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Automated data cleaning of 
paediatric anthropometric data 
from longitudinal electronic health 
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a large patient cohort
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‘Big data’ in healthcare encompass measurements collated from multiple sources with various 
degrees of data quality. these data require quality control assessment to optimise quality for clinical 
management and for robust large-scale data analysis in healthcare research. Height and weight data 
represent one of the most abundantly recorded health statistics. the shift to electronic recording of 
anthropometric measurements in electronic healthcare records, has rapidly inflated the number of 
measurements. WHO guidelines inform removal of population-based extreme outliers but an absence 
of tools limits cleaning of longitudinal anthropometric measurements. We developed and optimised 
a protocol for cleaning paediatric height and weight data that incorporates outlier detection using 
robust linear regression methodology using a manually curated set of 6,279 patients’ longitudinal 
measurements. The protocol was then applied to a cohort of 200,000 patient records collected from 
60,000 paediatric patients attending a regional teaching hospital in South England. WHO guidelines 
detected biologically implausible data in <1% of records. Additional error rates of 3% and 0.2% 
for height and weight respectively were detected using the protocol. Inflated error rates for height 
measurements were largely due to small but physiologically implausible decreases in height. Lowest 
error rates were observed when data was measured and digitally recorded by staff routinely required 
to do so. the protocol successfully automates the parsing of implausible and poor quality height and 
weight data from a voluminous longitudinal dataset and standardises the quality assessment of data for 
clinical and research applications.

With the availability of digital electronic health systems, ‘big’ clinical data has become more accessible to the 
research community1,2. The big data era, which includes using data obtained from heterogeneous digital sources, 
has enabled novel opportunities for conducting empirical clinical research. At the same time there are challenges 
using such data for research purposes, including the need to adapt existing and develop new methodologies to 
cope with the scale and complexity of the data3. However, a more fundamental issue for researchers is the require-
ment to undertake data cleaning, as incorrect clinical measurements entered into an electronic health record 
(EHR) will significantly affect the quality of dataset. Data cleaning can be time-consuming and involve multiple 
stages including detailed data analysis to identify error types, data inconsistencies, outlier detection and imple-
ment data transformation where required4,5. Thus, developing automated methods for data cleaning is desirable.

Height and weight are the most commonly recorded anthropometric measures for the assessment of child 
health in both clinical practice and research studies. Longitudinal height measurements give an indication of 
well-being and perturbations may be an indication of nutritional, endocrine, cardiac or other abnormalities that 
should prompt a clinical decision for investigation or intervention. Body mass index (BMI), defined by heights 
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and weights, may be used to establish risks of prevalence of diseases6. In children, longitudinal changes of BMI 
provide insight into predisposition to health problems such as obesity, hypertension, type 2 diabetes and nutri-
tional insufficiency.

World Health Organisation (WHO) guidelines7 can be used to exclude biologically implausible values (BIV) 
from the EHR for childhood height, weight and BMI data, by converting the measurements to standard deviation 
scores (SDS) and using defined parameters to exclude extreme values (e.g. height to age z-score (HAZ) exclusion 
if < −6 or >6). However, there are few studies which have evaluated methods for cleaning periodical longitu-
dinal anthropometric data8. For example, some have identified BIVs for annual longitudinal values where the 
mean changes of BMI values exceed 3SDS or −3SDS and height decrements greater than 1 inch/year, and mean 
increases in height>3SDS9,10. Others10 have suggested removing weight measurements where annual changes 
exceed 22.7 kg or 27.2 kg if the individual was severely obese at baseline, any height decrease and any height 
increase >15 cm a year. These methods were developed for identifying extreme changes in periodical measure-
ments and do not detect less extreme changes and so are not applicable to children where growth is dynamic. 
Neither are they applicable to the big-data scenario where anthropometric measurements are non-periodical. 
More recently the jack-knife residual method, applicable to paediatric patients with ≥4 datapoints, was suggested 
and applied to a paediatric anthropometric dataset for children ≤2 years old11. Although simple to use, it can be 
too strict in defining the range of plausible values hence not allowing more pronounced fluctuations in longitudi-
nal data that are typical in the paediatric clinical setting where an individual can reduce or gain significant weight 
during or after a treatment period12,13.

