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Quantifying perfusion properties 
with Dce-MRi Using a Dictionary 
Matching Approach
Satyam Ghodasara  1, Yong chen2, Shivani pahwa  1,3, Mark A. Griswold1,3,4, 
nicole Seiberlich5, Katherine L. Wright5 & Vikas Gulani  5 ✉

perfusion properties can be estimated from pharmacokinetic models applied to Dce-MRi data 
using curve fitting algorithms; however, these suffer from drawbacks including the local minimum 
problem and substantial computational time. Here, a dictionary matching approach is proposed as an 
alternative. Curve fitting and dictionary matching were applied to simulated data using the dual-input 
single-compartment model with known perfusion property values and 5 in vivo Dce-MRi datasets. 
In simulation at SNR 60 dB, the dictionary estimate had a mean percent error of 0.4–1.0% for arterial 
fraction, 0.5–1.4% for distribution volume, and 0.0% for mean transit time. The curve fitting estimate 
had a mean percent error of 1.1–2.1% for arterial fraction, 0.5–1.3% for distribution volume, and 
0.2–1.8% for mean transit time. In vivo, dictionary matching and curve fitting showed no statistically 
significant differences in any of the perfusion property measurements in any of the 10 ROIs between the 
methods. In vivo, the dictionary method performed over 140-fold faster than curve fitting, obtaining 
whole volume perfusion maps in just over 10 s. This study establishes the feasibility of using a dictionary 
matching approach as a new and faster way of estimating perfusion properties from pharmacokinetic 
models in Dce-MRi.

Dynamic contrast-enhanced (DCE) MRI data can be used with a variety of pharmacokinetic models to estimate 
perfusion properties through either an ROI-based or voxel-based analysis. However, many models are complex, 
and thus determination of fitted variables can be challenging, particularly when employing voxel-wise analysis 
as several thousand voxels must be evaluated to estimate many model parameters simultaneously, which poses 
significant computational burdens1–5. Curve fitting algorithms are used to estimate properties of interest6–8, but 
this approach has many potential drawbacks. For instance, these algorithms can be extremely computationally 
expensive and require many hours to process just one dataset, which has led to the exploration of alternatives such 
as the linear least squares method9–11. Curve fitting algorithms often also have numerous configuration options 
including initial property guesses, property bounds, algorithm choice, tolerances, and cost functions. The large 
number of available configuration options and underreporting of precise configurations causes difficulties in 
replicating perfusion modeling results across institutions. Lastly, curve fitting algorithms are vulnerable to con-
verging on local minima11. When this occurs, the best fit to the model is not optimally identified, resulting in an 
inaccurate estimate of perfusion properties. Furthermore, these occurrences may be difficult to identify.

These drawbacks have significant consequences. Heye, et al.12 have shown that there is considerable variation 
in perfusion properties quantified across analysis platforms such as Tissue4D (Siemens, Erlangen, Germany), 
DynaCAD (Invivo, Gainesville, Florida, USA), Aegis (Sentinelle Medical, Toronto, Ontario, Canada), and 
CADvue (iCAD, Nashua, New Hampshire, USA). In that study, identical DCE-MRI data were provided to each 
platform, and all platforms implemented perfusion modeling based on the two-compartment Tofts and Kermode 
model to characterize uterine fibroids. Several of the final perfusion properties quantified by each perfusion anal-
ysis platform showed significant differences, likely due to issues such as required initial guesses, local minima, 
large number of user-set parameters, and variability in arterial input function (AIF) selection, undermining the 
effectiveness of perfusion properties as clinical biomarkers and perfusion modeling as a clinical tool.
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We demonstrate a dictionary matching approach as an alternative to curve fitting algorithms to estimate tissue 
properties from complex pharmacokinetic models like the dual-input single-compartment model6. This approach 
is analogous to that used previously in relaxometry and magnetic resonance fingerprinting13,14, and it consists of 
two phases. In the dictionary generation phase, permutations of perfusion properties within specified ranges are 
applied to a selected pharmacokinetic model, and the outputs are stored in a dictionary. Next, in the dictionary 
matching phase, acquired contrast agent concentration curves are compared to each entry within the dictionary 
by using the inner product. The dictionary entry associated with the maximum inner product is considered the 
best match, and the perfusion properties used to generate that entry will be the best estimates of the true perfu-
sion properties.

