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estimating Method of Maximum 
Infiltration Depth and Soil Water 
Supply
Zhongsheng Guo

The maximum infiltration depth and soil water supply must be evaluated in order to estimate the 
soil water resource use limit by plants and soil water carrying capacity for vegetation, and realize the 
sustainable use of soil water resources. However, there is no non-destructive method to estimate 
maximum infiltration depth and soil water supply. We conducted a simulated infiltration experiment 
and a long-term fixed-position investigation in situ in artificial Caragana shrubland at the Guyuan Eco-
experimental Station in the semiarid Loess Plateau. The results showed that infiltration depth for one 
rain event was equal to the distance from the surface to the crossover point between the two soil water 
distribution curves with soil depth before a rain event and after the rain event. The soil water supply 
for one rainfall event was the difference in the soil water resources in the soil layers from maximum 
infiltration depth that occurred after a long period, and could be estimated by a series of two-curve 
methods. A maximum infiltration depth of 2.9 m occurred in the artificial Caragana shrubland. The 
results provide a foundation for controlling soil degradation and sustainable use of soil water resources 
in water-limited regions.

Infiltration is a general hydrological phenomenon of water movement in porous media and the hydrological 
phenomenon. Water infiltration is highly dependent on two soil factors: soil water conductivity and soil absorp-
tivity1,2. Rainfall from the canopy can infiltrate into the soil, known as the infiltration process, or run off along 
the slope when rainfall intensity exceeds the infiltration rate3,4. Some of the water that infiltrates into soil can be 
stored in soil for plants to utilize or passes through the soil layer and replenishes groundwater.

The Loess Plateau in northern China is a unique geographical unit. Soil layers formed on the Loess Plateau 
are in the depth range of 30–80 m from the surface4,5, and the water table is deep6. Irrigation is not practiced in 
most of the region and so rainwater is the primary source of soil water for artificial woodland or shrubland in the 
region4.

Soil erosion is a worldwide land degradation process and a serious threat to sustainability of agriculture7. 
China is among the countries that suffer from the most serious soil erosion. For example, more than 1.6 billion 
tons of sediment from the Loess Plateau are dumped into the Yellow River every year8.

Vegetation measures and soil management practices are of vital importance in preventing soil erosion in 
agricultural lands7. Over the last 60 years, large areas have been planted with trees and grasses to reduce runoff 
and soil loss because of their effectiveness. As a result, sediment runoff has reduced from 1.6 billion ton per year 
in the 1970s to 0.31 billion tonnes per year in recent years and runoff has halved on the Loess Plateau. However, 
the soil water conditions for plants in most of this region have deteriorated9–12. As a consequence, soil becomes 
desiccated, leading to soil degradation, vegetation decline and eventually desertification in the artificial peren-
nial grassland and woodland areas of the Loess Plateau10–12. This, in turn, affects soil quality, artificial vegetation 
growth and its ecological benefits.

The plant–water relationship can be improved by reducing stand density based on the soil water-carrying 
capacity for vegetation (SWCCV) when the soil water resources within the maximum infiltration depth (MID) 
equal the soil water resource use limit by plants (SWRULP). The SWRULP is defined as the soil water resources 
in the MID when the soil water content within the MID equals the wilting point of an indicator plant13. The 
SWCCV is the maximum amount of indicator plants in a plant population that soil water resources of a unit area 
can sustain and allow to grow healthily in a given period and place12. An indicator plant is the constructive species 
for natural vegetation or principal or purpose species of trees or grasses of a non-native plantation4. The dynamic 
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relationship between plant growth and soil moisture in the root zone has become a key issue in the study of plant 
ecological water requirements14.

Different types of instruments are used to measure infiltration rate. The most common is the double-ring infil-
trometer15, which was used by Moroke to measure the infiltration rate under different tillage systems in eastern 
Botswana and other field conditions16,17. Another device is the flume infiltrometer18. Kato measured infiltration 
rates according to simulated rainfall; however, it is difficult to determine MID using this method19.

