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Stable solution of induced 
modulation instability
Jingxin Guan, Zhanmei Ren & Qi Guo✉

In this paper,we discussed the nonlinear evolution of modulation instability and the steady-state 
process of induced modulation instability in sine-oscillatory response nonlocal nonlinear media. With 
plane wave plus perturbation as initial conditions, we simulated the long-term evolution of modulation 
instability in the nonlocal nonlinear Schrodinger equation with sine-oscillatory response numerically. 
For the input of modulated wave, the approximate analytical solution of the stable solution of the 
equation is obtained under the assumption that only the fundamental wave and the first harmonic wave 
are present. For the input of modulated wave with arbitrary harmonic waves, we obtained the exact 
numerical solution of the stable solution of the induced modulation instability.

Modulation instability (MI) is considered as an important problem in nonlinear physics. A series of studies on MI 
have been carried out since 1960s, such as fluids1, plasma2, nonlinear optics3–6, among others. MI signifies the expo-
nential growth of a weak perturbation of the amplitude of the wave as it propagates. The gain leads to amplification 
of sidebands, which breaks up the otherwise uniform wave front and generates fine localized structures. MI means 
the energy exchange between waves at different frequencies in essence, especially referring to the energy exchange 
between plane wave and perturbation at high-order harmonics6. The energy of plane wave is transformed into that 
of perturbation at high-order harmonics. Therefore, perturbation is amplified to lead to the generation of localized 
structures on plane wave during transmission. Theories have validated that perturbation can only trigger MI in a 
specific frequency range3,4. Reported was the first experimental observation of the modulational instability using 
single-mode fibers5. In nonlinear Kerr media, bright solitons can survive within the frequency range in which MI is 
generated; while dark soliton exist in the frequency range in which MI does not occur4,7,8. On the other hand, MI of 
a nonlinear system leads to the growth of amplitude of modulated wave when the modulated frequency of the input 
signals of the modulated wave within the frequency range in which MI is generated. The process is called induced 
modulation instability3,9,10. Hasegawa first proposed a theoretical scheme of generating ultra-high-rate pulse trains 
by utilizing induced modulation instability in fibers3, which has been experimentally verified by Tai et al.10.

A majority of researches on MI focus on discussing the linear process of MI during short-term transmission, 
that is processing the condition under small perturbation by using linear approximation method while ignoring 
the perturbation of high-order harmonics. However, the increment of perturbation is not much lower than the 
amplitude of plane wave after optical field evolves for a long term, so linear approximation method is not applica-
ble. It is necessary to come up with new methods to discuss the nonlinear process when the increment of pertur-
bation is not small after perturbation evolving for a long term. Beeckman first explored the nonlinear process of 
induced modulation instability in nonlocal nonlinear Kerr media during long-term evolution by using analytical 
and numerical methods11. Beeckman mainly discussed the nonlinear process of induced modulation instability 
in Kerr media with Gaussian response function12–16 and exponent response function17–19 and found that the evo-
lution of optical fields exhibited quasiperiodicity in the process.

Sine-oscillatory response function is also a common one apart from Gaussian and exponent response func-
tions of nonlocal nonlinear Kerr media, which was first put forward by Nikolov during the discussion of quad-
ratic soliton20. Recently, researches have shown that it is feasible to attain a sine-oscillatory response function 
when the boundary of the system satisfies specific conditions in a bounded system21. Linear analysis has been 
carried out on MI in nonlocal nonlinear Kerr media with sine-oscillatory response6. In this paper, we discuss the 
long-term (nonlinear) evolution of the optical field under MI in nonlocal nonlinear Schrodinger equation with 
sine-oscillatory response through numerical method, and the characteristics of the evolution was also discussed. 
The stable solutions (approximate analytical solution and exact numerical solution) under induced modulation 
instability of nonlocal nonlinear Schrodinger equation with sine-oscillatory response was also found and the 
relationship between the beamwidth in the stable solution and two degrees of freedom (DOF) in the system was 
surveyed.
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Nonlinear evolutionary process of MI
The evolution of the linearly polarized electric field transmitted along z-axis in 1 + 1 dimensional media with 
sine-oscillatory response satisfies nonlocal nonlinear Schrödinger equation6,21–23
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where u(x, z) is the dimensionless slowly-varying complex amplitude of the optical field, x and z are, respectively, 
the dimensionless transverse coordinate and the dimensionless evolution coordinate, and the sine-oscillatory 
response function is expressed as follows20,21
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with wm being the characteristic length of the nonlinear response. Mathematically, the z coordinate stand for time 
in equation above24,25, but it is, physically, the longitudinal space (beam-propagation direction) coordinate for the 
problem of the optical-beam-propagation26–28.