University Hospital Southampton (UHS) is a large teaching and research hospital serving a population of 
nearly 3.5 to 4 million people in South Hampshire. The Southampton Children’s Hospital of UHS initiated elec-
tronical recording of anthropometric measurements in 2012 and subsequently developed an Electronic Growth 
Chart (EGC) which was rolled out for use across departments in the hospital in 201314. Since then, anthropomet-
ric data on children has been systematically recorded, improving the accuracy of growth data presentation on a 
growth chart and enhancing the experience of sharing growth data by clinicians between paediatric specialities. 
It has also presented an opportunity for research studies to use longitudinal routine patient care anthropomet-
ric data and make correlations between childhood growth and development of disease or efficacy of therapy. 
However, data recorded for routine clinical care by end-users can be prone to typographical or default value 
entry errors often related to time pressure for care delivery. Hence it is necessary that the anthropometric data be 
cleaned and processed before it is used for research purposes.

In this study, we developed an automated protocol for identifying outliers of longitudinal routine paediatric 
height and weight measurements using state-of-the-art outlier detection methods. Concurrently, a subset of UHS 
electronic paediatric height and weight data of patients aged 2–20 years old, the gold-standard dataset manual 
curated for parameter optimisation, were assessed for data quality. We demonstrate how dataset scrutiny can 
identify and target training needs in anthropometric assessment in a teaching hospital.

Materials and methods
Anthropometric data scope and extraction. Electronically recorded height, weight measurements and 
date of birth was extracted for all patients admitted to UHS from 1932–2018 where the patient’s age at date of meas-
urement was between 2–20 years. Data prior to 2008 were paper-based archived data transcribed into the elec-
tronic EPR system since its introduction in UHS. Measurements are recorded to an accuracy of 1 decimal place for 
weight (kg) and height (cm). The occupation and department of the staff members entering the data was also cap-
tured. Measurements of children of age less than 2 years were not considered in this assessment as the absence of 
gestational age data prevented accurate calculation of height for age z-scores (HAZ), weight for age z-scores (WAZ) 
and weight for height z-scores (WHZ). From the raw measurements of height (H, metre) and weight (W, kg),  
BMI was calculated as W/H2 and HAZ, WAZ and WHZ were calculated using the LMS method15.

Data quality indicators. In assessing the quality of the captured anthropometric height and weight meas-
urements, established data quality indicators for children ≥2 years of age were applied: (i) standard deviation 
(SD) of HAZ, WAZ and WHZ16 (ii) Myer’s Index (MI) for height and weight where MI is a measurement of digit 
preference of recorded data17. Myer’s Index calculates the divergence in the frequency of the ending digit in the 
measurements compared with the expected uniform distribution where there is no digit bias. The higher the 
value, the more biased the measurement towards a digit or two in all measurements, reflecting rounding effects.

Conventional data cleaning. The thresholds for normal ranges of HAZ, WAZ and WHZ specified by the 
WHO Child Growth Standards18 were applied for height, weight and BMI measurements. Those satisfying the 
condition of HAZ, WAZ or WHZ being within the [−6,6], [−6,5] and [−5,5] ranges respectively were retained 
for further analysis.

Implausible flagging of sparse data. When longitudinal measurement data were sparse e.g. the number 
of entries per individual was less than four, an implausible increment or decrement flag was applied e.g. gain or 
loss of >25% of weight within one day; gain or loss of >40% of weight within three months; gain or loss of >50% 
of weight within one year; gain of >15% of height within three months; any decrease in height exceeding 1 cm 
were flagged for manual checking.