Mathematical models are among the most useful tools for studying infiltration. In addition to the infiltration 
models20, Thony studied the relationship between electrical potential gradients and soil water flux under natural 
fallow. Measuring soil moisture diffusivity with the horizontal soil column method21, Zhou developed a math-
ematical model of infiltration22. These mathematical models can be used to evaluate the cumulative infiltration 
amount (soil water supply)23.

In view of the importance of infiltration in soil water management, infiltration depth is determined by the 
wet–dry boundary identified by digging in the soil24. However, this method is unsuitable for continuous meas-
uring in undisturbed soil such as forests. Li et al. studied the changes of wetting front in disturbed soil over time 
in the process of infiltration using a large lysimeter with a long access pipe25. In addition, Li & Shao analyzed the 
influences of vegetation cover, rainfall intensity and soil texture on infiltration rate26. Wang & Li determined the 
MID using an oven drying method27. Esteves et al. reported the soil moisture profile at the center of a runoff plot 
to illustrate the change of infiltration depth with time and compared the observed versus computed values of 
infiltration depth at the neutron probe access tube28; Li reported MIDs in the range of 1–3 m in woodlands of the 
Loess Plateau10.

In recent years, several laboratory experiments on infiltration have been reported, but very little information is 
available on the method of estimating the MID and soil water supply in situ in a nondestructive way in the Loess 
Plateau region24,29,30. In addition, the measurement methods developed in the laboratory cannot be used in field 
conditions, and disturbed soil not adequately representing undisturbed soil3,31,32. Esteves et al. and Oyonarte et al. 
estimated infiltration depth using a neutron probe to measure the soil water change with soil depth28,33. There is 
no universally accepted method for estimating infiltration depth and soil water supply of natural soil. Therefore, 
it is necessary to develop a new method for estimating infiltration depth and soil water supply under field con-
ditions to better understand the relationship between plant growth and soil water and to determine soil water 
resources, SWRULP and SWCCV4. This study presents the two-curve method for estimating infiltration depth 
and soil water supply of natural soil.

Material and Methods
Site description. This study was conducted at the Shanghuang Eco-experiment Station operated by the 
Institute of Soil and Water Conservation, Chinese Academy of Sciences, located in the semiarid region of the 
Loess Plateau (35°59′–36°02′N, 106°26′–106°30′E) in Guyuan, Ningxia Hui Autonomous Region34, see Fig. 1. The 
altitude ranges from 1534–1824 m. Precipitation is scarce during January–March, and rainfall for June–September 
accounts for more than 70% of the average annual total precipitation. Mean annual rainfall during 1983–2001 was 
415.6 mm. The frost-free period is 152 days. The soil is a Huangmian soil, which is mainly loamy loess35.

Caragana korshinskii Kom. has been widely planted in this region to control both desertification and soil ero-
sion12. The experimental field is located in 16-year-old Caragana shrubland in the middle of the Heici Mountains, 
with a slope gradient range of 0–15° in the Shanghuang Eco-experiment Station. The main plant species are Stipa 
bungeana Trin., Heteropappus attaicus (Wild) Novpkr.and so on.

Variables and determination methods. The experiment included a long-term, fixed-position and a sim-
ulated rainfall experiment in artificial Caragana shrubland.

Precipitation was measured with standard rain gauges at the study site, which is approximately 50 m from the 
station. The soil moisture content, plant root distribution and other plant growth parameters were determined.

The long-term, fixed-position experimental plot was located on a gentle slope facing southeast with a gradient 
of approximately 8°. The west side of runoff plot is uphill. Three sides of the plots were bordered by cement boards 
of 50 cm in height. A pit (1 m × 1 m × 4 m deep) was dug nearby the experimental site for sampling purposes. 
A hole was dug around the base of a Caragana shrub and the root distribution investigated12. Undisturbed and 

Figure 1. The location of the study site on the loess plateau of China sowed in 2002.
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disturbed soil were sampled from depths of 0–5, 20–25, 40–45, 80–85, 120–125, 160–165, 200–205, 240–245, 
280–285, 320–325, 360–365 and 390–395 cm, respectively. The two core samples at every soil depth were collected 
with cutting rings for measuring soil bulk density, capillary porosity and non-capillary porosity. Bulk density 
was determined by oven drying cores at 105 °C. Total porosity was calculated using 1 − bulk weight/soil particle 
density, assuming a soil particle density of 2.65 g/cm3,36. Disturbed soil samples were collected for determination 
of soil structure. Soil particle size was measured by Mastersizer 2000 laser particle analyzer36. Soil water contents 
at different soil suctions were determined by a high-speed refrigerated centrifuge (himac CR21G, Koki Holdings 
Co., Ltd., Japen) to evaluate wilting coefficient3.