Previous research has been conducted on MI in nonlocal nonlinear Kerr media with sine-oscillatory response 
and mainly discusses the linear process of MI6. However, linear approximation method is not suitable owing 
to MI has been nonlinear when the optical field undergoes long-term evolution and the growing increment of 
perturbation cannot be ignored. Therefore, the nonlinear process of MI during long-term evolution would be 
discussed by employing numerical method. By taking infinite plane wave with perturbation
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−u x z k x( , ) 1 10 cos( ), (3)z x0

4

as the initial input of Eq. (1), where the first term, the second term and kx represent plane wave, perturbation and 
frequency of perturbation, respectively.

According to the previous research result of linear analysis on MI, it can be seen that the MI in the system 
described by Eq. (1) appears in the range of w k I w1 (4 1/4) 1/2m x m
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2 1/2< < − +  (where I0 denotes the intensity 
of plane wave)6. The amplitude of the perturbation will grow in the exponential form egz in the initial evolution 
stage when the frequency of the perturbation is within the range, where g refers to the linear gain coefficient of 
perturbation. At different frequencies, g  is expressed as
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Moreover, g is infinite under =k w1/x m in the range in which MI occurs to the system, whose corresponding 
frequency is the singular point in the range; the corresponding frequency at =g 0 is the cutoff point in the range 
in MI happens. It can be seen from Eq. (4) that a perturbation whose frequency is closer to the singular point 
shows a larger linear gain coefficient in Kerr media with sine-oscillatory response; by contrast, a perturbation 
whose frequency is closer to the cutoff frequency exhibits a lower linear gain coefficient.

MI appears in the range of < < .k1 1 61x  at =w 1m  and =I 10 ; =k 1x  is the singular point in the range in 
which MI occurs, at which linear gain coefficient is infinite; and = .k 1 61x  is the cutoff point in the range. By 
taking Eq. (3) as initial condition, the evolutionary process of the optical field under MI in media was simulated 
numerically, as shown in Fig. 1. In Fig. 1(a), it can be observed that the amplitude of perturbation exponentially 
grew in the short-term evolutionary process of the optical field, which validated the result of linear analysis on 
MI. However, it was impossible for perturbation to infinitely constantly increase. Linear approximation method 
was not applicable any more when the increment of perturbation grew to a point that cannot be ignored with the 
increase of evolution distance. It can be found from Fig. 1(b) that after growing in the initial evolution stage, per-
turbation started to attenuate and then evolved in a periodic-like oscillation form.

Figure 1.  Simulated results in the evolutionary process of the optical field based on Eq. (1) with input condition 
(3) when =w 1m , = .k 1 5x : (a) = .z 12 6; (b) = .z 62 8.
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A comparison was made between the analytical result in the evolutionary process of the optical field treated through 
linear approximation method and numerically simulated result without linear processing, as shown in Fig. 2. The solid 
and imaginary lines in the figure separately represent the analytical results and simulated results when inputting per-
turbation of different frequency. Linear approximation method was still applicable when perturbation was small in 
the short-term evolution of the optical field. In this case, the curve of intensity obtained through linear processing was 
favorably consistent with that attained through numerical simulation; linear approximation method was not appli-
cable after the increment of perturbation grew to a large scale in the long-term evolution. Therefore, the evolution 
trend of the optical field obtained through linear approximation method gradually deviated from the simulated result. 
Additionally, it can be seen from Fig. 2 that the perturbation whose frequency was closer to the singular point exhibited 
faster increasing amplitude, more quickly reached the first peak and showed a larger peak; by contrast, the perturbation 
whose frequency was farther away from the singular point presented slower growth of the amplitude, reached the first 
peak later and attained a lower peak. It can be also seen in the Fig. 2 that the optical field was more irregularly evolved 
under the perturbation whose frequency was closer to the singular point.

Previous research indicated that perturbations would increase when their frequency fell in the range in which 
MI appeared; however, perturbations would be steadily transmitted and did not grow when their frequency was 
not found in the range6. It can be attained through numerical calculation that perturbations did not rise in the 
initial stage of short-term evolution of optical field when the frequency of perturbations was beyond the above 
range (Fig. 3(a,c)). In this case, optical field evolved in an oscillation form. However, high-harmonic generations 
(e.g. second- and third-harmonic generations) of perturbations were generated in the system after optical field 
was subjected to a long-term evolution. MI was also found when high-harmonic generation of perturbations 
appeared in the range of the system in which MI occurred (Fig. 3(b,d)). Figure 3(b,d) show MI separately induced 
by second- and third-harmonic generations of perturbations. On this basis, it can be seen that MI was also gen-
erated when high-harmonic generations of perturbations were found within the range in which MI appeared.

