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Histologic tissue components 
provide major cues for machine 
learning-based prostate cancer 
detection and grading on 
prostatectomy specimens
Wenchao Han1,2,6 ✉, Carol Johnson1,6, Mena Gaed3, José A. Gómez3, Madeleine Moussa3, 
Joseph L. chin4,5, Stephen pautler4,5, Glenn S. Bauman2,5,6 & Aaron D. Ward1,2,5,6 ✉

Automatically detecting and grading cancerous regions on radical prostatectomy (RP) sections 
facilitates graphical and quantitative pathology reporting, potentially benefitting post-surgery 
prognosis, recurrence prediction, and treatment planning after RP. Promising results for detecting 
and grading prostate cancer on digital histopathology images have been reported using machine 
learning techniques. However, the importance and applicability of those methods have not been fully 
investigated. We computed three-class tissue component maps (TCMs) from the images, where each 
pixel was labeled as nuclei, lumina, or other. We applied seven different machine learning approaches: 
three non-deep learning classifiers with features extracted from TCMs, and four deep learning, using 
transfer learning with the 1) TCMs, 2) nuclei maps, 3) lumina maps, and 4) raw images for cancer 
detection and grading on whole-mount RP tissue sections. We performed leave-one-patient-out cross-
validation against expert annotations using 286 whole-slide images from 68 patients. For both cancer 
detection and grading, transfer learning using TCMs performed best. Transfer learning using nuclei 
maps yielded slightly inferior overall performance, but the best performance for classifying higher-
grade cancer. This suggests that 3-class TCMs provide the major cues for cancer detection and grading 
primarily using nucleus features, which are the most important information for identifying higher-grade 
cancer.

The most used treatment for prostate-cancer (PCa) that is organ-confined is radical prostatectomy (RP), the 
removal of the prostate gland. Approximately 40% of prostate cancer patients undergo this surgery each year in 
the United States1. Serum prostate-specific antigen (PSA) relapse occurs in 17%–29% of patients, reflecting cancer 
recurrence2,3. Post-surgery prognosis, recurrence prediction, and selection and guidance for adjuvant therapy are 
all informed by the surgical pathology report. Typical pathology reports include tumor size, location, spread, and 
aggressiveness levels. In addition, PCa patients are grouped based on the Gleason score (GS), which is computed 
as the sum of the primary and secondary Gleason grades3 at RP, into grade group 1 (GS 6; G3 + 3), grade group 2 
(GS 7; G3 + 4), grade group 3 (GS7; G4 + 3), grade group 4 (GS 8; G4 + 4) and grade group 5 (GS 9–10; G4 + 5, 
G5 + 4, and G5 + 5) disease4,5, with treatment determined according to the risk level6. Thus, although accurate 
post-RP risk stratification is crucial, currently, clinical pathology reporting is primarily qualitative and subject to 
intra- and inter-observer variability. This leads to challenges for quantitative and repeatable pathology reporting 
and interpretation regarding the lesion size, location, spread, and Gleason grade or score3,7–10.
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Whole-mount tissue sections, where the entire cross section of tissue from the gross section is mounted to the 
slide, give the pathologist a better overview to facilitate the identification of multiple tumor foci11. If cancerous 
regions of interest (ROI) could be accurately and precisely contoured on whole mount WSIs of RP sections, this 
would enable quantitative reporting of tumor size, location, and grade. This would yield quantitative clinical 
pathology reporting and would benefit research studies, including imaging validation studies, which require an 
annotated histologic gold standard12–14. However, such manual contouring is too time consuming to perform as 
part of a routine clinical workflow, and is resource-intensive when performed as part of research studies. There is 
therefore an unmet need for an approach that can detect and grade cancerous regions accurately and quickly on 
digitized whole-mount histopathology images of RP tissue sections.

