree, 
clustering coefficient, betweenness, closeness, and eigenvector centrality. The analysis shows that 
growth under time-dynamic topological fitness is indifferent to the underlying fitness distribution and 
that different topological fitness generates networks of different topological attributes, ranging from 
a mesh-like to a superstar-like pattern. The results also show that networks grown under the control of 
betweenness centrality outperform the other networks in scale-freeness and the majority of the other 
topological attributes. Overall, this paper contributes to broadening the conceptualization of fitness to 
a more time-dynamic context.

The scale-free (SF) property1,2 describes networks where a few nodes undertake the major load of connectivity 
and it is generally related to the hierarchical structure that real-world communication-systems develop to deal 
with complexity3,4. Although SF networks are claimed to be rare in nature5, empirical research2,3,6,7 has shown that 
are of great importance in the real-world because they are related to biological (e.g. protein), economic (e.g. inter-
bank, airline), technological (e.g. the internet, the World Wide Web), and social (e.g. collaboration and citation) 
applications2,3,6,7. Also, SF networks abound in scientific literature and they are a common null (i.e. reference) 
model in related research8. These reasons make the SF property a major concept in network science1,2,9. In terms 
of definition, a network is deemed SF when its degree distribution p(k) follows a power-law (PL) distribution p(k) 
~ k–γ1, where k is the node degree and γ > 1, so that the Riemann zeta function will be finite10. Empirical research 
has shown that SF networks usually have their PL exponent (γ) ranging within the interval 2<γ < 31, although 
this is not a defining condition and these typical bounds may vary11. The most common generative model of SF 
networks is the Barabasi-Albert (BA) model2, which is based on the preferential attachment (PA) growth pro-
cess1,12 and defines that the probability (pi) for a node i to gain a connection is proportional to its degree ki

2,13, 
according to the relation:
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where n is the total number of nodes in the network.
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In the BA model, first-comers (i.e. first nodes joining the network) are more likely to become hubs (i.e. highly 
connected nodes), whereas newcomers prefer (whence the term preferential comes from) to connect with hubs 
and to benefit from their high connectivity8,13. The PA process leads to the emergence of hierarchies in the 
network, where hubs undertake the major load of connectivity and preserve their privilege at future network 
growth8. This is reflected in the PL shape of the degree distribution expressing an abrupt declining frequency of 
nodes of higher degree1,2. In epistemological terms, the PA process is based on the stochastic Yule process, which 
was introduced by the British statistician George Udny Yule14 during the study of the evolution of species. In 
sociology, an aspect of PA can be found back to the Matthew effect15 expressed by the rich get richer and the poor 
get poorer motto, and in economics, the PA is related to the Gibrat’s law16 describing the proportional growth of 
firms in terms of their absolute size. However, in real-world applications, more factors than age and the number 
of existing connections seem to influence the ability of nodes to increase their connectivity13. To explain empirical 
observations of latecomers who can also become hubs9, such as the case of Google in the World Wide Web13, the 
authors of12 introduced a variant of the BA model taking into account an intrinsic attractiveness of nodes. This 
attractiveness is called node fitness and is expressed by the (non-negative) weights ϕi applied to the node degrees 
ki that are configuring the connecting probability as follows:
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The model of12 is a hybrid PA-fitness growth model, in the extent that growth is both driven by the 
time-dynamic effect of degree (which varies at every step of the PA process, namely ki = ki(t)) and by the static 
effect of fitness values, each assigned at the time a node is joining the network13. When node fitness is exclusively 
driven by node degree (ϕi = 1), the model is converted to the classic BA model shown in relation (1). Going 
beyond this consideration, the authors of17 argued that the underlying fitness distributions (instead of by default 
the degree) are directly responsible for the emergence of scale-free networks. Within this free-of-degree context, 
they defined the connecting probability between a new (j) and an existing (i) node proportionally to the intrinsic 
(non-negative) fitness ϕi

13,17, according to the relation:
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Therefore, in the model of17, node connections are developed with a probability that is proportional to the fit-
ness of the participating nodes. This approach generates networks with PL degree distributions when the under-
lying node fitness distributions are also PL13. In general, the fitness model of17 proposes an alternative to the BA 
algorithm for generating scale-free topologies18, where node fitness represents the ability of nodes to compete for 
new connections. In real-world networks, fitness values are related to intrinsic qualities of the nodes (e.g. rank, 
wealth, population, size, etc.) and they generally represent the idea of competitive advantage within a competitive 
environment18. More lately, the authors of19 advanced the conceptualization of the fitness model by introducing 
the Lognormal Fitness Attachment (LNFA). In this model, the fitness values ϕi are multivariable functions instead 
of single (weight) values and they are defined as the product of a node’s intrinsic attributes13,19, according to the 
relation:

∏ϕ ϕ= ,
(4)
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where p is the number of attributes, whereas the connection probability is given by relation (3). When p is suffi-
ciently large and includes statistically independent attributes, it is shown that node fitness is lognormally distrib-
uted regardless of the distribution type of the independent attributes13,19. The LNFA can better explain growth 
processes in real-world networks, where it is also likely for the latecomers to become hubs relatively quickly, due 
to the including tunable parameter (expressed by the shape of the lognormal distribution), which can generate 
various networks corresponding to different real-world contexts13.

Fitness-based models appear attractive in the relevant literature13, obviously due to their ability to generate 
SF networks based on either known fitness distributions or real-world fitness values. For instance, the authors 
of20 used a fitness model to test the generative mechanism of the World Trade Web, which describes the network 
defined by the trade relationships between countries worldwide. The analysis showed that the PL-distributed 
Gross Domestic Product (GDP) was in line with the topological fitness controlling the network growth and 
revealed an excellent agreement of topological features between the empirical and the fitness-based model. The 
authors of21 studied how different choices of fitness distributions and linking functions affect the SF property. 
In all cases, they found that the generation of SF networks is straightforward and thus that the SF property is 
indifferent to the initial choices. In an attempt to study the interplay between fitness and PA, the authors of18 
examined a pair of hybrid fitness models, the first (model-A) growing with randomly added connections and the 
second one (model-B) under a degree-driven PA. The analysis showed that the degree distribution of model-A 
decays exponentially, whereas model-B shapes a PL pattern. In the work of22, the authors studied the effect of 
competition in the network growth when the fitness distribution is a PL. By including an exponent controlling 
the influence of fitness, they showed that the generated networks vary between the BA and the hybrid PA-fitness 
model of12. The authors of19 examined how variations of the parameters of the lognormal distribution affect the 
SF property in the generated network and they showed that such variations can recover both exponential and PL 
degree distributions. The PL exponents were found within the typical range describing real-world networks and 
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they proposed their network-construct as a basis for new protocols enabling P2P networks to establish topologies 
contributing to search optimization.