Rain gauges were placed in the middle of the experimental site. In the Caragana shrubland with different 
Caragana densities of 87, 71, 51, 32 or 16 bushes per 100 m2, ten 100 m2 (5 m× 20 m) plots were prepared with 
20-m sides constructed down the slope. Two 4-m long aluminum access tubes spaced 2 m apart were placed 
in the middle of each experimental plot. A neutron probe (CNC503A (DR), Beijing Nuclear Instrument Co., 
China) was used to monitor the field volumetric soil water content (VSWC) because of its high precision37,38. 
Before measuring VSWC, the neutron probe was calibrated for the study soil using standardmethods12,39,40. 
The calibration equation for this soil was y = 55.76x + 1.89, where y is VSWC and x is the ratio of the neutron 
count in the soil to the standard count32. The measuring depth ranges were 0–400 cm (2002–2006) and 0–860 cm 
(2011–2013), and measurements were conducted with 15-day intervals and 20-cm depth intervals. The VSWC 
obtained for each measuring depth was considered representative for the soil layer that included the measuring 
point ±10 cm depth, apart from that for the 5-cm depth, which was taken to represent the upper 10 cm of soil. 
The measurements included regular and irregular measurements: regular measurements were conducted in the 
growing season from mid-April to November for 2002 and to October for 2003–2006, and throughout the year 
for 2011–2014; irregular measurements were taken before and after each rainfall event.

The simulation experiment was conducted in nearby regions of the study site in the Caragana shrubland 
with a planting density of 87 shrubs per 100 m2 on 15 April 2002. A bucket of height 110 cm and diameter 80 cm 
was placed on the upper side of the slope, and the bucket was filled with water. The author used a representative 
Caragana shrub as a sample with mean height and crown width, and cut it at the base prior to the experiment. 
Nine aluminum access tubes were placed around the sample: one in the center near the Caragana stump after 
cutting the canopy and eight were installed at 50 and 100 cm away from the center in four directions because the 
planting density of caragana shrubs was approximately 100 cm × 100 cm. The experimental plot was located in 
the center of the simulation plot in order to express the mean MID. A soil ridge of 30 cm in diameter and 10 cm 
in height was created around the sample to prevent water flowing out from the infiltration area during the exper-
iment. Water was transferred by a siphon of inner diameter of 4.7 mm from the bucket to the infiltration area and 
keep a thin water layer of 0.5–1.0 cm in the infiltration area. The rain record showed that the longest continuous 
rainfall was 5 days, the experiment ran for 8 days, commencing at 13:20 on 15 April and ending at 16:20 on 23 
April 2002. We use subscript i to indicate measuring time. The measurements of VSWC with soil depth were 
made at time ti: ti = 0 before the infiltration experiment and 1, 19, 26, 49, 74, 98, 122, 145 and 192 h after the 
simulated rainfall event.

Statistical analysis. Soil water infiltration depth for different time intervals and soil water supply can be 
determined by analyzing neighboring soil moisture distribution curves with soil depth and soil water storage 
at the beginning and the end of a period. First, MID was analyzed in the Caragana shrubland with a Caragana 
density of 87 bushes per 100 m2, and then the effect of plant density on MID was analyzed. The significance of the 
soil water content measured in two tubes in the same plot on VSWC was analyzed using ANOVA with SPSS 13.0 
software. Sample size is 28, which is soil water data measured in the 2002 and 2003.The p value of tube is 0.090, 
more than 0.05, and p value of the other factor variable are all 0, less than 0.05, which shows that the difference 
is not significant between tubes (two positions toward the sample shrub), however, soil water varies significantly 
among different densities, years and regions respectively. The difference of soil water content was not significant 
between two pipe positions because they are duplicate at the same soil depth and plot in the same year, and all 
other factors (i.e. plant density, year and soil depths) showed significant effects13. We used the average of data 
for the two pipes in the same plot or two core samples to express VSWC at the same soil depth and soil suction. 
Regression analysis was used to determine the relationships between VSWC and moisture suction using the least 
squares method. Data were transformed when necessary.