Many published methods have demonstrated the potential of machine learning approaches for automatic 
prostate cancer detection and grading on digital histopathology images15. High-resolution digital histopathol-
ogy images acquired from RP specimens contain a large number of pixels; for instance, a typical whole-mount 
image of the mid-gland can contain more than four gigapixels. Consequently, most published work performs 
validation using a small subset of selected regions of interest (ROIs) to reduce computational demands15. A few 
studies16–22 have worked on cancer detection using whole-slide-images (WSIs). Doyle et al.16 and Litjens et al.17,18 
have demonstrated the ability to process WSIs of much smaller biopsy tissues for finding prostate cancer using 
automatic systems. Monaco et al.19 and Rashid et al.22 have demonstrated cancer detection systems for finding 
prostate cancer on WSIs of RP tissue sections with practical processing times by classifying segmented glands, 
but they reported limitations regarding detection of high-grade cancer tissue using their methods. DiFranco et 
al.20 and Nguyen et al.21 have tested their methods on the WSIs of RP tissue sections, but the sample sizes were 14 
patients and 11 WSIs for the two studies, respectively. For grading, Nir et al.23 validated on the largest number of 
tissue samples from tissue micro arrays (TMAs) of RP tissue sections.

In recent years, deep learning has demonstrated potential for analyzing digital histology images of prostate 
tissue, and many studies18,24–28 analyzed WSIs with larger sample sizes, compared to the earlier works mentioned 
above, using deep learning approach for PCa detection and grading. For PCa detection, Litjens et al.18 and 
Campanella et al.24 analyzed WSIs of biopsy tissues. For PCa grading, Bulten et al.27 and Ström et al.28 graded PCa 
on WSIs of biopsy tissues. They provided slide-level evaluations validated against pathologists’ assessments and 
showed that system performances were within the inter-observer variability among expert pathologists. Most24,26–

28 of those studies focused on developing and validating systems for slide-level PCa detection or grading using 
biopsy tissues. Those methods provided important insight for translation to potential clinical use in diagnosis. In 
contrast, systems for region-level mapping and grading cancer on RP sections support post-surgical clinical deci-
sions for follow-up treatment. Although several studies18,25,29–31 focused on region-level mapping, those studies 
did not use WSIs of RP sections. Nagpal et al.26 proposed a deep learning pipeline for Gleason scoring of RP tissue 
sections at the WSI level. They validated their method on an external data set containing 331 WSIs of RP tissue 
sections, and reported a mean diagnostic accuracy of 0.70, as compared to a mean diagnostic accuracy of 0.61 
across 29 pathologists. They also reported a region-level accuracy of 97% for cancer vs. non-cancer classification, 
and 88% for classifying Gleason patterns of G3, G4 and G5, validating on the concordant regions across 3 pathol-
ogists on 79 WSIs. The sample sizes of each tissue type of these concordant regions were not given for the reported 
accuracies, limiting the interpretation of the reported region-level performance.

Comprehensive validation using all available tissue covering all clinically relevant grade groups avoids bias 
due to ROI selection and tests the system against the full variability in terms of staining and cancerous tissue 
appearance. It is also important to ensure that in cross-validation, samples are chosen such that the training and 
testing sets do not contain samples from the same patient32. This is particularly important considering 1) the het-
erogeneous patterns of each grade3, 2) the similar patterns among different grades, 3) the large staining variability 
among WSIs33,34, and 4) the requirement for practical processing times for clinical translation to the pathology 
laboratory.

In addition, deep learning approaches lack transparency and are challenging to interpret. Tackling this issue 
may be needed for widespread acceptance and regulatory approval35. In previous studies, semantic features (i.e. 
higher-level tissue components such as nuclei, lumina, etc.) have been demonstrated as crucial factors for finding 
and grading prostate cancer as they reflect the differentiation of cancerous tissue36. Many studies used features 
extracted from semantic feature maps and reported promising results15. However, the importance and applicabil-
ity of those methods were not fully evaluated due to lack of comprehensive comparisons of system performance 
for detecting and grading PCa, especially validating on mid-gland whole-mount WSIs of RP sections.

In this study, we investigated the utility of tissue components (specifically, nuclei, lumina, and stroma/other 
tissue) as cues used in 7 different machine learning approaches (3 non-deep learning and 4 deep learning) for 
finding and grading prostate cancer on whole-mount WSIs of RP sections using 299 whole-mount WSIs from 71 
RP patients.

Of the 299 whole-mount WSIs of mid-gland tissue sections obtained from 71 RP surgical specimens 
using a standard protocol at our local center36, 286 WSIs from 68 patients were used for validation using 
leave-one-patient-out (LOPO) cross-validation (CV) using all available ROIs covering each WSI (i.e. 358800 
mm2 of tissue in total) and the remaining 13 WSIs from 3 patients were used for system tuning. After digitization, 
each WSI was annotated at 20X by our trained physician with each tumor contoured and the grade indicated by 
contour color (Figs. 1 and 2). The annotations were verified by one of two genitourinary pathologists. Each WSI 
was partitioned into a set of ROIs with sizes of 480 µm × 480 µm.