Outlier flagging method for longitudinal data. For outlier flagging of longitudinal anthropometric 
measurements, robust regressions of the linear regression methodology was adopted19. Robust regressions can 
handle multiple outliers by introducing residual statistics including influence measurements such as Cook’s dis-
tance, DFFITS, DFBETAS20 (see Supplementary for method details). Datapoints with influence statistics exceeding 
suggested thresholds are temporarily removed from the inference and the regression parameters are re-estimated 
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from the remaining data. This results in a regression line that best fits the most reliable data. It is this regression 
line that is used to discriminate outlying datapoints from the entire set of datapoints using the SD fold threshold θ.

Additional checks on height data. In addition to robust regression analysis of the data to detect outli-
ers, height measurements were additionally inspected to flag anomalies such as variation in adult height and/or 
height decrease over time as follow. Final adult height is generally reached at approximately 18 years21, therefore, 
variation >1 cm from the median height measurements of patients older than 18 years flagged an error in data 
recording. Additionally, any decrease in height exceeding 1 cm also prompted a flag to cross check recorded data 
manually. This check was applied regardless of the number of datapoints in any set of measurements.

Details of the overall longitudinal height and weight data outlier flagging protocol is summarised in Box 1.

parameter tuning. Typically, datapoints exceeding 2 times the SD (θ) of any series of measurements are 
nominally flagged as outliers, corresponding to an outlier rate of 5%22. However, for voluminous datasets of 
growth data in children, this parameter may be unnecessarily stringent. The tuning of θ was facilitated by a 
‘gold-standard’ dataset from UHS, manually curated by an endocrinologist (JHD), where each patient had ≥7 
datapoints (Supplementary text). This gold-standard dataset consisted of 6,279 patients with 89,258 weight meas-
urements and 4,396 patients with 55,688 height measurements. Of these, 208 (0.23%) weight and 302 (0.54%) 
measurements were deemed ‘implausible’ by the endocrinologist. Additional height checks identified a further 
191 (0.34%) height measurements failing the adult height check and 1,237 (2.22%) flagged by the height decrease 

Box 1 Summary of final protocol for outlier flagging for longitudinal height and weight 
measurements of a patient

 1. Flag data not satisfying WHO guidelines for heights, weights and BMIs whose SDS values fall beyond 
the ranges [−6,6], [−6,5] and [−5,5] respectively, remain n datapoints

 2. If n < 4: assess the implausible increments/decrements of height and weight measurements:
 i. For weight: for each pair of consecutive measurements, use the following method to flag extreme 

changes as below:

•	 Time span ≤ 1 day: beyond ±25%
•	 Time span ≤ 3 months: beyond ± 40%
•	 Time span ≤ 1 year: beyond ± 50%

 ii. For height

•	 If time span ≤ 3 months, height increase is ≥15%
•	 If height measurement at time point is at least 1 cm smaller than time point, flag data at time 

point.
 3. With the remaining data, where n > =4:

 a. Apply the ordinary least square (OLS) linear regression method of the SDS values as a linear 
function of age (number of variables k = 1)

 b. Calculate influence values: Cook’s distance, dffits, dfbeta for age. Retain data that have Cook’s 
distance <1, |dffits | <2 and | dfbeta_age | <2/ to re-estimate the regression line and obtain the SD 
of the residuals.

 c. Any patient whose SD of the residuals for height or weight larger than 0.47 or 0.76 respectively 
has their whole series of measurements flagged for manual inspection.

 d. Where the SD of the residuals for height or weight is ≤1, flag any individual datapoint with resid-
ual error exceeding θ x SD where θ is 2.9 for weight and 2 for height (as informed by parameter 
tuning).

 e. For height data:

 i. Perform adult height check: for age measurements not flagged in (2c) within the range 18–20 
years, calculate median value for that individual Mh, and flag as outlier any height measure-
ment difference exceeding 1 cm.

 ii. Across all age ranges and for data not already flagged, perform height decrease check. If 
height measurement at time point is at least 1 cm smaller than time point, flag data at time 
point.