Within the context of the evolving relevant research, the authors of23 surveyed the existing fitness-based 
models for generating SF networks, observing three major categories represented by the hybrid-fitness model of 
Bianconi and Barabsi12, the fitness model of Caldarelli et al.17, and the lognormal fitness model of Ghadge et al.19,  
as previously mentioned. In the work of24, the authors expanded the PA mechanism by assuming that the pref-
erence of nodes to connect is influenced by their indirect neighbors as well. They showed that their procedure 
(named cyclic preferential attachment - CPA) is broader than the traditional PA and more flexible in modeling 
real-world networks. The authors of25 developed a framework for the analysis of PA models based on the per-
formance of the model parameters to control the degree distribution and the clustering coefficient. They also 
introduced a relevant parameterized model and showed that both PL degree distribution and clustering coeffi-
cient parameters are controllable. This work is among the first using the term Generalized PA, another reference 
of which can be found in the work of26, which develops a hybrid PA-fitness model to study the scientific citation 
process. In this model, the fitness value is the aging of scientific papers, which was chosen based on empirical 
observations. The analysis produced models satisfactorily explaining real-world citation networks. The authors 
of27 proposed a fitness-based model building on a game-theoretic attachment mechanism instead of on PA. The 
analysis showed that optimization to converge towards Nash equilibrium leads to the emergence of scale-free and 
small-world features. This approach appeared to better model networks ruled by high rationality. More recently, 
the authors of13 introduced an unconventional but also insightful fitness conceptualization. Their behavioral 
approach was ruled by the intuition that many actors participating in evolving networks do not have either high 
expectations or the means to connect with the most skillful actors in the network. For this community, the prime 
survival strategy is restricted to the more realistic goal of trying not to lose instead of getting the maximum utility. 
Within this context, the authors proposed a plausible fitness-based behavioral mechanism building on the mini-
mization of maximum exposure to node unfitness (defined as the inverse of node fitness), which appears better in 
describing heterogeneous real-world supply-chains networks.

As is evident by the previous review, fitness-based models emerged in the literature in an attempt to pro-
duce SF models that better fit to empirical observations, according to which network growth seems to be driven 
by more forces than just by connectivity (node degree). Initially, fitness was introduced in a hybrid form, as 
a factor controlling the degree-driven PA process, while, at next, it was disengaged from PA and contributed 
to a broader conceptualization driving network growth13,23. However, the authors of13 observe that, although 
fitness-based models have shown that preferential attachment is not necessary to produce SF networks, the hybrid 
(i.e. PA-fitness) models remain attractive in the literature. This is because hybrid models can produce SF networks 
even when the underlying fitness distribution is not PL, which does not happen in the disengaged (i.e. fitness 
without degree-driven PA) models that result in SF networks only when the underlying fitness distribution is 
PL13. Moreover, in disengaged models, fitness seems to be more a static (or initial) configuration of node attrac-
tiveness rather than a time-dynamic process rearranging the fitness values at every step of network growth, as in 
the case of the degree-driven PA where node degrees are computed at every step of network growth. In particular, 
the authors of17 note that their …model, as defined, is static, but it can straightforwardly be considered a dynamic 
one by adding new vertices at every time step and linking them to the existing ones according to the above attaching 
rule …. Also, in the work of22, we can find an analysis of dynamic properties in a fitness-based network growth 
process, but this dynamic behavior is related to changes in the degree in time and not of the fitness values. Finally, 
as the authors of13 note, the …concept of node fitness can be thought of as the amalgamation of all the attributes of 
a given node that contribute to its propensity to attract links. Indeed, one of these attributes could be the node degree, 
which would be a dynamic attribute that changes value as the network grows, whereas many other attributes of 
fitness would be static….

As it can be observed, the time dynamics of the non-degree-driven PA fitness models have not yet been stud-
ied in a comprehensive framework because current literature seems to conceptualize the time-dynamics of fitness 
in the context of adding new nodes in the growing network, where new fitness values have to be assigned to the 
newcomers to join the network. A bright attempt to overcome this restriction was made by the authors of28, who 
introduced a betweenness-driven instead of degree-driven PA growth process. In an attempt to better explain 
dynamics in social networks, the authors observed that degree is not the major attractor of new social links and 
thus the degree-driven PA cannot fully explain social network dynamics. Within this context, they introduced 
a PA model driven by weighted betweenness (the WBPA model), where the criterion for a node to connect is 
the weighted betweenness centrality instead of the degree. The WBPA model went beyond current fitness-based 
considerations to the extent that betweenness centrality was being computed at every step of network growth and 
therefore growth was defined by a time-dynamic topological fitness (i.e. weighted betweenness). This approach 
led to models more accurately describing a wide range of real-world social networks. The authors observed that 
node-betweenness is a better indicator of social attractiveness28 because it impels …individuals to (intuitively) 
perceive node’s betweenness as the capacity of bridging communities, irrespective of its degree….

Within this context, this paper goes beyond the work of28 and studies network growth under different aspects 
of time-dynamic topological fitness, namely where the fitness changes values, as the network grows. In particu-
lar, the study considers five different topological node-attributes as time-dynamic fitness of network growth: 
node-degree (k), clustering coefficient (C), betweenness centrality (CB), closeness centrality (CC), and eigenvec-
tor centrality (CE), which will be called control-attributes henceforth. The purpose of the research is twofold; first, 
to examine whether the networks grown under these different control-attributes are ruled by the SF property, and 
secondly, to detect topological differences and to compare the emerging topologies amongst these different types 
of generated networks. The further purpose of this paper is to contribute to the literature demand about studying 
time dynamics of fitness models, in a context that is free of the degree-driven PA and broader than the dynamics 
caused by adding new nodes in the growing network. The remainder of this paper is organized as follows; Section 
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2 describes the methods and the models’ construction, Section 3 detects the SF property and compares major 
topological attributes in the resulting networks, and, finally, Section 4 addresses the conclusions.