Results
Two-curve method for estimating infiltration depth. The start and end of the infiltration process 
results in two respective soil water distribution curves for the soil profile. The changes in soil moisture content 
with time and depth during the simulated rainfall event are shown in Fig. 2.

Antecedent soil moisture was high in the 0–170 cm soil layer and low in the 170–390 cm layer in the shrub-
land. As infiltration progressed, a wetting front appeared and gradually deepened with time.

The VSWC in the deep soil layer immediately below the wetting front increased, suggesting that VSWC and 
infiltration depth increased with time, similar to results of Li et al.25. The soil water infiltration depth can be 
determined by the two-curve method using the soil moisture distribution curves at the beginning and the end of 
a period. As infiltration continued, the cumulative dynamic infiltration depth developed. The cumulative infil-
tration depths at different times after infiltration were 40 cm after 1 h, 80 cm after 19 h, 100 cm after 26 h, 120 cm 
after 74 h, 140 cm after 169 h and 160 cm after 192 h (Fig. 2). The maximum cumulative infiltration depth for the 
simulated experiment was 160 cm after 192 h. Thus, the MID was 170 cm.

Two-curve method for estimating soil water supply. During infiltration, the water infiltrating into 
the soil surface (It) can be partitioned into the increase in soil water storage of a unit volume of soil (St), which 
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is equal to soil water supply minus soil water evaporation; and the difference between inflow (F1) and outflow of 
downslope interflow (F2) in the unit volume of soil (Fs), which can be expressed as follows:

= +I S F (1)t t s

Where, St can be expressed as follows:

∫ ∫θ θ= −S x t dx x dx( , ) ( , 0) (2)t
l l

0 0

Where, the upper limit of the integral is the infiltration depth l for the rain event, and

= –F F F (3)s 2 1

The difference in outflow and inflow of downslope interflow in a unit volume of soil is very small and can 
be ignored because the soil was very porous, vertical structure was homogeneous, there was no less permeable 
soil layer in the profile, the slope was gentle and the VSWC was smaller than saturated water content during 
infiltration.

The soil water supply (mm) can be determined simply using the following formula:

x t dx x dxS ( , ) ( , 0) W W (4)t
l l

0 0
2 1∫ ∫θ θ= − = −

where, St is in mm. During the infiltration experiment, water infiltrated into the soil from the surface and redis-
tributed in the unsaturated zone. Using the data on the variation of soil moisture with depth and time in the soil 
profile, we determined the soil infiltration depths and soil water supply per rainfall event. Because the soil mois-
ture profile distribution and its change with depth before and after a rainfall event are influenced by many factors, 
it is difficult to describe them using a simple formula in actual conditions. The soil water supply at a given time 
of the infiltration process can be considered as the difference between soil water storage in the infiltration depth 
after (W2) and before a given time (W1) (Fig. 3).

Two-curve method for determining MID. The MID differed for the various distances in all directions. 
The maximum simulated infiltration depths were 130 cm at 50 and 100 cm in the east direction, at 50 cm in the 
south and at 50 cm in the west. The radius of the infiltration area was 15 cm, which was smaller than the 50 cm 
from the center of the simulated infiltration area and the loamy loess soil was porous, infiltration was mainly 
vertical and no interflow occurred in the soil profile.

No significant difference was found between data measured in the two tubes of the same plot. It was then 
possible to evaluate the infiltration depth and soil water supply for a rain event based on the two-curve method. 

Figure 2. The dynamics of soil moisture with depth at different time (t) after infiltration experiment (I) at the 
center of infiltrating plot in the soil profile of Caragana shrubland. VSWC is volumetric soil water content.

Figure 3. Changes in soil water contents with depth before and 1 hour after the infiltration experiment.
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One curve was the change of VSWC with depth before a rain event and the other was for after the rain event at 
the same location.