Since this dictionary-based approach is relatively new, the first goal of this study is to show that the accuracy 
of this method is at least equal to that from the more widely-used curve fitting approach15. The second goal is 
to demonstrate the speed advantage of the dictionary method over the curve fitting approach. To achieve these 
objectives, the two approaches are compared using Monte Carlo simulations and in vivo 3D DCE-MRI data from 
the liver.

Methods
Dual-input Single-compartment Model. Although a dictionary approach could be used for any DCE 
application, liver DCE-MRI data were used with a dual-input single-compartment model6 (Eq. 1) for this first 
validation. A dual-input model is necessary to accurately describe tracer kinetics in the liver because it receives 
blood from two independent vessels: the hepatic artery and the portal vein. The dual-input single-compartment 
model is described by Eq. 16:
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The rate constants (k A1 , k P1 , k2) are commonly reformulated as the arterial fraction (AF), distribution volume 
(DV), and mean transit time (MTT) as described in Eqs. 2–46:
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AF is a dimensionless variable ranging from 0 to 1 and represents the fraction of blood provided by the hepatic 
artery as opposed to the portal vein. DV is the fraction of the liver volume that is accessible to the contrast agent 
(the gadolinium contrast agent used in this study is unable to be taken up by cells, so this quantity effectively 
estimates the extracellular space), and it is also a dimensionless variable that ranges from 0 to 1. MTT represents 
the mean time taken for all contrast agent particles to travel from either the hepatic artery or portal venous input 
through the liver compartment to the hepatic venous outputs, and it is reported in seconds. C t( )A  and C t( )P  repre-
sent the arterial input function (AIF) and the portal venous input function (PVIF), respectively. Each was gener-
ated by placing regions-of-interest in multiple slices of the aorta and portal vein, respectively, and converting 
signal intensity to concentration. C t( )L  represents the contrast agent concentration in a unit of liver tissue (e.g. a 
single voxel or an ROI of many voxels). C t( )L , C t( )A , and C t( )P  are obtained by converting signal intensities obtained 
from the DCE-MRI experiment into contrast agent concentrations with the AIF and PVIF scaled by −1 hematocrit 
assuming a hematocrit value of 0.41,7. τA and τP are delay properties for the arterial and portal venous input func-
tions, respectively. This study used fixed values for τA and τP in accordance with prior studies8.

curve fitting. The MATLAB (version 2018b, The Mathworks, Natick, MA) lsqcurvefit function was used to 
fit the AF, DV, and MTT perfusion properties of the dual-input single-compartment model. This nonlinear 
least-squares solver uses the trust-region-reflective algorithm with a step tolerance of × −1 10 2, a function toler-
ance of × −1 10 3, and a minimum gradient change of × −1 10 1. Fitting bounds were set to 0–1, 0–1, and 0.0001–
100 with initial property estimates of 0.2, 0.2, and 10 for AF, DV, and MTT, respectively. All other settings were 
left to their default values (as described in MATLAB’s documentation: https://www.mathworks.com/help/optim/
ug/lsqcurvefit.html).

Dictionary Matching. The first step in creating the dictionary is to select a range of values and a step size for 
each individual property in the perfusion model to be used. Each permutation of properties is input to the perfu-
sion model to obtain a contrast agent concentration curve, which is then divided by its own L2-norm and stored 
as one column in the dictionary matrix. The completed dictionary will be size ×t n where t is the number of time 
frames in the DCE-MRI acquisition and n is the total number of entries in the dictionary.

In the matching phase, signal intensities from the 3D DCE-MRI acquisition are converted to contrast agent 
concentration curves using computations described previously7. Each curve is divided by its own L2-norm and 
stored as an individual row in a temporary matrix. On completion, this matrix will be ×m t where m is the total 
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number of contrast agent concentration curves. This temporary matrix is then multiplied by the dictionary to 
obtain a matrix of inner product values with size ×m n. The index of the max inner product value is taken for 
each row to identify the best match dictionary entry, and its associated perfusion properties are considered the 
best estimate of the true perfusion properties.