 4. If the total number of datapoints flagged (by any step) exceed 40% of the longitudinal data, the whole 
series of longitudinal data is flagged for manual inspection.
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check, totalling 1,730 flagged height measurements (3.11%). This yielded a gold-standard dataset with a defined 
set of ‘true’ errors.

Sensitivity and specificity metrics were evaluated for θ ∈ [1.5,5.5] using the gold standard dataset. Here, a 
true positive (TP) was defined as a datapoint identified as an outlier that was deemed clinically implausible by 
the clinician, a true negative (TN) was a value that was not flagged as an outlier by our method and identified as 
plausible by the clinician, a false positive (FP) was a true plausible value wrongly flagged as an outlier, and a false 
negative (FN) was a truly implausible value not flagged as an outlier by the protocol. Therefore, the positive pre-
dictive value (PPV) is an important metric to consider. Ideally, any given protocol should maximise the number 
of true outliers as a proportion of all data flagged for manual review while maintaining good sensitivity to detect 
all true outliers.

The gold-standard UHS data were used to calculate sensitivity and PPV for θ ∈ [1.5,5.5] (Fig. S4). For both 
height and weight, it was desirable to maintain sensitivity above 0.9 while maximising the PPV. Hence for height, 
the typical value of θ = 2 was selected but for weight measurements, it was observed that increasing θ to 2.9 main-
tained sensitivity above 0.9 but had a dramatic effect on reducing the manual curation of false positive outliers 
(Table 1). These values were used in the final protocol described in Box 1.

The final selected values of θ were applied to gold standard data sets for height and weight respectively. From 
55,688 height measurements, a subset of 4469 measurements (representing 2635 patients) were flagged as out-
liers for manual inspection. Approximately 92% of the data passed checks and could be automatically classified 
as plausible. Of the 8% of flagged measurements, the 1237 (2.2%) due to decreases in height may be excluded 
without further clinical review and only 5.8% of the data may be subjected to further expert review or excluded 
depending on application. Importantly, the protocol failed to flag 36 measurements across 25 patients that the 
clinician subsequently flagged as implausible. This represented 0.06% of possible erroneous measurements that 
would go undiscovered by automated cleaning. Similarly, for weight, 2299 (2.6%) measurements from 1875 
patients were flagged as requiring manual expert review while 97.4% of the data passed automated checks. Only 
nineteen datapoints (0.02%) that were deemed by the clinician as implausible were missed by the protocol.

All the data processing and protocol implementation was performed using the open-source programming 
language Python version 3.723. The ordinary least square method OLS from the Python package statsmodel24 
was used to perform LR. The script for calculating SDS values of anthropometric measurements and outlier 

(a) Contingency table of weight outlier flagging (b) Contingency table of height outlier flagging

Weight
θ = 2.9

Manual curation by clinician Height
θ = 2

Manual curation by 
clinician

Impossible Plausible Impossible Plausible

Flagging by 
protocol

Outlier 189 2,110 2,299 Flagging by 
protocol

Outlier 1,694 2,775 4,469

Plausible 19 86,940 86,959 Plausible 36 51,183 51,219

208 89,050 89,258 1,730 53,958 55,688

Sensitivity = 90.87% Sensitivity = 97.91%

PPV = 8.22% PPV = 37.91%

Table 1. Contingency tables for chosen values of θ for weight and height and their sensitivity and PPV#. #PPV 
is Positive Predicted Value, defined as the proportion of positive results that are true positive, PPV = TP/
(TP + FP).

Figure 1. Percentage of datapoints identified as true errors in the gold standard dataset stratified by year for 
weight and height, weight for height. Outliers were split into three types: height outlier flagging using linear 
regression (LR), height entry error with adult height check and height with height decrease check.
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detection described by the pipeline is available for use from https://github.com/hangphan/peanof/. This includes 
the portable Docker container25 where all dependencies required for running the script were set up and ready to 
be executed on any environment where Docker is made available.