Figure 1 describes the training of the system. We assigned each ROI a tissue type label (i.e. cancer or 
non-cancer, and the Gleason grade for cancerous ROIs) based on the manual annotations done by the expert. We 
labeled each image pixel as one of three classes: nuclei, lumina, and stroma/other using our previously proposed 
method37, to generate three-class tissue component maps (TCMs). We also used the same technique to generate 
simpler binary maps: nuclei maps and lumina maps. We trained the system with 7 different machine learning 
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approaches, enumerated as follows: 3 conventional machine learning approaches: (1) a Fisher linear discrimi-
nant classifier (FisherC), (2) a logistic linear classifier (LoglC), (3) a support vector machine classifier (SVM) 
with calculated texture features extracted from the TCMs, and 4 deep learning approaches via fine-tuning of 
AlexNet38 with the (4) nuclei maps (AlexNet-Nuclei), (5) lumina maps (AlexNet-Lumina), (6) three-class TCMs 
(AlexNet-TCM), and (7) raw image ROIs (AlexNet-RawIM).

We also masked the raw images using the TCMs to generate raw images with: (1) masked-out nuclei 
(i.e. the raw images are unchanged except that all nucleus regions have been changed to zero; denoted as 
AlexNet-Masked nuclei), (2) masked-out lumina (AlexNet-Masked lumina), and (3) masked-out nuclei and 
lumina (AlexNet-Masked nuclei + lumina). We repeated experiments 2 and 3 using these masked raw images. 
The results are reported in the supplementary materials section.

We performed 3 experiments for our cancer detection and grading problems: classifying all relevant ROIs as 
1) cancer vs. non-cancer, 2) high-(G4) vs. low-(G3) grade cancer, 3) high-(G4 & G5) (i.e., G4, G5, G4 + 5, G5 + 4) 

Figure 1. Pipeline for system training for cancer vs. non-cancer classification or high- vs. low-grade 
classification. For tissue component maps, nuclei are labeled in red, luminal regions are labeled in blue, and 
stroma/other are labeled in green.

Figure 2. WSI of H&E stained histology prostate tissue. (b–e) are zoomed from the black square highlighted 
regions from the WSI. (d,e) show a region of torn tissue (yellow dashed square) and a region of poor focus 
(circle). Contour colour code: orange (G3), pink (G4), cyan (G5), red (G4 + 5), blue (G5 + 4), purple (G4 + 3), 
green (PIN).
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vs. low-(G3) grade cancer. For experiment 2), ROIs containing ≥50% G4 cancer were considered as high-grade, 
and ≥50% G3 as low-grade. For experiment 3), ROIs containing ≥50% G4 and G5-involved (i.e., G4, G4 + 5, G5, 
G5 + 4), denoted as G4 & G5, cancer were considered as high-grade, and ≥50% G3 as low-grade. Since G4 + 3 
and G3 + 4 cancer have both high- and low-grade cancer tissue, we used those tissue samples for cancer detection 
but not for grading experiments. The validations were conducted using all available ROIs for each WSIs using 
LOPO CV, during which training and testing ROIs were never drawn from the same patient. We measured cumu-
lative error metrics of error rate, false negative rate (FNR), false positive rate (FPR), and area under the receiver 
operating characteristic curve (AUC), comparing the predicted label from each machine learning technique for 
each ROI with the reference standard label assigned to the ROI based on the pathologist’s annotations. We also 
measured the error rate for each tissue type separately using each of our seven approaches. Our implementation 
used Matlab 2018a (The Mathworks, Natick, MA), OpenCV 3.1 for SVM implementation, and PRtools 5.0 (Delft 
Pattern Recognition Research, Delft, The Netherlands) for implementation of FisherC and LoglC machine learn-
ing algorithms.

Results
Prostate cancer detection. The quantitative results for cancer vs. non-cancer classification from our LOPO 
CV using each method are reported in Table 1. All methods yielded AUCs higher than 0.92 except AlexNet-
Lumina, which has an AUC of 0.896. AlexNet-TCM yielded the highest AUC of 0.964 (bolded in Table 1). 
AlexNet-RawIM and AlexNet-Nuclei yielded the second- and third-highest AUCs of 0.957 and 0.93 respectively. 
In general, the methods of fine-tuning AlexNet have higher AUCs and much lower FPR than the conventional 
machine learning methods.