In this study, subject-specific dictionaries were created with ranges of 0–1 and 0.0001–100 with step sizes of 
0.01 and 1 for AF and MTT, respectively. MTT cannot take on a value of 0 due to Eq. 4, so the lower bound was 
set to 0.0001. Aside from this, MTT only takes integer values. DV was fixed to 1 (as it is essentially a scaling prop-
erty) and later calculated by dividing the L2-norm of the acquired contrast agent concentration (C t( )L ) by the 
L2-norm of the best dictionary match (C t( )LD ). This is described in Eq. 5:

≈DV
sum C t

sum C t

( ( ) )

( ( ) ) (5)

L

LD

2

2

A low-rank compressed version of the dictionary was approximated using a randomized singular value 
decomposition as has been described before in magnetic resonance fingerprinting16 due to limitations in com-
puter memory (RAM).

In a separate analysis, the step sizes of AF and MTT to be used in the dictionary for the primary simulation 
and in vivo analyses were chosen by creating multiple dictionaries with varying step sizes of each perfusion prop-
erty. Six dictionaries were created with AF step sizes of 0.01, 0.02, 0.04, 0.1, 0.2, and 0.5 as well as an additional six 
dictionaries with MTT step sizes of 1, 2, 4, 11, 25, and 50. An idealized contrast agent concentration curve with 
known perfusion properties was matched to each of these twelve dictionaries in order to assess each step size’s 
ability to estimate the known perfusion properties. This ensured that reasonable AF and MTT step sizes were 
selected in the dictionary method used for the simulation and in vivo analyses.

Monte carlo Simulations. An idealized contrast agent concentration curve was created from the dual-input 
single-compartment model using a temporally smoothed AIF and PVIF from a single subject. The curve repre-
sented healthy liver tissue with an AF of 0.30, DV of 0.30, and MTT of 30 s11. From this single curve, 252 further 
permutations were created by holding two of the properties constant and varying the remaining property over a 
range of values. AF ranged from 0.2 to 0.7, DV from 0.2 to 0.7, and MTT from 11 s to 71 s. Each of these curves 
was then converted to a signal intensity using the spoiled gradient echo equation and white Gaussian noise was 
added to create 100 noisy signals at each of 10 SNR levels ranging from 10–100 dB in increments of 10 dB.

To generate the noisy curves, the MATLAB function awgn was used. This function starts by measuring the 
power of the input signal intensity curve using Eq. 6:
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With this quantity and the desired SNR, Eq. 7 is used to calculate PNoise:
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Normally distributed random numbers (µ=0, σ=1) were scaled by PNoise  and added to each of the original 
signal intensity curves to create 100 new noisy signals at each SNR level. Curve fitting and dictionary matching 
were used to find the best estimate for each noisy signal. The percent error was then calculated between the true 
perfusion property value and estimates from curve fitting and dictionary matching.

Dce-MRi Acquisitions. This study is Health Insurance Portability and Accountability Act compliant, and 
written informed consent was obtained from all subjects. The University Hospitals Cleveland Medical Center 
Institutional Review Board approved the image acquisition protocol, and all experiments were performed in 
accordance with the relevant guidelines and regulations.

Perfusion modeling with the dual-input single-compartment model was performed with 3D DCE-MRI data 
from 3 healthy volunteers and 2 patients with focal liver lesions (metastatic adenocarcinoma and hepatocellu-
lar carcinoma) with a Siemens 3 T Skyra scanner. 3D DCE-MRI data were acquired using an accelerated 3D 
spiral acquisition with gradient and RF spoiling7. The acquisition time for each 3D dataset with 60 partitions 
was 1.6–2.4 seconds, and a total of 100–120 3D volumes were acquired for a scan duration of 3.2–4.0 minutes 
while the subject breathed freely. After acquiring the first five volumes, one dose (0.1 mmol/kg) of gadobenate 
dimeglumine (MultiHance; Bracco Diagnostics, Princeton, NJ) was administered at 3 mL/s, followed by 20 mL 
of saline solution. Additionally, the acquisition used the following imaging parameters: FOV: 38–46 cm; matrix 
size: 208 × 208 to 240 × 240 (in-plane resolution is effectively 1.9 mm); slice thickness: 3 mm; TR: 4.5–5.1 ms; TE: 
0.5 ms; flip angle: 15°; partial Fourier in partition direction: 6/8. On completion of the 4-minute dynamic scan, 
another 40 second calibration scan was acquired while the subject was freely breathing. This scan included three 
fully-sampled volumes to extract the GRAPPA weights for image reconstruction7.