Ethics and information governance. The study was approved by the IG management team of the 
University Hospital of Southampton (UHS). Ethics approval from the Research Ethics Committee and Health 
Research Authority, and informed consent was waived by the internal review board at the R&D Department of 
UHS as this is a combination of an Audit against WHO guidance and Service Evaluation. The anthropometric 
data in UHS were retrospective data and anonymised. All methods used in this study were performed in accord-
ance with the relevant guidelines and regulations.

Results
Data quality of gold-standard longitudinal data. The ‘gold-standard’ UHS height and weight data-
set enabled assessment of true data quality. Chronologically, both height and weight measurements across the 
2008–2018 were stable with an error rate of ~3% for height and 0.2% for weight (Fig. 1). The discrepancy in error 
rates between the two measurements was largely attributable to decreases in height which were deemed physio-
logically impossible.

Outlier rate by occupation was highest in the Pharmacist group (0.27%) followed by Others (0.20%) and 
Dietician (0.16%) for weight. The Pharmacist group recorded the most errors in height as assessed through man-
ual review (2.4%) and using the adult height check (5.7%, Fig. 2a). This likely reflects the pharmacist’s focus on 
estimated weight and not height for prescribing purposes.

By department, the Others group has the highest error rate for weight (0.48%) followed by Dietetics/Speech 
and Language Therapy and Paediatric Neurology (0.16%, Fig. 2b). For height data, the highest rate of data deemed 
implausible though manual review was observed in Dietetics/Speech and Language Therapy (0.63%) followed by 
Paediatric Medicine (0.44%) and Paediatric Oncology (0.40%). Additional height checks saw the highest combined 
error rate in Dietetics/Speech and Language Therapy (2.05%) followed by Paediatric Oncology (1.25%, Fig. 2b).

Application of automated cleaning protocol to the entire UHS paediatric height and weight 
dataset (n = 68,595 patients). UHS data summary and characteristics. The entire cohort contained all 
records for patients aged 2–20 years, dating from 1932 to 31/12/2018. A total of 214,983 weight measurements 
(68,273 patients) and 146,635 height measurements (47,616 patients) were obtained for 68,595 paediatric patients 
in the UHS EPR (Fig. 3a), resulting in 142,643 BMI values (46,479 patients).

The number of records was low prior to 2008 (1932–2008) and increased from 2008, reflecting the gradual 
introduction of EPR system into UHS departments, with a sharp increase in 2014 when the EGC was introduced 
at the end of 2013 (Fig. 3b). The number of weight measurements recorded was about 30% higher than that of 
height during 2014–2018 period. Additional description regarding age group at initial measurement, length of 
follow-up time is presented in Supplementary (Fig. S4a,b).

Patients were grouped by their respective number of longitudinal height and weight measurements. There 
is an excess of patients with a single measurement entry and these represent approximately half of the cohort, 
reflecting paediatric patients with a single hospital visit to departments such as emergency. Patients with ≥7 
entries for height and weight represented ~10% of the cohort but contributed almost half of the entire dataset for 
both height and weight (Fig. 3d,e). These represent the patient population whose ill health may confer growth and 
developmental irregularities requiring frequent monitoring.

Figure 2. Manual outlier curation results of UHS gold standard paediatric height and weight data: (a) 
Percentage of outliers for each of the occupation categories for weight, height using LR, height with adult height 
check, and height with height decrease check. (b) Percentage of outliers for each of the department categories 
for weight, height using LR, height with adult height check, and height with height decrease check.
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Figure 3. UHS age 2–20 years’ height and weight data (1932–2018) summary: (a) Number of patients and 
records of height and weight, broken down by number of datapoints per patients. (b) Total number of height, 
weight and BMI measurements over time from prior to 2008 to 2018 (c) Percentage of data flagged by WHO 
guidelines over time. (d) Number of patients within groups of patients defined by their number of longitudinal 
datapoints for height and weight. (e) Number of height and weight records per group of patients binned by 
number of datapoints per patient.