Figure 3 shows our system’s mapping of cancer throughout entire WSIs for two sample cases. The major can-
cerous and non-cancerous regions were correctly labeled by the systems for both cases. In case 1, AlexNet-TCM 
and AlexNet-Nuclei have similar results, while AlexNet-RawIM performs the worst, with many more false 
negatives in the G5 + 4 cancerous region. Figure 2 shows the original H&E stained WSI of case 1. The bottom 
two images are the zoomed in view from the square highlighted region from the WSI. It includes an unfocused 
region, and a region with torn tissue (yellow dashed square highlighted region in Fig. 2(e)). For those regions, 
all methods falsely classified them as negatives (regions indicated by purple arrows in Fig. 3 (case 1)). In case 
2, AlexNet-RawIM and AlexNet-TCM have similar results, while AlexNet-Nuclei has more false positives. The 
major cancerous regions are G3, G3 + 4, and G4.

We calculated the FNRs for cancerous ROIs and the FPRs for non-cancerous ROIs, effectively computing the 
error rates for each of these tissue types. The results of the LOPO CV experiments are shown in Fig. 4. Table 2 
shows the number of ROIs used for each tissue type. G5, G4 + 5, G5 + 4, and EPE yielded higher error rates. 
Table 2 and Fig. 4 demonstrate that in general, higher error rates corresponded to smaller sample sizes; G5 + 4 
was the exception. For those tissue types, with the exception of EPE, AlexNet-Nuclei, AlexNet-TCM, and FisherC 
yielded much lower error rates than the other methods. Among those methods, AlexNet-Nuclei had the lowest 
error rate. For G4-involved tissue types (i.e. G3 + 4, G4 + 3, and G4), FisherC yielded the lowest error rates, and 
LoglC achieved similar performance. For other tissue types, AlexNet-RawIM yielded the lowest error rates. Those 
tissue types are primarily non-cancerous and G3 cancerous tissues, and they have larger sample sizes.

Prostate cancer grading (high- vs. low- grade). The quantitative results for high- vs. low-grade cancer 
classification from our LOPO CV using each method are reported in Table 1. For high-(G4) vs. low-(G3) grade 
classification, AlexNet-RawIM yielded the highest AUC of 0.934, followed by AlexNet-TCM and AlexNet-Nuclei 
with AUCs of 0.904, and 0.891 respectively. For high-(G4 & G5) vs. low-(G3) grade classification, AlexNet-TCM, 
AlexNet-Nuclei and AlexNet-RawIM are the top three performing methods with AUCs of 0.923, 0.919, and 0.916 
respectively. SVM and AlexNet-Lumina had much lower AUCs than other methods for both of the experiments. 
Except for AlexNet-Lumina, methods of fine-tuning AlexNet yielded higher AUCs, lower FPRs and FNRs than 
the conventional machine learning approaches for both experiments.

In Fig. 5, two samples of whole-slide mapping of graded cancer are shown. The major cancerous regions 
are correctly graded and labeled by the systems. For case 1, similar to cancer detection, AlexNet-TCM and 

Cancer vs. non-cancer G4 vs. G3 G4 & G5 vs. G3

Error 
rate FNR FPR AUC

Error 
Rate FNR FPR AUC

Error 
Rate FNR FPR AUC

FisherC 13.5% 14.9% 13.5% 0.927 20.4% 26.2% 18.9% 0.858 20.4% 33.1% 9.3% 0.886

LoglC 12.2% 16.9% 12.0% 0.926 20.0% 27.0% 18.2% 0.850 20.9% 32.6% 10.8% 0.875

SVM 8.6% 19.9% 8.2% 0.928 21.9% 38.0% 17.8% 0.783 26.2% 43.9% 10.8% 0.815

AlexNet-RawIM 5.9% 19.2% 5.5% 0.957 11.4% 24.0% 8.2% 0.934 16.9% 27.4% 7.6% 0.916

AlexNet-TCM 6.1% 15.1% 5.8% 0.964 12.7% 28.9% 8.6% 0.904 13.2% 20.0% 7.3% 0.923

AlexNet-Nuclei 9.0% 15.8% 8.8% 0.937 13.9% 32.3% 9.2% 0.891 15.2% 19.8% 11.2% 0.919