Methods
Model construction.  The model construction algorithm builds on the uniform attachment algorithm of the 
BA model2, which is customized accordingly, so that network growth to be driven by one control attribute (X). 
Details of the algorithm and the coding are available in the Appendix. Graphs (null-models) generated by this 
procedure are undirected and unweighted. In total, 150 undirected null-models are constructed, divided into 5 
families (groups) {G(C), G(CB), G(CC), G(CE)}, each corresponding to a control attribute. Within each family 
G(X), where X = k, C, CB, CC, and CE, 30 null-models are included. This number was chosen to apply statistical 
inference techniques referring to the normal distribution29. In particular, the G(k) family includes fitness mod-
els grown under the control of degree (k), G(C) under the control of clustering coefficient (C), G(CB) under the 
control of betweenness centrality (CB), G(CC) under the control of closeness centrality (CC), and G(CE) under the 
control eigenvector centrality (CE), respectively. The number of nodes in each family is typical and ranges from 
n = 50 to n = 1500 with a lag of 50 nodes (n = 50, 100, 150, 200, …, 1450, 1500). Null-models participating in the 
analysis are shown in the Appendix. Null-models with more 1500 nodes were not generated due to the time-com-
plexity of the betweenness-driven and closeness-driven model construction. Reducing the algorithm’s complexity 
suggests an avenue for further research.

Topological analysis.  The topological network analysis consists of three parts. The first examines the degree 
distributions p(k) of the available null-models. The overall examination is done graphically, descriptively, and 
through statistical interference. In the graphical approach, the degree distributions of the available null-models 
are plotted to 3-dimension (3d) bar-charts30. In these bar-charts, the x-axis represents the node degrees, the y-axis 
represents the ranking of the null-models arranged into ascending order, and the z-axis represents the frequencies 
n(k) of nodes having degree k. Corresponding axes along model families have a fixed scale to facilitate compar-
isons. Next, the descriptive approach builds on the construction of boxplots, which are box and whisker plots 
enclosing the interquartile range of the data in a box, which has the median displayed within29. Boxplots are used 
to display information about location, variability, and asymmetry of the degree distributions configured by the 
available 30 null-models for each degree-class and a certain null-model family. Finally, the statistical inference 
approach builds on parametric fitting and the construction of 95% confidence intervals (CIs). At first, for each 
of the available 30 null-models (included within a certain family) a PL curve29 is fitted to the degree distribution 
data. Isolated nodes are not taken under consideration in these PL-fittings. Next, 95% CIs are constructed on 
the available sets of (30 in number) PL-exponents and (also 30 in number) coefficients of determination (R2) 
resulted from the previous fittings. The CIs are then compared between the null-model families to detect statis-
tical differences.

The second part of the analysis examines differences in topological layouts of equal-size null-models 
throughout the available families. Network topologies are embedded in the 2d-Euclidean space and are visu-
alized using the Force-Atlas layout, which is available in the open-source software of31. This layout is generated 
by a force-directed algorithm (see32), which is used in its default parameters. This algorithm applies repulsion 
strengths between network hubs while it arranges hubs’ connections into surrounding clusters. Graph models 
represented in this layout have therefore their hubs centered and mutually distant (i.e. the distance between hubs 
is as highest as possible) in the topological map, whereas nodes of lower degree are placed as closely as possible 
to their hubs8.

The third part of the analysis examines differences of topological measures, metrics, and statistics amongst 
the available null-model families. Provided that each measure captures a certain aspect of network topology4,8, 
a variety of measures are examined to better approximate network topology of each family in total. The network 
measures participating in this analysis are shown in Table 1.

Each measure shown in Table 1 is computed for all available 30 null-models within a certain family. Next, 95% 
CIs29 are constructed on the available sets of measures (each set includes 30 values of a single network measure) 
and then comparisons are made amongst family CIs, for each measure. Such comparisons can indicate statis-
tically maximum and minimum performances for each family and per measure. Therefore, based on relevant 
literature1,6,8,11,33–37, we can evaluate which extremum (min or max) behavior is desirable in a network structure 
and thus which extremum suggests an optimum performance for a certain network attribute. For instance, an 
increasing average degree is desirable to the extent that it improves network connectivity3,4,33 and thus the max-
imum is the optimum performance for this measure. In contrast, constructing networks of long diameter is not 
desirable for directness3,33 and thus the optimization goal for this measure is to reach the minimum. This concep-
tualization allows constructing a comparative directed graph, where each family is assigned to a node and thus a 
directed connection i → j ≡ (i,j)≡eij may express that family X = i outperforms family X = j in terms of measure 
y, according to the relation:

i j e E i y j yCI( ) CI( ), (5)ij
outperforms

→ ≡ ∈ | | > |

where CI(i | y) is a 95% CI of family X = i for the measure y. Therefore, the weighted out-degree of this compar-
ative directed graph will indicate the family that is an out-degree hub, namely the family that has a desirable 
performance in more topological measures (see Table 1) than the other families. This approach may detect the 
topology that can be loosely considered as better, namely to the extent that it outperforms in more topological 
measures the other families.
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Results
Examination of the SF property.  Degree distributions are plotted to the 3d bar-charts of Fig. 1. In total, 
the available 150 in number degree distributions range from 4 up to 21 cases (including k = 0), which in par-
ticular range between 6–17 cases for G(k) family, between 5–15 cases for G(C), between 5–19 cases for G(CB), 
between 5–7 cases for G(CC), and between 4–21 cases for G(CE), respectively. As it can be observed, frequencies 
in each family are descending and shaping PL-like patterns. Among the available families, betweenness G(CB) 
and eigenvector centrality G(CE) have the most long-tailed distributions, whereas closeness centrality G(CB) has 
the shortest-tailed degree distributions.