WAZ HAZ WHZ

DHS RANGE OF SD 1.01–1.49 1.08–2.33 1.01–2.02

PRE-WHO PROCESSING SD 5.29 5.90 15.55

POST-WHO PROCESSING SD 1.45 1.32 1.36

Table 2. Standard deviation of WAZ, HAZ and WHZ of the UHS 2–20 anthropometric measurement data.

Figure 4. One decimal place digit distribution for height and weight measurements, demonstrating the bias in 
recording height and weight measurements, rounding to the precision of kg for weight and the precision of cm 
or 0.5 cm for height. This bias is reflected in the Myers’ index of height and weight measurements.
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Data quality by conventional quality indicators. The number of records failing WHO child growth standard 
guidelines for weight, height and BMI measurements were 1,386 (0.95%) and 814 (0.38%) and 677 (0.47%) 
respectively. The percentage of records excluded based on WHO limits was highest in 2013 at 2.37%, 2.64%, and 
2.71 for weight, height and BMI respectively (Fig. 3c). This coincides with the gradual introduction of EGC into 
various departments across UHS in 2013, reflecting a transient increase in error rate during the transition period 
to the electronic recording of data. A comparison of the five years preceding the transition to electronic data 
recording and the five years following 2013 identified a significant reduction (pweight = 9.97 × 10−23, pheight = 1.05 
× 10−8) in these extreme data recording errors.

The SD of HAZ, WAZ and WHZ was calculated and compared against reported ranges of SD observed in the 
52-country DHS survey16 (Table 2). The SD values prior to exclusion of WHO extreme datapoints fell significantly 
outside the expected ranges. However, after exclusions of these extreme values, the observed SD values for height, 
weight and BMI z-scores fall within the expected limits.

The Myer’s Index (MI) for digit preference of height data (excluding WHO extreme values) is consistent with 
the average observed across 51 countries in the DHS survey (MIUHS = 17.91, MI51_country_average = 17.8, Fig. 4). The 
MI for weight data is higher (MIUHS = 10.69, MI51_country_average = 4.6) suggesting a greater tendency for estimation 
in UHS weight data.

Data quality indicators by occupation and department of entry staff. The quality of the extracted data was also 
scrutinised by staff occupation and department to understand the most likely source of erroneous data and target 
the training in anthropometric assessments.

For 75% of the observed data, the occupation and department of the staff member entering the data was 
available for evaluation. Ninety-three different staff occupations across 96 different departments were noted and 
the ten staff occupations that most frequently entered height and weight measurements are presented in Fig. 5a,b. 
Healthcare assistants most frequently recorded weight and height data (24% and 30% respectively) followed by 
Healthcare support workers, Staff nurses and Consultants.

Application of the WHO flags for extreme values identified a low and consistent level of less than 1% of likely 
data entry error across occupations (Fig. 5c). The most striking peak in this type of error was 7.5% noted in the 
height data entered by pharmacists. However, given pharmacists entered only a very small proportion of the 
overall height data (n = 214 records) this higher error rate reflects a very small number (n = 16) extreme values.

The Paediatric outpatient department contributed most data for weight and height measurements (47% 
and 58% respectively; Fig. 5d,e). The WHO violation rate by department was small and relatively consistent 
across departments. The highest rate identified was 1.2% amongst weight values recorded within the Paediatric 
Endocrinology department (Fig. 5f).

Outlier detection for patients with longitudinal records in UHS dataset. For those with 2–3 height measurements, 
the implausible flagging method identified 655 (2.21%, 607 patients) height decreases >1 cm (Table 3). No height 

Figure 5. UHS data characterisation by occupation and by department of staff entering the data (a) Weight 
records by occupation (b) Height records by occupation (c) Percentage of height and weight data flagged by 
WHO rules by occupation (d) Weight records by department (e) Height records by department (f) Percentage 
of height and weight data flagged by WHO rules by department.
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increases>15% within 3 months were detected. For those with 2–3 weight measurements, the extreme weight 
change check resulted in 119 (0.29%, 114 patients) measurements flagged. For patients with ≥7 datapoints, the 
protocol Section 3c flagged 1,303 weight measurements from 71 patients whose weight data had a large residual 
SD (>0.76) and protocol Section 3d identified 2,573 weight measurements (2,055 patients) as LR outliers.