The raw data from the acquisition were transferred to an offline workstation for post-processing. Spiral 
GRAPPA was used to reconstruct the undersampled 3D DCE-MRI data7. To apply this technique, the calibra-
tion scan was used to generate a GRAPPA weight set. These weights were then applied to the undersampled 
3D DCE-MRI data to account for the missing spiral interleaves. After GRAPPA reconstruction was completed, 
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images were generated from k-space data by using a non-uniform Fast Fourier Transform (FFT) toolbox for 
gridding and image reconstruction17.

Since these data were acquired while subjects were freely breathing, respiratory motion resulted in inter-frame 
motion. The data were motion corrected by applying multi-reference image registration using FMRIB’s 
Non-linear Image Registration Tool (FNIRT)7,18. Once motion corrected, the 3D DCE-MRI data were converted 
to contrast agent concentrations using the spoiled gradient echo signal equation and literature values for blood 
T1 (1800 ms at 3 T), healthy liver T1 (800 ms at 3 T), cirrhotic liver T1 (950 ms at 3 T), and gadobenate relaxivity 
(6.3 s−1 mM−1 at 3 T) 7,19–21. A hematocrit of 0.4 was assumed to convert blood concentration to plasma concentra-
tion. Perfusion modeling using curve fitting and dictionary matching were then applied on a voxel-by-voxel basis.

To compare perfusion property values between curve fitting and dictionary matching, single-slice 
regions-of-interest (ROIs) were drawn by a radiologist with 8 years of experience. For healthy subjects, ROIs were 
drawn in liver parenchyma while subjects with focal liver lesions had ROIs drawn both within the lesions and in 
liver parenchyma. Since the subject with hepatocellular carcinoma had concurrent cirrhosis, the liver parenchyma 
ROI represents cirrhotic liver tissue. The mean and standard deviations of each perfusion property were obtained 
for the voxels within each ROI using curve fitting and dictionary matching. The perfusion properties from each 
method were further compared using a two-tailed two-sample t-test with a p-value less than 0.05 deemed to be 
significantly different.

computation Hardware. All computations were performed on a workstation running Windows 10 with 
the following specifications: 3.4 GHz Intel Core i5–4670k, 32 GB DDR3 1600 MHz SDRAM (PC3 12800). All 
code was implemented in MATLAB (2018b).

Results
For the dictionary step size analysis, Fig. 1 shows that the dictionary method’s ability to estimate the true perfu-
sion property values diverges as the step size of that property used to generate the dictionary increases. With AF 
and MTT step sizes of less than 0.1 and 2 s, respectively, the dictionary method is able to reasonably estimate the 
true perfusion property values.

For the Monte Carlo simulations, Fig. 2 shows heatmaps of the mean percent errors between the correct 
perfusion property values and estimates from fitting and dictionary matching over each set of 100 noisy curves. 
Each heatmap shows the mean percent error as both SNR and one of the three perfusion property values are 
varied using each of the two methods. All six heatmaps show a general reduction in mean percent error as SNR 
increases. From SNR 60 dB and up, both methods reasonably estimate the AF, DV, and MTT, and there are min-
imal further reductions in mean percent error for both methods. At SNR 60 dB, the curve fitting estimate had 
a mean percent error range of 1.1–2.1% for AF, 0.5–1.3% for DV, and 0.2–1.8% for MTT. At the same SNR, the 
dictionary matching estimate had a mean percent error range of 0.4–1.0% for AF and 0.5–1.4% for DV. The mean 
percent error for MTT at SNR 60 dB and above was uniformly 0.0% for dictionary matching.

Figures 3–5 show the perfusion maps generated from the in vivo data using curve fitting and dictionary 
matching along with representative contrast agent enhancement curves and estimates from each method. Figure 6 
depicts difference maps calculated from Figs. 3–5. Table 1 shows a summary of the perfusion properties estimated 
within ROIs obtained from the in vivo data using curve fitting and dictionary matching. Of the 30 measurements 
made (3 perfusion properties in 10 ROIs), none showed statistically significant differences between curve fitting 
and dictionary matching.

Computational performance between curve fitting and dictionary matching are compared in Table 2. Curve 
fitting required a mean of 1,500 s (25 min) to generate perfusion maps for whole liver volumes while dictionary 
matching only required a mean of 10.6 s total (2.4 s for dictionary generation and 8.2 s for matching).