The weather forecast predicted a rainfall event on 20 June 2002. Thus, the distribution of soil moisture with 
depth before the rain event was monitored at 10 a.m. on 21 June 2002 and the distribution after the rain event was 
measured at 17:00 on 21 June 2002 (Fig. 4). The precipitation was 49.5 mm and a crossover point occurred at soil 
depth of 60 cm, representing an infiltration depth of 70 cm and soil water supply of 42.4 mm.

Rainfall is a discrete process and a rainfall event is the time interval between the occurrences of a period 
equal or larger in duration to a specific threshold: the minimum interval time (MIT)41. The MIT was 30 min in 
the study. After a rainfall event, soil water redistributes under the effect of gravity, soil matric suction and soil 
porosity.

The dynamics of soil moisture varied with time before and after three rainfall events during 20–30 June 2002 
and the soil water moved down and the infiltration depth increased (Fig. 5). A higher water soil layer (HWSL1) 
was visible, which formed in the soil profile after the heavier rainfall event.

There were two forms of soil water movement in this HWSL1: moving to the rhizosphere or to surface soil 
due to plant transpiration and soil evaporation; and downward movement next to the wetting front due to matric 
suction or capillary head41, known as cumulative infiltration41,42 or reinfiltration41. As time elapsed, the cumula-
tive dynamic infiltration depth developed. After two weeks, another higher water soil layer (HWSL2), in which 
the VSWC was lower than that for HWSL1, developed in a deeper location, and cumulative infiltration depth 
increased gradually with time. After analyzing the data collected during 2002–2006 and 2011–2014, the MID of 
soil water appeared in 2004, following the wet year of 2003.

The precipitation at the experiment station in 2003 was 623.3 mm, which was close to the maximum rainfall 
record of 634.7 mm in 1984. The daily change of rainfall from the beginning of year 2003 to the end of 2004 is 
shown in Fig. 6. There were continuous heavy rainfall events from late June to late August 2003 at the experiment 
site: 55.0 mm on 1, August, 45.7 mm on 25 August and 56.4 mm on 26 August 2003, respectively.

Soil water supply was lower than water evapotranspiration in June 2003, which resulted in a soil water deficit 
in Caragana shrubland with a density of 87 shrubs per 100 m2. Due to the effect of soil drought, Caragana leaves 
fell early in August and September 2003, and soil evaporation and plant root water uptake dropped sharply; the 
wetting front kept moving downward in the microenvironment due to the water potential gradient between the 
higher water soil layer at the wetting front and the dry soil layer below and next to the wetting front (Fig. 6). 
Finally, the cumulative infiltration depth increased gradually.

By 11 November 2003, the MID in 2003 was 210 cm. By 1 April 2004, the MID was 250 cm. After a period of 
fluctuation, the wetting front moved to 270 cm on 13 May 2004, and the VSWC at the wetting front fell below 
9%. Although soil moisture at the wetting front was quite low and near the wilting coefficient, after one and a 
half months, the wetting front continued to slowly move down, and the maximum cumulative infiltration depth 
reached 290 cm by 1 August 2004. This implies that on a larger time scale, the maximum cumulative infiltration 

Figure 4. Changes in volumetric soil water content (VSWC) with soil depth before a rain event and after the 
rain event on 20 and 21 June 2002 in the soil under Caragana shrubland.

Figure 5. Changes in infiltration depths with time after three rainfall events: 49.5 mm on 20–21, 2.2 mm on 22 
and 2.1 mm on 27 June, 2002 in Caragana shrubland. The minimum interval time of a rainfall event is 30 min. 
VSWC is volumetric soil water content.

https://doi.org/10.1038/s41598-020-66859-0


6Scientific RepoRtS |         (2020) 10:9726  | https://doi.org/10.1038/s41598-020-66859-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

depth formed. During the experiment, the MID appeared in the year following the wettest year even though rain-
fall in 2004 was only 328.3 mm, which is far lower than the average rainfall of 415.6 mm in the region.

The MID differed according to density of Caragana shrubland, being 250, 270 and 290 cm for densities of 16 
and 32, 51 and 71, and 87 shrubs per 100 m2, respectively. This suggests that density influenced the MID by reduc-
ing canopy interception and soil evaporation.