Similarly, Section 3c of the protocol flagged 699 height measurements (46 patients) as having large SD and 
Section 3d identified 3,412 height measurements (2,581 patients) as LR outliers and the additional adult height 
checks (Section 3e) flagged a further 1,617 datapoints (Table 3).

Discussion
This study presents a bespoke protocol for automated anthropometric data cleaning that has been tested across a 
sizeable dataset captured from a regional teaching hospital in South England. While more than half the patients 
represented within the dataset had only a single measurement recorded, approximately half of the collected data 
are from a small proportion (~10%) of the patients with multiple longitudinal records. This subset is likely to be 
enriched for patient cohorts that are the subject of health research.

The WHO parameters to detect BIVs was a good first pass analysis to detect overtly incorrect data. WHO 
outliers represented <1% of recorded measurements. The discrepancy in data quality indicator before and after 
WHO guideline BIV detection is a strong indication of a small subset of extreme data entry errors (e.g. records of 
1 kg or 100 cm and/or transposition errors in weight and height measurements respectively). It is essential these 
conspicuous errors are automatically flagged and excluded from the data before any model fitting approaches 
are applied. Additionally, the WHO thresholds should be applied with caution in specific clinical settings where 
patients with true clinical data may fall outside these parameters (e.g. growth disorders, morbid obesity) but still 
have BIVs longitudinally.

All protocols for cleaning data are limited when data are sparse. We have developed a robust regression frame-
work for automatic identification of erroneous data that performs most reliably across data series with at least 
seven measurements. Application of the protocol automatically classifies the majority of records as plausible 
values, leaving a small proportion of flagged data that can be either discarded or manually reviewed. The protocol 
is computationally cheap to implement and provides assurance of minimal and consistent quality standard for 
downstream analysis. The availability of the code in Github and Docker communities allows for the protocol can 
be adopted easily in different settings. The protocol is also modifiable, particularly in the arbitrary thresholds 
chosen for height and weight checks to reflect less extreme changes in non-clinical settings.

Encouragingly, overall error rates in paediatric data were low, with transient fluxes in data quality observed 
over periods where new systems were implemented. A higher error rate was noted in measurements of height 
compared to weight, largely due to very small decreases in height likely resultant from inconsistencies in measur-
ing techniques, e.g. shoes on or off. The error profile by occupation demonstrated that staff routinely required to 
measure and enter the data tended to record better quality measurements.

The application of the protocol allows an assessment and rapid feedback regarding data quality in EHR sys-
tems which is valuable for identifying and targeting training needs and data entry practice. This will further 
contribute to the overall impact of improving the quality of data available for longitudinal clinical assessment and 
patient management as well as enhancing input data quality for large-scale digital healthcare research.

Data availability
The data that support the findings of this study are available from UHS, but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the authors upon reasonable request and with permission of UHS.
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Patient group Filter Weight Height

All WHO 1,386 (n = 864) 814 (n = 527)

2–3 Extreme change 119 (n = 114) 655 (n = 607)

4–6 OLS robust, few remain 680 (n = 170) 292 (n = 73)

Large SD 114 (n = 24) 296 (n = 61)

LR 3,626 
(n = 3,531)

3,029 
(n = 2,987)

Adult height N/A 114 (n = 77)

Height decrease N/A 357 (n = 365)

≥7 OLS robust, few remain 0 0

Large SD 1,303 (n = 71) 699 (n = 46)

LR 2,573 
(n = 2,055)

3,412 
(n = 2,581)

Adult height N/A 222 (n = 121)

Height decrease N/A 1,395 (n = 674)

Table 3. Number of flagged implausible values by the application of the final outlier flagging protocol to the 
UHS 2–20 data set from 1932 to 31/12/2018.
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