Figure 1. Dictionary Resolution Analysis. Six dictionaries were created with varying step sizes for AF as well 
as an additional six dictionaries with varying step sizes of MTT. A simulated contrast enhancement curve with 
known perfusion properties representing healthy liver tissue was matched against each dictionary. The resulting 
perfusion property values estimated using the dictionary matching method are plotted against the step size of 
that perfusion property used to generate the dictionary. The shaded overlays represent one standard deviation 
of the perfusion property values estimated at each step size. The black horizontal line in subfigure (a) represents 
the true AF value of 0.3. The black horizontal line in subfigure (b) represents the true MTT value of 15 s.
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Discussion
The results from Fig. 1 show that as the step size increases for AF and MTT in the dictionary, the dictionary meth-
od’s ability to estimate the true perfusion property values worsens, which is expected. The AF estimate is substan-
tially divergent from the true value when using step sizes higher than 0.1, while the MTT estimate is substantially 

Figure 2. SNR vs. Mean Percent Error of Perfusion Property Estimates from Monte Carlo Simulations. 
Heatmaps of the mean percent error between the true perfusion property values and estimates using curve 
fitting (subfigures (a), (b), and (c)) and dictionary matching (subfigures (d), (e), and (f)) at varying SNR levels. 
Subfigures (a) and (d) vary AF while holding DV and MTT constant; subfigures (b) and (e) vary DV while 
holding AF and MTT constant; subfigures (c) and (f) vary MTT while holding AF and DV constant. Each 
reported mean percent error was taken over 100 noisy curves generated at each SNR.

Figure 3. Healthy Volunteer Perfusion Maps. Representative liver perfusion maps from a healthy volunteer 
(subject 3) with prototypical contrast agent enhancement curves. Maps of each of the three perfusion properties 
estimated from the dual-input single-compartment model (AF, DV, and MTT) are shown in the first three 
columns. Perfusion maps from curve fitting are shown in subfigures (a), (b), and (c), and perfusion maps from 
dictionary matching are shown in subfigures (e), (f), and (g). Subfigures (d) and (h) show the arterial and 
portal venous input functions for the volunteer as well as one representative contrast agent enhancement curve. 
Subfigure (d) depicts the estimated curve using curve fitting while subfigure (h) depicts the estimated curve 
using dictionary matching.
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divergent when using step sizes higher than 2 s. This study used an AF step size of 0.01 and an MTT step size of 
1 s, which ensured that the subsequent analyses performed were not limited by the resolution of the dictionary.

Curve fitting and dictionary matching are both able to accurately estimate the true perfusion properties in the 
Monte Carlo simulations from SNR of at least 60 dB. From 60 dB and up, dictionary matching consistently has 
a slightly lower mean percent error than curve fitting for every tested value of AF and MTT. For DV, the mean 
percent errors for dictionary matching and curve fitting are nearly identical. Below 60 dB, both methods begin to 
fail due to higher noise levels. Overall, these results strongly support that both methods are capable of estimating 

Figure 5. Hepatocellular Carcinoma & Cirrhosis Perfusion Maps. Representative liver perfusion maps from 
a patient with one HCC lesion and concurrent cirrhosis (subject 5) as well as prototypical contrast agent 
enhancement curves. Maps of each of the three perfusion properties estimated from the dual-input single-
compartment model (AF, DV, and MTT) are shown in the first three columns. Perfusion maps from curve 
fitting are shown in subfigures (a), (b), and (c), and perfusion maps from dictionary matching are shown in 
subfigures (e), (f), and (g). Subfigures (d) and (h) show the arterial and portal venous input functions for the 
patient as well as one representative contrast agent enhancement curve. Subfigure (d) depicts the estimated 
curve using curve fitting while subfigure (h) depicts the estimated curve using dictionary matching.