The change in soil infiltration depth and soil water supply with precipitation. The relationship 
between the infiltration depth or soil water supply for different rainfall events and precipitation in the experi-
mental area of Caragana shrubland with a density of 87 shrubs per 100 m2 is shown in Table 1. With increasing 
precipitation, the infiltration depth for one rain event and soil water supply subsequently increased. Regression 
analysis showed that the relationships between infiltration depth, soil water supply and precipitation in artificial 
Caragana shrubland could be expressed as:

= . + . = .ID 0 7098P 32 454, R 0 9919 (5)2

= . + . = .SWS 0 6984P 2 1336, R 0 9919 (6)2

Where, ID is infiltration depth for one rain event (cm), SWS is soil water supply (mm) and P is precipitation 
(mm). The relationship will change with soil, vegetation type and region.

Figure 6. Daily change of precipitation during 2003–2004 (Figure above) and the Changes in soil infiltration 
depths with time in the period from 30 Jun 2003 to 1 August 2004 under artificial Caragana brush (Figure 
below).

Date
Precipitation 
(mm)

Infiltration 
depth (cm)

Soil water 
supply (mm)

29 June 2003 19.4 50 16.9

15 July 2003 28.4 50 12.8

5–6 May 2003 29.6 50 26.1

20–21 June 2002 49.5 70 42.4

21–26 August 2003 137.6 130 97.2

Table 1. Infiltration depth and soil water supply under different rainfalls.
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Discussion
The results measured in the laboratory cannot be applied to field conditions3,31,32. The flume infiltrometer and 
simulated rainfall cannot be used to measure soil infiltration depth. Electrode measurements can be used to 
measure water circulation in the soil in terms of direction and the amount of flow at different depths in the soil 
profile21. It is difficult to determine MID for simulated rainfall. Determining MID by the oven drying method is 
difficult to estimate the infiltration depth.

In Huangmian soil, the downslope interflow could be ignored because the soil vertical structure was almost 
homogeneous, there was no impermeable soil layer in the profile, the VSWC was less than saturated water content 
when infiltrating, the slope was gentle and the difference between outflow and inflow of downslope interflow in 
a unit volume of soil was less than the error range. In a long-term study, we should determine the start time to 
measure soil water after the rainfall event because it influences the soil water supply and infiltration depth for 
this event. If the difference in outflow and inflow of downslope interflow in a unit volume of soil exceeded the 
error range, it could not be ignored, and soil water supply per rainfall event was added to the difference between 
outflow and inflow of downslope interflow. The MID is the deepest point of cumulative infiltration depth in a 
long-term. This method is more suitable for use in deeper soils, such as most soils of the Loess Plateau. Reducing 
the measurement depth intervals from 20 to 10 or 5 cm, thus reducing maximum error from 20 to 10 or 5 cm, or 
using a sensor to measure the VSWC at different soil depth, would improve measurement precision.

The maximum cumulative infiltration depth of the simulated experiment was 170 cm and smaller than 290 cm. 
The maximum cumulative infiltration depth of 290 cm was within the range of 100–300 cm10, which approved 
that the estimating method is right.

Under natural conditions, the two-curve method also can be used to determine the use depth of soil water and 
soil water consumption by plants in a given period.

Conclusions
Infiltration depth and soil water supply for one rain event could be estimated by the two-curve method, and 
MID could be estimated by a series of two-curve methods. The infiltration depth for one rain event was equal 
to the distance from the surface to the crossover point between the two soil water distribution curves with soil 
depth before a rain event and after the rain event. The soil water supply for one rainfall event was the difference 
of the soil water resources in the soil layers of the infiltration depth before and after the rain event, and maximum 
infiltration depth that occurred after a long period, and could be estimated by a series of two-curve methods. 
A maximum infiltration depth of 2.9 m occurred in the artificial Caragana shrubland and appeared in the year 
following the wettest year. The relationship between infiltration depth or soil water supply and the precipitation 
outside of the artificial Caragana shrubland can be expressed in a linear equation. Plant density influenced both 
MID and soil water supply. This discovery is very important for estimating SWRULP and SWCCV and regulating 
the relationship between soil water and plant growth.
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