Stable solution of induced modulation instability
Approximate analytical solution of stable solution.  To discuss the stable solution under induced 
modulation instability of Schrodinger equation in 1 + 1-dimensional media with sine-oscillatory response, it was 
necessary to introduce initial input = ∑= =−∞

+∞u x z B ik nx( , ) exp( )z n n x0
 first (Bn was a constant). Based on the 

input, the solution to Eq. (1) is displayed as11
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By substituting Eq. (5) into Eq. (1), it can be obtained
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Figure 2.  Evolution of the optical field based on Eq. (1) at =x 0 under the input condition (3) when =w 1m  
(solid line: analytical results obtained through linear approximation method; imaginary line: results attained 
through simulation).
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Based on Eq. (6), various harmonic separately satisfy the following equation
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If Eq. (8) shows a stable solution, it means that the amplitudes of various harmonic in the optical field are a 
fixed value that does not vary with changing transmission distance; however, the change of phases is synchronous 
in the transmission process. Therefore, an is expressed as β=A a i zexp( )n n  and = −A An n

11. By substituting 
β=A a i zexp( )n n  into Eq. (8), it can be obtained
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It is supposed that only plane wave and first harmonic are taken into account, i.e. only having a0, a1 and −a 1. 
According to Eq. (9), plane wave and first harmonic are separately obtained as
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On condition of introducing normalizing condition + =a a2 10
2

1
2 , by simplifying Eq. (12), we can attain

Figure 3.  Evolution of the optical field based on Eq. (1) under input condition (3) when =w 1m : (a) = .k 0 7x , 
= .z 9 4; (b) = .k 0 7x , = .z 18 8; (c) = .k 0 45x , = .z 17 3; (d) = .k 0 45x , = .z 28 3.
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Moreover, the intensity of plane wave in the optical field is
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By substituting Eqs. (14) and (15) into Eq. (10), the propagation constant of the optical field is attained as
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When only considering plane wave and first harmonic in the evolutionary process of the optical field, the 
approximate analytical solution of stable solution can be obtained as
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Simulation was carried out by taking the result of approximate analytical solution obtained using Eq. (17) at 
=z 0 as the initial input of Eq. (1). The evolution of the optical field based on the equation under the input con-

dition is displayed in Fig. 4. As shown in the figure, not all approximate analytical solutions at any modulation 
frequency can be steadily transmitted and only the approximate analytical solutions at the modulation frequency 
approximate to the cutoff frequency are able to be steadily transmitted (Fig. 4(a)); by contrast, the approximate 
analytical solutions at the modulation frequency greatly departing from the cutoff frequency greatly fluctuated in 
the transmission process (Fig. 4(b)). It indicated that the approximate analytical solution obtained on condition 
of only considering plane wave and first harmonic was applicable when modulation frequency approached to the 
cutoff frequency, while was not suitable when modulation frequency greatly departed from the cutoff frequency.

Exact numerical solution of stable solution.  The above approximate analytical solution was obtained 
in the case of only considering plane wave and first harmonic, and the approximation was suitable when the 
modulation frequency approached to the cutoff frequency. However, it was necessary to consider more number 
of harmonics during calculation when modulation frequency significantly departed from the cutoff frequency. 
Whereas, it was impossible to calculate the analytical solution when considering more enough harmonics, so the 
calculation was performed through numerical method. Based on normalizing condition

∑ | | =
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(18)n n

n

n
2

MAX

MAX

calculation was conducted on Eq. (9) by using Newton iteration method to calculate the values of an and β29. By 
taking a0, a1, and β in approximate analytical solutions as initial values, calculation was performed by constantly 
increasing the number of harmonics (that is increasing the number of equations) beginning with two harmonics. 
Iterative process was ended when harmonics with amplitude lower than 10−4 appeared. In this way, the numerical 
solution of stable solution can be obtained as

∑ β= .
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The numerical solutions at all modulation frequencies were attained by utilizing the aforementioned numeri-
cal method. The amplitudes of each harmonic and propagation constant in the numerical solutions are shown in 
Table 1. Additionally, a0, a1 and β in approximate analytical solutions obtained when only considering plane wave 
and first harmonic are also listed in Table 1.