A similar to Fig. 1 picture can be shaped by the examination of the boxplots shown in Fig. 2. In this figure, 
boxplots show how degree distributions of the available 30 models that are included in each of the null-model 
families {G(k), G(C), G(CB), G(CC), G(CE)} are distributed along the degrees. For instance, the first boxplot in 
Fig. 2a shows how the frequencies of nodes having degree k = 10°=1 are distributed throughout the 30 mem-
bers of the G(k) family. In these log-log representations, the boxplots’ arrangement shows a linear descending 
trend providing indications that degree distributions in each family follow a PL pattern. This observation is ver-
ified by the PL fittings applied to averages per degree, where all cases are described by very high determination 

Measure Description Mathematical Expression Reference(s)

Network A graph expressed as the pair set of 
nodes V and edges E. G(V,E) 33

Network edges 
(m)

The number of links included in the 
network m = |E | = card(E) 33

Diagonal 
Distance (dd)

The average distance of the non-zero 
elements from the main diagonal of the 
network’s adjacency.

= ∑ −
⋅ ∈dd G i j( )

n i j E
1

2 2 ( , )
8

Network 
diameter d(G) The longest path in the network. = ∈dG d i j i j Vmax{ ( , ) , } 33

Node Degree (k) The number of edges being adjacent 
to a node.

δ

δ

= = ∑

=





∈

∈k k i

e E

( ) , where

1, if
0, otherwise

i j V ij

ij
ij

1,33

Maximum 
degree (kmax)

The maximum degree of the network 
nodes. = ∈ = ...k k i V i nmax{ ( ) 1, 2, , }max

33

Isolated nodes 
(ko)

The number of unconnected (k = 0) 
nodes in the network. = = = ...k card k i i n{ ( ) 0 1, 2, , }o

33

UDV
Unique degree values: the number 
of distinct degrees considered for 
computing the degree distribution of a 
network.

n/a In this paper

Hubs
The number of network nodes with 
a degree within the last fifth of the 
degree-range. { ( )}Hubs i V k i k( ) k k

max
max min

5= ∈ ≥ − − In this paper

Average Path 
Length l

Average network shortest path lengths 
d(i,j). =

∑ ∈
⋅ −

( )l v V d vi vj
n n

,

( 1)

11,33

COM The number of connected components 
in the network.

8,34

Assortativity (r)

A measure of nodes’ preference to 
attach to other similar nodes, where ejk 
is the joint probability distribution of 
the remaining degrees of two nodes at 
either end of a randomly chosen end.

= ∑ −

∑ = ∑ =

σ
r jk e q q

e e q

( ),

where 1 and
q

jk jk j k

jk jk j jk k

1
2 8,35

Local Clustering 
Coefficient 
(C(i))

The number of a node’s connected 
neighbors E(i), divided by the number 
of the total triplets ki(ki–1) shaped by 
the node.

C i( ) E i
ki ki

( )
( 1)=

⋅ −
11

Modularity (Q)

Objective function measuring the 
potential of a network to be subdivided 
into communities, where gi is the 
community of node i, [Aij – Pij] is the 
actual minus the expected number of 
edges falling between a particular pair 
of nodes.

δ

=

=






=

δ∑ 


− 

⋅ ( )

Q

g g

,

where
1, if

0, otherwise

i j Aij Pij gi gj
m

ij
i j

, ,

2 6

ω-index
Index detecting whether a network has 
the small-world property, or lattice-like, 
or random-like characteristics.

ω = −l rand
l

C
C latt

36

COI

City organization index: small values 
(≈0) express that the network is 
described by a well-organized pattern. 
Values close to one (≈1) express 
deficiency in organization and 
planning.

= +
∑ ≠

rn
n n

k n k
(1) (3)

2 ( )
37

Table 1.  Network measures participating in the topological analysis.
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(R2
X ≥ 0.948). However, only the PL exponents of the betweenness (Fig. 2b) and eigenvector centrality (Fig. 2b) 

families range within the typical (empirical) interval 2<γ < 31, implying a better performance of these families 
in terms of scale-freeness.

Further, a statistical inference analysis is applied to examine the SF property of each family, as shown in Fig. 3. 
The 95% CIs are constructed on sets of the gamma PL exponents (γ) and coefficients of determination (R2) 
resulted from the PL fittings. Despite the insufficient data describing cases of small networks (n ≤ 100), all R2 CIs 
in Fig. 3a appear very high. In particular, CIs of R2 are kCI ( )R2 =[0.937, 0.998], CCI ( )R2 =[0.892, 0.997], CBCI ( )R2

=[0.994, 0.999], CCCI ( )R2 =[0.874, 0.996], and CECI ( )R2 =[0.987, 0.999], respectively. The respective average val-
ues are Rk

2 = 0.988, RC
2 = 0.977, RCB

2 = 0.998, RCC
2 = 0.937, and RCE

2 = 0.996 (Fig. 3a). As it can be observed, the 
average coefficients of determination (<R2 > ) of the PL-fittings are sufficiently high (>0.92) for all the available 
families. Overall, the R2 CIs in Fig. 3a illustrate that all null-model families have their degree distributions satis-
factorily described by PL patterns and thus all families are ruled by the SF property. Further, Fig. 3b shows that the 
average γ (gamma) PL exponents are close to the typical interval 2<γ < 3 describing real-world SF networks1. 
Moreover, the CIs of betweenness G(CB) and eigenvector centrality G(CE) families are included in this typical 
interval. This implies a better performance of these cases, in terms of scale-freeness, verifying the previous 
observations.

Overall, the degree distribution analysis shows that all available null-models grown with time-dynamic topo-
logical fitness (i.e. where fitness is a dynamic attribute that changes value as the network grows) under the control 
of degree (k), clustering coefficient (C), betweenness (CB), closeness (CC), and eigenvector centrality (CE) have 
the SF property. In the case where fitness is controlled by degree, this result is expected and complies with the 
literature13,17,23, because the generated models are equivalent to BA models. Also, in the case of betweenness, the 
results are in line with the findings of28. However, for the remaining cases (C, CC, CE), the results advance the 
existing literature (which states that fitness-based models generate SF networks only when the underlying fitness 
distribution is a PL) by revealing that time-dynamic topological fitness can generate SF networks even when the 
underlying fitness distribution is not SF (it is uniform, see Appendix).