Figure 4. Metastatic Adenocarcinoma Perfusion Maps. Representative liver perfusion maps from a patient 
with metastatic adenocarcinoma (subject 4) with three lesions visible on the shown slice as well as prototypical 
contrast agent enhancement curves. Maps of each of the three perfusion properties estimated from the dual-
input single-compartment model (AF, DV, and MTT) are shown in the first three columns. Perfusion maps 
from curve fitting are shown in subfigures (a), (b), and (c). Perfusion maps from dictionary matching are shown 
in subfigures (e), (f), and (g). Subfigures (d) and (h) show the arterial and portal venous input functions for 
the patient as well as one representative contrast agent enhancement curve. Subfigure (d) depicts the estimated 
curve using curve fitting while subfigure (h) depicts the estimated curve using dictionary matching.
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Figure 6. Perfusion Property Difference Maps. Difference maps between the curve fitting and dictionary 
matching perfusion maps depicted in Figs. 3–5. The three columns show the differences (curve fitting 
minus dictionary matching) between the three perfusion properties estimated from the dual-input single-
compartment model (AF, DV, and MTT). Darker colors indicate dictionary matching has a higher perfusion 
property value estimate, and lighter colors indicate curve fitting has a higher perfusion property value 
estimate. Subfigures (a), (b), and (c) in the top row show difference maps from the healthy volunteer from 
Fig. 3. Subfigures (d), (e), and (f) in the middle row show difference maps from the patient with metastatic 
adenocarcinoma from Fig. 4. Subfigures (g), (h), and (i) in the bottom row show difference maps from the 
patient with hepatocellular carcinoma and concurrent cirrhosis from Fig. 5.

Subject ROI

Arterial Fraction Distribution Volume Mean Transit Time (s)

Curve Fitting Dictionary p-Value Curve Fitting Dictionary p-Value Curve Fitting Dictionary p-Value

1 Healthy liver 0.28 ± 0.11 0.28 ± 0.11 0.93 0.14 ± 0.06 0.14 ± 0.06 0.91 16.1 ± 3.6 16.1 ± 3.6 0.92

2 Healthy liver 0.23 ± 0.15 0.22 ± 0.13 0.74 0.29 ± 0.04 0.30 ± 0.04 0.75 3.8 ± 1.2 3.7 ± 1.1 0.82

3 Healthy liver 0.19 ± 0.03 0.19 ± 0.03 0.94 0.47 ± 0.03 0.47 ± 0.03 0.85 10.4 ± 0.9 10.4 ± 0.9 0.86

4 Mets lesion 1 0.90 ± 0.17 0.91 ± 0.18 0.54 0.59 ± 0.15 0.61 ± 0.16 0.15 55.3 ± 34.3 58.3 ± 34.4 0.30

Mets lesion 2 0.96 ± 0.11 0.96 ± 0.11 0.78 0.58 ± 0.12 0.61 ± 0.12 0.21 67.3 ± 25.9 71.4 ± 22.7 0.28

Mets lesion 3 0.97 ± 0.12 0.97 ± 0.12 0.93 0.64 ± 0.12 0.66 ± 0.12 0.17 51.4 ± 22.8 55.6 ± 21.1 0.09

Mets lesion 4 1.00 ± 0.00 1.00 ± 0.00 0.31 0.75 ± 0.11 0.77 ± 0.11 0.74 80.4 ± 13.8 80.6 ± 13.6 0.97

Liver parenchyma 0.34 ± 0.12 0.33 ± 0.13 0.37 0.25 ± 0.08 0.25 ± 0.08 0.59 4.2 ± 1.6 3.9 ± 1.8 0.18

5 HCC lesion 0.92 ± 0.07 0.92 ± 0.07 0.86 0.37 ± 0.09 0.38 ± 0.09 0.81 11.3 ± 7.6 11.5 ± 8.0 0.92

Cirrhosis 0.33 ± 0.12 0.35 ± 0.13 0.69 0.24 ± 0.02 0.24 ± 0.02 0.47 23.1 ± 4.4 24.4 ± 5.0 0.50

Tablee 1. Perfusion Properties ROI Analysis. Mean and standard deviation of each of the three perfusion 
properties (AF, DV, and MTT) estimated voxel-by-voxel within ROIs using curve fitting and the dictionary 
matching method. The set of perfusion property values from each ROI were compared between the methods, 
and the p-values of the two-sample t-test are reported. The nature of the tissue in each ROI is described under 
the “ROI” column.

Subject

Curve 
Fitting 
(s)

Dictionary

Generation (s) Matching (s) Total (s)

1 1614 2.7 7.7 10.4

2 1729 2.8 11.6 14.4

3 1347 2.2 6.6 8.8

4 1350 1.9 6.1 8.0

5 1462 2.6 9.1 11.7

Mean 1500 2.4 8.2 10.6

Table 2. Perfusion Modeling Speed. Time required to perform perfusion modeling using the dual-input single-
compartment model for whole liver volumes from each of the five subjects studied. Perfusion modeling time for 
the dictionary method is reported separately for the dictionary generation and matching phases, and their sum 
is reported in the “Total” column.
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perfusion properties in simulation. With these successful simulation results, the in vivo results can be analyzed 
knowing that any observed differences in this setting are unlikely due to errors in implementation.