AlexNet-Lumia 13.2% 21.0% 13.0% 0.896 25.9% 61.8% 16.7% 0.654 35.3% 52.9% 20.1% 0.660

Table 1. Cumulative error metrics for ROIs (480 µm × 480 µm) for cancer vs. non-cancer and high-vs. low-
grade cancer classifications from LOPO CV. G4 vs. G3: high-(G4) vs. low-(G3) grade classification. G4 & G5 vs. 
G3: high-(G4 & G5) vs. low-(G3) grade classification. Bolded number: highest AUC in the experiment across 7 
different methods.
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AlexNet-Nuclei yielded similar performance, and AlexNet-RawIM had many more false negatives. For the unfo-
cused and torn tissue regions (Fig. 2(d,e)) and the regions with lower Gleason patterns (Fig. 2(b,c)), all methods 
incorrectly labeled the tissue as negative (regions highlighted with a yellow dashed square in Fig. 5). In case 2, 
AlexNet-TCM and AlexNet–RawIM yielded similar performance, while AlexNet-Nuclei had more false negatives 
(regions highlighted with a green square in the zoomed in view in Fig. 5).

From the LOPO CV experiments for high-(G4 & G5) vs. low-(G3) classification, we calculated the error 
rates for each tissue type (i.e. taking high-grade cancer as “positive” in these experiments, we calculated FNRs 
for high-grade cancer tissues types, and the FPRs for the low-grade cancer tissue types). The results are shown in 

Figure 3. Cancer maps generated by each of the trained systems. White: cancerous tissue regions. Black: 
non-cancerous tissue regions. Color contours: pathologist manual annotations. The purple arrows point to 
unfocused areas and areas with torn tissue as indicated in Fig. 2(d,e). Contour colour code: orange (G3), pink 
(G4), cyan (G5), red (G4 + 5), blue (G5 + 4), purple (G4 + 3).

Figure 4. FNR for cancer tissue types, and FPR for non-cancer tissue types to reflect the error rate for 
each tissue type, for each classifier from leave-one-patient-out cross-validation of cancer vs. non-cancer 
classification.

Cancerous ROIs Non-cancerous ROIs

Tissue types G3 G3 + 4 G4 + 3 G4 G4 + 5 G5 + 4 G5 G5 + 3 EPE Atrophy PIN

Healthy 
tissue/
BPH

Sample size 14719 6008 3839 3949 725 8216 37 16 272 5433 26449 1178814

Table 2. Number of ROIs for each tissue type.
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Fig. 6. We found higher error rates for each of the high-grade cancer tissue types, compared to the error rate for 
the low-grade cancer tissue type. For tissue types which have G5 cancer tissue involved, AlexNet-Nuclei yielded 
the lowest error rates. For all other tissue types, AlexNet-TCM had the lowest error rates.

For the purpose of comparison, the results including the use of the raw images masked according to the TCMs 
are reported in Supplementary Table S3 (results for overall performance) and Supplementary Fig. S1 (the error 
rates for each tissue type).

Discussion
Although using machine learning to analyze H&E histology images for prostate cancer detection and grading 
is an active research field, there are relatively few studies validating on whole-mount RP tissue sections, and the 
use of deep learning for this problem is still relatively new18. In addition, many studies have demonstrated that 
tissue component features are important for prostate cancer detection and grading15, but the effects of those tis-
sue components on system performance for cancer detection and grading for different types of tissue were not 
directly compared. Therefore, in our study we used different machine learning approaches with different tissue 

Figure 5. Label maps for high- vs. low-grade cancer grading generated by each of the trained systems. White: 
high-grade cancerous tissue regions. Grey: low-grade cancerous tissue regions. Black: tissue section. Color 
contours: pathologist’s manual annotations. The region highlighted by the yellow square refers to the tissue 
regions in Fig. 2(b,c). The region indicated by the pink arrow refers to the unfocused areas and regions with torn 
tissue in Fig. 2(d,e). Contour colour code: orange (G3), pink (G4), cyan (G5), red (G4 + 5), blue (G5 + 4).

Figure 6. Error rate (FNR for high grade cancer, FPR for low-grade cancer) for each tissue type for each 
classifier from leave-one-patient-out cross-validation of high-(G4 & G5) vs. low-(G3) grade classification.
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component maps, and compared the performances for both the cancer detection and grading problems on the 
largest expert-annotated dataset of RP tissue sections reported thus far.