Figure 1.  Three-dimension (3d) bar-charts illustrating the degree distributions of the null-model families 
generated under the control (a) of degree G(k), (b) clustering coefficient G(C), (c) betweenness centrality 
G(CB), (d) closeness centrality G(CC), and (e) eigenvector centrality G(CE). The x-axis represents node degree, 
the y-axis the ranking of the null-models arranged into ascending order, and the z-axis the frequencies n(k) of 
nodes having degree k.
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Topological analysis.  This part examines differences in topological layouts of equal-size null-models 
amongst the available families. A representative picture of the topologies produced by the proposed growth model 
of time-dynamic topological fitness is shown in Fig. 4, where null-models of size n = 1000nodes are displayed. 
As it can be observed, the topological layouts appear quite different amongst these five families. In particular, the 
betweenness centrality G(CB) layout configures a mono-centric pattern that is similar to a superstar network 
described by the authors of33. This layout is described by a dominant hub, a nodes’ concentration radially to the 
hub, and a cluster of isolated nodes eccentrically arranged. On the contrary, the closeness centrality G(CC) layout 
shapes a polycentric pattern, where hubs are mutually distant and all the other nodes are scattered through-
out the network space into a mesh-like arrangement. The degree G(k) and eigenvector centrality G(CE) layouts 
configure core concentrations, but they considerably differ from the superstar pattern of G(CB). However, the 
G(CE) layout is more polycentric then G(k) and has hubs with a higher degree (denoted by node size). Also, the 
arrangements of isolated nodes in these two layouts are different. Overall, layouts shown in Fig. 4 vary from a 
mesh-like of G(CC) to a superstar-like pattern of G(CB), following the ordering G(CC), G(C), G(CE), G(k), and 
G(CB), respectively.

Figure 2.  Boxplots showing how degree distributions of the available 30 models that are included in the 
families of (a) of degree G(k), (b) clustering coefficient G(C), (c) betweenness centrality G(CB), (d) closeness 
centrality G(CC), and (e) eigenvector centrality G(CE) are distributed along the degrees. The PL curves are fitted 
to average values per node degree (log-log axes are used).
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Next, the results of the analysis based on statistical inference of network topology measures are shown in 
Fig. 5. Each CI (95%) corresponds to a certain family and a certain measure. Non-overlaid intervals between com-
pared cases indicate statistical differences, which imply that displayed differences are only 5% likely to be a matter 
of chance. As it can be observed, in the majority of cases, the CIs shown in Fig. 5 do not overlay. This generally 
implies that the network topologies amongst the available model families differ in many aspects. An exception to 
this observation is the number of links (Fig. 5a), where all cases can be considered statistically equal. In all other 
cases, 95% CIs of the examined null-model families statistically differ. In particular, Fig. 5b shows that the diago-
nal distances (dd)8 of the model families are statistically different. The dd is a spectral metric, which was proposed 
by the author of8 and measures the average distance from the main diagonal of non-zero elements of the network’s 

Figure 3.  95% confidence intervals (CIs) of the average (a) coefficient of determination (R2) and (b) power-
law (PL) exponent (γ) of the PL-fittings, computed within each family of networks G(k), G(C), G(CB), G(CC), 
and G(CE). Measures k, C, CB, CC, and CE within parentheses express the attribute controlling time-dynamic 
topological fitness.

Figure 4.  Topological layouts of equal-size (n = 1000) null-models G(n,m | X), where n is the number of nodes, 
m the number of links, and X is the time-dynamic topological fitness controlling network growth. The null-
model families shown in each case are (a) degree (X = k, m = 986), (b) clustering coefficient (X = C, m = 951), 
(c) betweenness centrality (X = CB, m = 789), (d) closeness centrality (X = CC, m = 999), and (e) eigenvector 
centrality (X = CE, m = 933). Layouts are visualized by using the Force-Atlas embedding available in the open-
source software of31. Node color (from blue to red) and size (from small to big) are proportional to node degree.
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Figure 5.  95% confidence intervals (CIs) of the average (a) number of links (m), (b) diagonal distance (dd, 
see8), (c) network diameter (dG), (d) average degree (<k > ), (e) max degree (kmax), (f) number of isolated nodes 
(ko), (g) unique degree values (UDV), (h) number of hubs (Hubs), (i) average path length (<l > ), (j) number 
of connected components (COM), (k) network assortativity (r), (l) average and global clustering coefficient 
(<C > , C), (m) modularity, (n) ω-index (ω), which was proposed by36, and (o) city organization index (COI), 
which was proposed by37. All CIs were computed for the members of each network family G(X) = {G(k), G(C), 
G(CB), G(CC), G(CE)}. Measures X = k, C, CB, CC, and CE express the attribute controlling growth in the 
time-dynamic topological fitness algorithm.
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adjacency matrix. Differences in dd reveal topological differences between networks that sometimes cannot be 
observed in the degree distributions of the networks, such as in cases when the degree distributions are the same8. 
Within this context, statistical differences captured in Fig. 5b reveal topological differences in the sparsity patterns 
of the network adjacencies amongst the available families.