Figures 3–5 indicate minimal discrepancies between the perfusion maps generated by curve fitting and dic-
tionary matching, and this is further supported through the difference maps shown in Fig. 6. For the healthy 
subject depicted in Fig. 3 and subfigures (a), (b), and (c) of Fig. 6, very minor differences are seen largely in the 
vascular structures where the dual-input single-compartment model does not apply. Similarly, the patient with 
hepatocellular carcinoma and concurrent cirrhosis depicted in Fig. 5 and subfigures (g), (h), and (i) of Fig. 6 
shows almost no differences between the methods. For the patient with metastatic adenocarcinoma depicted 
in Fig. 4 and subfigures (d), (e), and (f) of Fig. 6, some minor differences are seen around the hilum of the liver 
as well as the metastatic tumors on the DV and MTT maps. As the hilum is largely vasculature, the model used 
in this study would not apply. For the metastatic tumors, the dual-input single-compartment model may also 
be a poor descriptor of the contrast agent enhancement curve. As these tumors are metastatic, the physiology 
they exhibit is likely more compatible with their tissues of origin, which often includes colon, breast, or lung. A 
different physiologic model may be needed to accurately describe these. Thus, the minor differences observed in 
the perfusion maps are likely a limitation of the model used rather than a limitation of either the curve fitting or 
dictionary matching approach.

Of the 30 perfusion property measurements made by both the curve fitting and dictionary matching methods 
in Table 1, zero ROIs showed statistically significant differences, indicating that both methods perform compa-
rably. The mean AF measurement of the three healthy liver subjects ranged from 19–28%, which is within the 
expected range for normal liver tissue22. The mean AF measurements for all of the metastatic and hepatocellular 
carcinoma tumors were comparatively very high (over 90% in all cases), which is consistent with the fact that 
these tumors are known to induce arterial angiogenesis23. Interestingly, the liver parenchyma for the patient with 
metastatic adenocarcinoma (subject 4) exhibits a modestly elevated AF compared to healthy liver tissue. This 
may also be related to arterial angiogenesis. Similarly, in the patient with cirrhosis (subject 5), the cirrhotic liver 
tissue also exhibited a modestly elevated AF compared to healthy liver tissue, which is consistent with the fact that 
progressive fibrosis of the liver elevates the AF24.

Comparing time required to perform perfusion modeling for each in vivo dataset in Table 2, the dictionary 
matching approach shows an over 140-fold speedup compared to the traditional curve fitting method. This is par-
ticularly beneficial for voxel-based perfusion analysis on 3D DCE-MRI volumes, such as that performed in this 
study, due to the very large number of contrast agent enhancement curves that must be independently consid-
ered. In ROI-based analyses, voxels within an ROI are averaged to generate one contrast enhancement curve that 
must be estimated. As only one curve must be analyzed, there is limited opportunity for further improvements in 
speed. Even in pixel-based 2D applications, the number of curves to analyze is substantially smaller than in 3D 
applications. Similar to ROI-based analyses, the opportunity for further speed improvements is also limited in 
pixel-based 2D settings. An additional consideration in comparing speed between dictionary matching and curve 
fitting is the dictionary generation time. More complex pharmacokinetic models with more perfusion properties 
will require exponentially larger dictionaries. The time saved in using dictionary matching may be offset by the 
extra time needed to generate the dictionary in this setting.

As the two methods studied in this experiment estimate contrast agent enhancement curves and their asso-
ciated perfusion properties in fundamentally different ways, they each have their own unique advantages and 
disadvantages. For example, curve fitting can freely predict any value within specified bounds while dictionary 
matching is restricted to only providing estimates that exist within the dictionary. Thus, potential values assigned 
to each pixel are quantized. A drawback of curve fitting is that an initial property guess is required to begin the 
algorithm, and this guess can influence the final perfusion property estimates11. This influence can be profound 
if there are local minima in the curve being analyzed in this manner. However, there is no reliable method for 
determining the optimal initial property guess.