It can be seen from Table 1 that the approximate analytical solution was favorably consistent with the numer-
ical solution when modulation frequency approached to the cutoff frequency within the range in which MI 
appeared; however, there was a large difference between the two solutions when modulation frequency greatly 
away from the cutoff frequency. To validate whether the numerical solutions can be steadily transmitted, trans-
mission was conducted by taking the numerical solutions as the initial input of Eq. (1), that is

u x z a ik nx( , ) exp( )
(20)

z
n n

n

n x0
MAX

MAX

∑| = .=
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Figure 5 shows the simulated results of numerical solutions at different modulation frequencies in the evo-
lution of the optical field. The figure revealed that the numerical solutions all can be steadily transmitted, which 
indicated that exact stable solutions can be attained by using the numerical method. By comparing Fig. 4(a) 
with 5(a), the approximate analytical solutions and numerical solutions all can be stably transmitted when the 
modulation frequency was approached to the cutoff frequency. It implied that the approximation method only 
considering plane wave and first harmonic was applicable in the case that the modulation frequency approached 
to the cutoff frequency; however, it was not suitable to the condition that the modulation frequency away from 
the cutoff frequency by comparing Fig. 4(b) with 5(b). It was also found from Table 1 that the difference between 
approximate analytical solutions and numerical solutions became increasingly larger, and therefore there were 
more harmonics in stable solutions when the modulation frequency more significantly departed from the cutoff 
frequency.

Figure 4.  Approximate analytical solutions during the evolution of the optical field when =w 1m : (a) = .k 1 6x ; 
(b) = .k 1 4x .

Modulation 
frequency kx

1.6 1.5 1.4 1.3 1.2 1.1

The number 
of harmonics 
in numerical 
solution

3 5 6 6 7 9

a0 0.9995 (0.9996) 0.9050 (0.9228) 0.8203 (0.8574) 0.7433 (0.8036) 0.6687 (0.7611) 0.5844 (0.7292)

a1 0.0220 (0.0200) 0.2992 (0.2724) 0.3978 (0.3639) 0.4553 (0.4209) 0.4849 (0.4587) 0.4850 (0.4839)

a2 0.0001 0.0317 0.0724 0.1264 0.1966 0.2807

a3 0.00002 0.0020 0.0078 0.0211 0.0508 0.1173

a4 0.0001 0.0007 0.0027 0.0097 0.0372

a5 0.00003 0.0001 0.0003 0.0016 0.0095

a6 0.00002 0.00001 0.0002 0.0021

a7 0.00001 0.0004

a8 0.0001

a9 0.00001

β −0.9988 (−0.9990) −0.7021 (−0.7625) −0.2741 (−0.4483) 0.4409 (0.0268) 1.9065 (0.9127) 6.4225 (3.4594)

Table 1.  Amplitudes and propagation constants of each harmonic in numerical solutions at different 
modulation frequencies. 1Nonlinear characteristic length =w 1m , ∑ ==− a 1n n

n
n

2
MAX

MAX . 2Data in the bracket refer 
to approximate analytical solutions.

https://doi.org/10.1038/s41598-020-66856-3


7Scientific Reports |        (2020) 10:10081  | https://doi.org/10.1038/s41598-020-66856-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Beamwidth of stable solution.  According to Eq. (9), it can be obtained that there were n equations for 
describing the system when considering n harmonics and the equation set contained +n 3 unknown quantities: 
amplitude … −a a a, , , n0 1 1, nonlinear characteristic length wm, propagation constant β and modulation frequency 
kx. Therefore, three DOFs were present in the system. Hence, three conditions {Relation (18) [that is, supposing 
the power of stable solution as =P 1( = ∑ =−P an n

n
n
2

MAX
MAX )], =w 1m  and kx} were required when calculating stable 

solution in the section above (Exact numerical solution of stable solution). In this section, the characteristics of 
the stable solution with three DOFs was discussed. The beamwidth wr of stable solution within a single period was 
defined as

w
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to characterize the stable solution and discuss the change relationships of wr with three DOFs (P, wm and kx).
At first, the change laws of wr in stable solution with the other two DOFs wm and P were first explored on con-

dition of keeping kx unchanged. The stable solution under different conditions were calculated through numerical 
method and the curve of wr  with varying P under different wm was attained, as shown in Fig. 6. As the range in 
which MI appeared was related to wm, the selected values of wm in Fig. 6 were relatively approximated, so that the 
ranges in which MI appeared obtained under different values of wm showed a larger intersection (for convenience 
of comparison). As shown in the figure, wr decreased with increasing P under same kx and wm. The reason was that 
the cutoff frequency within the range in which MI occurred also grew with the increase of the power P6. It meant 
that kx would gradually depart from the cutoff frequency within the range in which MI happened with increasing 
P. Therefore, the number of harmonic in stable solution which needed to be considered rose, that is the spectral 
width of the stable solution grew, so that the beamwidth declined correspondingly. Similarly, the cutoff frequency 
also increased with the reduction of wm in the case of having same kx and P. In a similar way, the beamwidth was 
lowered.