In particular, the CI of G(CC) for the measure of dd implies that models of this family are mostly scattered in 
their adjacency matrices, whereas G(CB) implies that models of this family have the most concentrated arrange-
ment along the main diagonal of their adjacency. These observations comply with the polycentric and star-like 
patterns previously observed in the topological layouts of these families, respectively. Next, Fig. 5c shows that 
betweenness centrality family has (on average) the shortest network diameter (although not statistically different 
than G(CE)), whereas G(CC) has the largest one (although not statistically different than G(C)). Further, Fig. 5d 
shows that G(CC) has the highest average degree, whereas families of betweenness G(CB) and eigenvector cen-
trality G(CE) have the smallest. This complies with the observation in the topological layouts (Fig. 4), according 
to which the topologies of G(CB) and G(CE) are more hub-and-spoke-like, in contrast with the more mesh-like 
topology of G(CC). A degree-based consideration is also made in Figs. 5e and 5f. In particular, Fig. 5e shows that 
betweenness centrality family G(CB) has the maximum degree, which complies with the superstar-like observa-
tion made in Fig. 4. The Fig. 5f shows that the clustering coefficient G(C) and closeness centrality G(CC) families 
have the shortest number of isolated nodes, which complies with their mesh-like topologies observed in Fig. 4. 
Next, Fig. 5g shows that closeness centrality family G(CC) has less unique degree-values than the others, imply-
ing that it has the least long-tailed degree distribution (and thus relatively more hubs than the other families). 
This complies with the mesh-like topology of G(CC) observed in Fig. 4. Also, Fig. 5h illustrates the superstar-like 
topology of the betweenness centrality family G(CB) since its CI [1.05,1.35] is considerably close to one (implying 
the existence of one hub in the majority of models within this family). Next, Fig. 5i shows that the closeness cen-
trality G(CC) family has the longest average path length, which complies with the mesh-like topology observed in 
Fig. 4. Next, Fig. 5j shows the number of components in the network, which is similar to the case of isolated nodes 
in Fig. 5f. Further, Fig. 5k shows that the degree (BA models) family G(k) has the highest assortativity, implying 
a good tendency of nodes to attach with similar ones. Next, Fig. 5l shows that the betweenness centrality family 
G(CB) has the highest clustering coefficient. An interesting observation is that growth under the time-dynamic 
topological fitness of the clustering coefficient (X = C) generates networks of low clustering (G(CB)) but not the 
lowest (the eigenvector centrality family has the lowest one).

Next, Fig. 5m shows that families of clustering coefficient G(C) and closeness centrality G(CC) have the best 
tendency to be divided into communities. This result complies with their mesh-like topologies observed in Fig. 4. 
In Fig. 5n, CIs closer to the zero-line illustrate small-world-like (SW-like) characteristics, where positive scores 
imply randomness and negative scores lattice-like characteristics38. Within this context, families of betweenness 
centrality G(CB) and degree G(k) have SW-like characteristics with random trends, family G(C) has random-like 
characteristics, family G(E) has lattice-like characteristics with SW-like trends, and G(CC) has lattice-like charac-
teristics. These results comply with the mesh-like topology of G(CC), the superstar-like topology of G(CB), and 
the intermediate topological layouts observed in Fig. 4. Finally, Fig. 5o shows which family has a better-organized 
structure, in the context of considering a network as a city and evaluating its topology in terms of the number of 
incomplete crossovers and dead ends37. According to this metric, the families of degree G(k), betweenness cen-
trality G(CB), and eigenvector centrality G(CE) have the most well-organized patterns.

Measure
Optimum 
condition(b)

Null-model family

G(k) G(C) G(CB) G(CC) G(CE)

Dd n/a min

<k >  max min max* min

r min max min* min*

kmax max max* min

ko min min* min*

UDV max min

γ 2 <γ < 3 min* min*

R2  → 1 min

ω-index →0 * max * min min

COI  → 0 min* min* max min*

dG min min* min*

Q min min* min* min*

COM min min* min*

<C >  max max* min

C max min max* min

<l >  min min* max

Min 2 2 8 8 7

Max 1 2 3 3 0

Optimums* 2 2 8 4 5

Table 2.  Summary of measures with minimum or maximum CIs(a). a. Based on the analysis shown in Fig. 2 and 
Fig. 5. b. Defined by the physical meaning of each measure, based on relevant literature (see Table 1).

https://doi.org/10.1038/s41598-020-67156-6


1 1Scientific Reports |        (2020) 10:10630  | https://doi.org/10.1038/s41598-020-67156-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Overall, the statistical inference analysis illustrates that many topological aspects differ amongst the available 
null-model families. This implies that networks generated under time-dynamic topological fitness considerably 
differ in their topological attributes. To summarize all findings, we construct Table 2, showing cases of minimum 
or maximum performance, which are extracted from Fig. 3 and Fig. 5 and are compared with the desired network 
performance noted as optimum.

Further, based on data of Table 2, the comparative directed graph shown in Fig. 6 is constructed, according to 
relation (5). In this graph, the weighted out-degree indicates the topology that can be loosely considered as better, 
to the extent that it outperforms in more topological measures than the other families. As it can be observed in 
Fig. 6, the betweenness centrality family G(CB) is the weighted out-degree hub in the graph, being followed by the 
families G(CE), G(C), G(k), and G(CC), in descending order.

Overall, the previous analysis shows that null-models grown with time-dynamic topological fitness under 
the control of betweenness centrality (X = CB) outperform in more topological aspects the models belong-
ing to the other families. This finding complies with the finding of the authors of 28, who observed that the 
node-betweenness suggests a better indicator of social attractiveness and with the observation of the authors of 35, 
who noted that superstar SF networks (describing the betweenness centrality family) are of the better topology of 
the BA model (describing the family of degree).

Conclusions
In current literature, the fitness model has not yet been studied in a comprehensive context because most models 
are static and are restricting the model’s ability in generating scale-free (SF) networks only when the underlying 
fitness distribution is power-law. Aiming to broaden the time-dynamic conceptualization of fitness, this paper 
studied scale-free networks generated under time-dynamic topological fitness that changes as the network grows. 
Five different network attributes controlling topological fitness were taken into consideration; degree (leading 
to Barabasi-Albert models), clustering coefficient, betweenness, closeness, and eigenvector centrality. The anal-
ysis built on network analysis and statistical mechanics and examined the degree distributions of the generated 
null-models and compared topological aspects between families defined by each of the fitness attributes. The 
results showed, first, that growth under time-dynamic topological fitness appears indifferent to the underlying fit-
ness distribution because all families included models with degree distributions very well fitted to power-law (PL) 
curves. Moreover, PL exponents of all families were close to the typical interval 2<γ < 3 describing real-world 
SF networks, while families of betweenness G(CB) and eigenvector centrality G(CE) were included within this 
interval. The examination of topological layouts showed that the topology of models generated under differ-
ent topological fitness ranges from a mesh-like (describing the closeness centrality family) to a superstar-like 
(describing the betweenness centrality family) pattern. Moreover, all families appeared to have distinct topolog-
ical layouts ranging from mesh-like to superstar-like patterns, following the ordering G(CC), G(C), G(CE), G(k), 
and G(CB), respectively. Finally, based on statistical inference of network topological aspects, the analysis showed 
that networks grown under the control of betweenness centrality outperform the others in scale-freeness and the 
majority of the other topological attributes. The overall results complied with the literature and with a recent work 
examining betweenness centrality as a social attractor. The overall approach attempted to broaden the conceptu-
alization of fitness to a more time-dynamic context and provided evidence to disconnect the SF property from the 
underlying fitness distribution in the fitness-based models.