One advantage to dictionary matching is the minimal configuration required from the user. Dictionary 
matching simply requires ranges and step sizes for each property in the model, which is unlike curve fitting and 
its numerous configuration options. Another advantage is that dictionary matching guarantees an exhaustive 
search of the dictionary. This means the solution provided by the matching algorithm will be the best possible 
solution in the dictionary because every dictionary entry is considered as a potential final estimate. As a conse-
quence, dictionary matching is unaffected by the local minimum problem unlike curve fitting, which does not 
guarantee that every combination of properties within the provided bounds is considered. Despite these benefits, 
some drawbacks do exist. Primarily, it may be possible for dictionary matching to select a markedly incorrect dic-
tionary entry, but where the signal pattern may superficially be similar to that from the “correct” combination of 
properties. Although this particular phenomenon was not observed in this study, it is a concern that future users 
of the dictionary algorithm should note.

Potential users of the dictionary matching algorithm should also note that in its simplest form as demon-
strated in this work, the algorithm will guarantee a solution will always be found for each contrast agent enhance-
ment curve matched to the dictionary. Although the properties obtained through matching are the best relative to 
the rest of the dictionary, they may still provide a suboptimal estimate of the original contrast agent enhancement 
curve in absolute terms. The inner products obtained from matching contrast agent enhancement curves to the 
dictionary can be used to quantitatively describe the goodness of fit on an absolute scale from 0 to 1. The inner 
products could be used to filter out matches that do not meet a specified threshold, or the inner products for a 
whole dataset could be visualized on a map noting error on a pixel-wise basis.

In this experiment, the dictionary matching approach does appear to provide benefits to speed without sacri-
ficing accuracy in the ROIs analyzed; however, there is substantial room for future work. The dictionary matching 
technique performs its image analysis after the images themselves have been acquired and transferred to a dedi-
cated workstation for further processing. In many cases, this data transfer time cost is substantial, rendering the 
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improvements in processing time demonstrated in this study insufficient in making liver perfusion MRI a tech-
nique that can be applied in a clinically acceptable amount of time. Ideally, whole volume perfusion maps would 
be generated in near real-time. While the present study is a step in this direction, further development is needed 
to establish a new workflow that enables routine clinical adoption.

For the simulation analysis performed in this study, the same model was used to generate the idealized con-
trast agent enhancement curves as was used to assess its performance using both the curve fitting and dictionary 
matching approaches. This approach will not demonstrate the ability of each method to characterize a more 
physiologically accurate model, such as those described in25,26. Future simulation studies should consider using 
a more detailed and complex pharmacokinetic model to generate idealized contrast agent enhancement curves. 
This would provide additional opportunities to examine the benefit of the dictionary-based approach.

Additional improvements can be made in the in vivo analysis as well. In this study, each voxel is analyzed 
independently of its neighbors; however, this does pose a potential problem as individual voxels can be prone to 
noise. One solution to this is to use spatial regularization techniques to analyze groups of voxels together27. This 
would help boost signal while reducing noise, potentially allowing for a more accurate estimation of perfusion 
properties by leveraging the information contained in neighboring voxels.

Further studies are also needed to validate the approach across more subjects. Furthermore, alternative algo-
rithms, configurations, and implementations of curve fitting may also provide some boosts to speed and/or accu-
racy, which should also be compared against the dictionary approach described here. As dictionary matching is 
analogous to magnetic resonance fingerprinting, there is room to further modify and improve this technique as 
fingerprinting has through fast group matching28 and other developments. With the results of the present study 
and dictionary matching’s potential benefits, this approach deserves further consideration as an alternative to 
curve fitting for quantitative analysis of DCE-MRI data.

conclusion
This work shows that perfusion modeling can be performed using a dictionary matching approach with markedly 
shorter computation time and with similar accuracy compared to curve fitting. Dictionary matching circumvents 
the common problems encountered with curve fitting, namely dependence on initial guesses and potential to 
select local minima as suboptimal solutions to the fit. However, the algorithm can theoretically select incorrect 
property estimates if they produce a contrast agent enhancement curve that appears superficially similar to the 
curve produced by the correct properties, although this was not explicitly observed in the current study. Despite 
this, the dictionary matching approach may be preferred over curve fitting in certain settings (and vice versa) 
as the two algorithms pose different tradeoffs. While a dual-input single-compartment model for liver imaging 
was chosen for demonstration of the concept, such an approach could be applied to DCE-MRI experiments with 
other perfusion models. The dictionary matching method is an additional promising alternative to curve fitting 
and warrants further study.

Data availability
The simulated and in vivo data used in this study are available from the authors on reasonable request.
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