Figure 6 displays the relationships of the beamwidth of the stable solution with power and nonlinear char-
acteristic length at a given modulation frequency. The change law of beamwidth can be attained through scale 
transform at different modulation frequencies, instead of numerically calculating the equation again. Nonlocal 
nonlinear Schrodinger Eq. (1) exhibited transformation invariance, so the invariant transformation23 that Eq. (9) 
satisfied can be obtained

κ κ
κ
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m 2

It meant that Eq. (9) remained invariant via the transform (22). Therefore, the transformation relation of Σ1 
and Σ2 in stable solution before and after transformation of the modulation frequency kx can be attained
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If the stable solution at a frequency kx had been calculated, the stable solution at any frequency kx can be 
acquired through the transform (23).

The stable solution of Schrodinger equation in nonlinear Kerr media with local, Gaussian and exponent 
responses have been found in some researches. Compared with the stable solution obtained in the study, the sta-
ble solution in these systems exhibited same characteristics, as shown in Fig. 7. The beamwidth wr  of the stable 
solution decreased with increasing P while rose with the growth of wm within a single period on the premise of 
keeping kx unchanged. Local response corresponded to special nonlocal response at nonlocal characteristic 

Figure 5.  Numerical solution during the evolution of the optical field when =w 1m , (a) = .k 1 6x ; (b) = .k 1 4x .
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length =w 0m . Therefore, −w Pr  curve corresponding to nonlinear Kerr media with local response was found at 
the lowest part in Fig. 7.

Conclusions
Two parts in a nonlocal nonlinear system with sine-oscillatory response were explored. On the one hand, it is 
nonlinear evolution of MI. The long-term evolution of optical field under MI of nonlocal nonlinear Schrodinger 
equation with sine-oscillatory response was numerically simulated by taking plane wave with perturbation as ini-
tial condition. Some characteristics in this process were obtained by simulating long-term nonlinear evolution of 
the optical field: firstly, perturbation started to attenuate after its amplitude grew to a certain value if its frequency 
was within the range in which MI occurred, and showing a quasi-periodic evolution in the long-term nonlinear 
process; secondly, perturbation whose frequency more approached to the singular point showed faster increasing 
amplitude, more quickly reached the first peak of its increment and exhibited a larger peak, moreover, the evo-
lution of the optical field was increasingly irregular; thirdly, MI was also happened after long-term evolution if 
high-harmonic of perturbation were in the range in which MI appeared.

On the other hand, it is the steady-state process of induced modulation instability. The approximate analyt-
ical solution of stable solution under the induced modulation instability of nonlocal nonlinear equation with 
sine-oscillatory response was attained on condition of assuming only inputting plane wave and first harmonic 
(modulated wave); the exact numerical solution of stable solution was obtained when inputting the modulated 
wave with innumerable harmonics. By further discussing the stable solution, it can be found that fewer harmon-
ics needed to be taken into account when calculating a stable solution if the modulation frequency of the stable 
solution was more approximated to the cutoff frequency in the range in which MI appeared. Additionally, the 
relationship of the beamwidth in the stable solution with two DOFs (power and nonlinear characteristic length) 
in the system were attained. On same conditions, the beamwidth reduced with increasing power while rose with 
the growth of nonlinear characteristic length.

Methods
We used the split-step Fourier method4 to simulate the propagation of the optical beams. For the inputs Eqs. (3) 
and (20) at =z 0, the evolution of Eq. (1) was obtained by the split-step Fourier method.

We used the Newton iteration method29 to obtain the exact numerical solution of stable solution, i.e. the solu-
tion of Eq. (9). By taking a0, a1, and β in approximate analytical solutions as initial values, calculation was per-
formed by the increase of the number of harmonics n beginning with =n 0, and 1. Iterative process was ended 
when the amplitude of the last harmonics was lower than 10−4.
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Figure 6.  Curves of beamwidth of the stable solution with power under different values of wm in a system with 
sine-oscillatory response function (red line: =w 1m , blue line: = .w 0 9m ; green line: = .w 0 8m ).
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Figure 7.  Curves of beamwidth of the stable solution with power under different values of wm in a system with 
different response functions (solid line: =w 1m , imaginary line: = .w 0 9m  and dash-dotted line: local).
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