Figure 6.  Comparative directed graph modeling the topological importance (weighted out-degree) of each 
family {G(k), G(C), G(CB), G(CC), G(CE)}, as expressed by different topological aspects shown in Table 2. 
The connectivity rule of the graph construction is shown in relation (5), where a directed link (i,j) of weight 
one (wij = 1) expresses that node i outperforms j in one measure shown in Table 2. Nodes are colored and 
sized proportionally to the weighted out-degree, where higher values indicate nodes outperforming in more 
topological attributes.
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Appendix
A1. Models’ construction algorithm

For a network G(V,E), expressed by the pair-set of nodes V and links E, we define n the number of nodes 
( =V n) and m the number of links ( =V m).

The input parameters of the generative algorithm are:
n: the desired number of nodes in the network,
mo: the (constant) number of links added at every step of the growth,
tj: the j-th step of network growth,
X:the control attribute X={degree (k), clustering coefficient (C), betweenness centrality (CB), closeness cen-

trality (CC), and eigenvector centrality (CE)} driving the attachment procedure.
All models are grown in discrete time (t∈) that is set equal to the number of nodes (tn=n).
The algorithm is subjected to the following restrictions31:







>
< <
< ≤

n
m n
m m

0
0
0

o

o

(A1.1).

The number of links added at every step of growth is chosen to one (mo=1).
Within this context, the construction algorithm of the time-dynamic fitness models is described as follows:
▪ At time zero (to=0), n (in number) isolated nodes are generated in the network. At this time, a constant fit-

ness value (ϕi(to)=ϕi(0)=ϕo) equal to 1/n (ϕo=1/n) is assigned to all available isolated nodes. Therefore, at time 
zero, all nodes have the same (uniform) probability to connect.

▪ At the first step of growth (t1=1), mo links are randomly added to the network. At this step, the topological 
measure corresponding to control-attribute X is computed for the current network.

The resulting scores xi(t1=1) of control-attribute X are then converted to current (t1=1) topological-fitness 
probabilities xi(1)*, according to the relation:
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where i=1,…,n is a network node.
At next, the new fitness values ϕi(1) at growth-time t1 are computed by the sum of past fitness values ϕi(0) and 

of current (t1=1) topological-fitness probabilities xi(1)*, according to the relation:
ϕi(1) = ϕi(0) + xi(1)*(A1.3).
▪ At the second step of growth (t2=2), another mo links are added to the network proportionally-randomly to 

the φ (1) fitness-values and the procedure is repeated accordingly.
▪ At the j-th step of growth (tj=j), another mo links are added to the network proportionally-randomly to the 

φ (j) fitness-values and the procedure is repeated accordingly. The resulting scores xi(j) of control-attribute X are 
converted to current (tj=j) topological-fitness probabilities xi(j)*, according to the relation:
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with i=1,…,n, and the new fitness values ϕi(j) at growth-time tj=j are computed according to the relation:
ϕi(j) = ϕi(j–1) + xi(j)*(A1.5).
▪ The algorithm then terminates at the n-th step of growth (tn=n).
The models generated by this algorithm are undirected graphs.
Models Gp(X), which are generated under the control of degree (X=k), are equivalent to BA models.
A2. Coding
The code of the models’ construction algorithm proposed in this paper is written in MATLAB (m-file)30 and 

is available as follows (other functions included in this code are available by the Brain Connectivity Toolbox at 
https://sites.google.com/site/bctnet/measures/list and provided as supplementary material)

function [ADJ] = tvt_fitness(n, mo, c)
% TIME VARIANT TOPOLOGICAL (TVT) FITNESS: This function generates a graph grown with 

time-variant topological fitness under the control of degree(k), clustering coefficient (c), betweenness centrality 
(cb), closeness centrality (cc), and eigenvector centrality (ce).

%
% INPUTS
% n: number of nodes at the final network,
% mo: number of links added with every new node,
% c: control attribute driving preferential attachment, where
% c=1: degree
% c=2: clustering coefficient
% c=3: betweenness centrality
% c=4: closeness centrality
% c=5: eigenvector centrality
%
% OUTPUTS
% ADJ: the adjacency matrix of the generated fitness model.

https://doi.org/10.1038/s41598-020-67156-6


13Scientific Reports |        (2020) 10:10630  | https://doi.org/10.1038/s41598-020-67156-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

%
% Developed by Dimitrios Tsiotas, Ph.D., 15 May 2020.
tic
ADJ=zeros(n);
nodes=[1:n]';
% Create randomly the first connection
eo1=randi([1,n]); %chooses randomly an integer from the interval [1,n]
eo2=randi(setdiff([1,n],eo1)); % chooses randomly an integer from the interval [1,n]-e1
ADJ(eo1,eo2)=1;
% end of loop
Po=zeros(n,1)+(1/n);
% Attribute: Degree ---------------------------------------------------
if c==1
for i=1:n
for j=1:mo
P=degrees_und(ADJ);
P=P/sum(P)+Po′; % Po is uniform probability to connect and P/sum(P) is additional preferential probability
P=P/sum(P);
e1=find(rand<cumsum(P),1,'first'); % preferentially chooses an integer from the interval [1,n]
P([e1])=[]; % removes previous node from the selection
e2=find(rand<cumsum(P),1,'first');
ADJ(e1,e2)=1;
end
end
end
% Attribute: Degree END------------------------------------------------
% Attribute: Clustering -----------------------------------------------
if c==2
for i=1:n
for j=1:mo
P=clustering_coef_bu(ADJ);
P=P/sum(P);P(isnan(P))=0;
P=P+Po; % Po is uniform probability to connect and P is additional preferential probability
P=P/sum(P);
e1=find(rand<cumsum(P),1,'first'); % preferentially chooses an integer from the interval [1,n]
P([e1])=[]; % removes previous node from the selection
e2=find(rand<cumsum(P),1,'first');
ADJ(e1,e2)=1;
end
end
end
% Attribute: Clustering END--------------------------------------------
% Attribute: Betweenness-----------------------------------------------
if c==3
for i=1:n
for j=1:mo
P=betweenness_bin(ADJ);
P=P/sum(P);P(isnan(P))=0;
P=P+Po; % Po is uniform probability to connect and P is additional preferential probability
P=P/sum(P);
e1=find(rand<cumsum(P),1,'first'); % preferentially chooses an integer from the interval [1,n]
P([e1])=[]; % removes previous node from the selection
e2=find(rand<cumsum(P),1,'first');
ADJ(e1,e2)=1;
end
end
end
% Attribute: Betweenness END-------------------------------------------
% Attribute: Closeness-------------------------------------------------
if c==4
for i=1:n
for j=1:mo
P=closeness_und_bin(ADJ);
P=P/sum(P);P(isnan(P))=0;
P=P+Po; % Po is uniform probability to connect and P is additional preferential probability
P=P/sum(P);
e1=find(rand<cumsum(P),1,'first'); % preferentially chooses an integer from the interval [1,n]
P([e1])=[]; % removes previous node from the selection
e2=find(rand<cumsum(P),1,'first');
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ADJ(e1,e2)=1;
end
end
end
% Attribute: Closeness END---------------------------------------------
% Attribute: Eigenvector-----------------------------------------------
if c==5
for i=1:n
for j=1:mo
P=eigenvector_centrality_und(ADJ);
P=P/sum(P);P(isnan(P))=0;
P=P+Po; % Po is uniform probability to connect and P is additional preferential probability
P=P/sum(P);
e1=find(rand<cumsum(P),1,'first'); % preferentially chooses an integer from the interval [1,n]
P([e1])=[]; % removes previous node from the selection
e2=find(rand<cumsum(P),1,'first');
ADJ(e1,e2)=1;
end
end
end
% Attribute: Eigenvector END-------------------------------------------
toc
end
A3. Null-models
The models generated with time-dynamic topological fitness under the control-attributes of degree (k), clus-

tering coefficient (C), betweenness centrality (CB), closeness centrality (CC), and eigenvector centrality (CE) are 
shown in the following Table A1.

p=

Null-model family

Gp(k) Gp(C) Gp(CB) Gp(CC) Gp(CE)

(degree-
controlled)

(clustering-
controlled)

(betweenness-
controlled)

(closeness-
controlled)

(eigenvector-
controlled)

Null-model 
ranking (p)

1 G1(50,44) G1(50,45) G1(50,32) G1(50,50) G1(50,38)

2 G2(100,94) G2(100,97) G2(100,73) G2(100,99) G2(100,74)

3 G3(150,140) G3(150,147) G3(150,106) G3(150,149) G3(150,107)

4 G4(200,184) G4(200,195) G4(200,163) G4(200,199) G4(200,146)

5 G5(250,245) G5(250,191) G5(250,192) G5(250,251) G5(250,191)

6 G6(300,278) G6(300,278) G6(300,230) G6(300,297) G6(300,223)

7 G7(350,343) G7(350,276) G7(350,294) G7(350,348) G7(350,261)

8 G8(400,384) G8(400,374) G8(400,313) G8(400,397) G8(400,278)

9 G9(450,440) G9(450,376) G9(450,349) G9(450,449) G9(450,340)

10 G10(500,492) G10(500,464) G10(500,365) G10(500,499) G10(500,362)

11 G11(550,539) G11(550,522) G11(550,471) G11(550,548) G11(550,411)

12 G12(600,588) G12(600,595) G12(600,404) G12(600,598) G12(600,441)

13 G13(650,636) G13(650,593) G13(650,510) G13(650,645) G13(650,461)

14 G14(700,689) G14(700,696) G14(700,582) G14(700,695) G14(700,514)

15 G15(750,732) G15(750,704) G15(750,596) G15(750,747) G15(750,553)

16 G16(800,788) G16(800,735) G16(800,643) G16(800,794) G16(800,575)

17 G17(850,828) G17(850,825) G17(850,669) G17(850,851) G17(850,606)

18 G18(900,890) G18(900,809) G18(900,738) G18(900,899) G18(900,643)

19 G19(950,935) G19(950,903) G19(950,742) G19(950,948) G19(950,702)

20 G20(1000,986) G20(1000,951) G20(1000,789) G20(1000,999) G20(1000,933)

21 G21(1050,1035) G21(1050,1011) G21(1050,791) G21(1050,1048) G21(1050,775)

22 G22(1100,1088) G22(1100,1006) G22(1100,859) G22(1100,1099) G22(1100,886)

23 G23(1150,1132) G23(1150,1073) G23(1150,885) G23(1150,1149) G23(1150,844)

24 G24(1200,1191) G24(1200,993) G24(1200,977) G24(1200,1196) G24(1200,873)

25 G25(1250,1229) G25(1250,1248) G25(1250,993) G25(1250,1248) G25(1250,1170)

26 G26(1300,1281) G26(1300,1226) G26(1300,977) G26(1300,1296) G26(1300,1000)

27 G27(1350,1325) G27(1350,1323) G27(1350,1045) G27(1350,1349) G27(1350,1246)

28 G28(1400,1373) G28(1400,1368) G28(1400,1061) G28(1400,1400) G28(1400,1237)

29 G29(1450,1437) G29(1450,1450) G29(1450,1186) G29(1450,1448) G29(1450,1131)

30 G30(1500,1475) G30(1500,1332) G30(1500,1219) G30(1500,1497) G30(1500,1135)

Table A1.  Models generated with time-dynamic topological fitness*. *Under the control-attributes of degree (k), 
clustering coefficient (C), betweenness centrality (CB), closeness centrality (CC), and eigenvector centrality (CE)
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