In general, for both cancer detection and grading, AlexNet-TCM achieved the best overall performance, fol-
lowed closely by AlexNet-RawIM. Conventional machine learning approaches demonstrated inferior but com-
parable overall performance (AUCs in Table 1). This suggests that the 3-class TCMs provide a set of major cues 
for prostate cancer detection and grading. This is also reflected by very similar performance of AlexNet-RawIM 
to that of AlexNet-TCM. The observed slightly inferior overall performance by using raw images could be due to 
irrelevant or redundant information (e.g. red blood cells) from the raw images, resulting in confounders to which 
the network could overfit.

With the exception of AlexNet-Lumina, fine-tuning AlexNet based approaches achieved better performance 
than the conventional machine learning based approaches for both cancer detection and grading. This suggests 
fine-tuning AlexNet outperforms conventional machine learning based approaches overall. This can also be 
supported by direct comparison of AlexNet-TCM and conventional machine learning approaches. For cancer 
detection, AlexNet-TCM had lower error rates for most tissue types (Fig. 4), therefore better overall performance 
was achieved. For grading, it had higher AUCs for the two grading experiments (Table 1). For the second exper-
iment, with the exception of G5-involved cancer, AlexNet-TCM had lower error rates for all tissue types (Fig. 6). 
The worst performance was yielded using AlexNet-Lumina, suggesting that the lumina maps provide insuffi-
cient information for our problem. This is also suggested by the much larger performance differences between 
AlexNet-Lumina and other methods for cancer grading, compared to the performance differences for cancer 
detection (Table 1). We speculate that because the tissue appearances are much more similar for cancerous tis-
sues of different grades than for cancer vs. non-cancerous tissues, more tissue information is needed for cancer 
grading.

The performances of all the machine learning methods we used are sensitive to sample size, with sensitivity 
varying according to machine learning method used, classification task, and tissue type. Lower error rates are 
usually associated with larger sample sizes, and vice versa, except for G5 + 4 cancer tissue (Table 2, Figs. 4 and 
6). G5 + 4 appears to be an exception with a sample size of 8,216, which is relatively large. However, most of the 
G5 involved cancer (including G5 + 4) occurred in a small number of patients. Since we used LOPO CV, tissue 
from a single patient never appeared in both the training and testing sets, reducing the number of occurrences 
of G5 cancer in training. For cancer detection, AlexNet-RawIM was the most sensitive to the sample size, while 
AlexNet-TCM and AlexNet-Nuclei, and the conventional machine learning approaches (except for SVM) were 
less sensitive to sample size (Fig. 4 and Table 2). This suggests higher-order semantic features (e.g. tissue com-
ponent based features) can improve the robustness of the system to smaller training sample sizes. However, for 
cancer grading, this was not the case for G4 cancer tissues (Fig. 6), where conventional machine learning based 
approaches had substantially higher error rates than the AlexNet-based approaches, compared to other tissue 
types. We speculate that this could be due to the relative similarity of the G3 and G4 patterns, requiring more 
complex deep learning model to differentiate them.

For both cancer detection and grading, AlexNet-Nuclei achieved similar but slightly inferior overall perfor-
mance to AlexNet-TCM and AlexNet-RawIM (Table 1), and the best performance for high-grade cancer tis-
sue types (Figs. 5 and 6). This suggests that among the 3-class TCMs, the nuclei maps capture the key cues for 
our problems, especially for higher-grade cancer tissue types (i.e. G5, G4 + 5, G5 + 4). Adding lumina features 
(using AlexNet-TCM) or other features (using AlexNet-RawIM) improved the performance for most tissue types, 
but not for higher-grade cancer tissue types (Figs. 5 and 6). This can also be evidenced by the superior perfor-
mance in experiment 2 and the inferior performance in experiment 3 by AlexNet-Masked nuclei+lumina than 
AlexNet-TCM (Supplementary Table S3). We speculate that this is because providing tissue images of stroma/
other information may weight the features extracted them much more than that was weighted in TCMs (i.e. 
labeled as a single class tissue type), which reduced the weights of features extracted from the labeled nuclei, thus 
resulting to inferior performance for identifying G5-involved tissue types (Supplementary Fig. S1). Identifying 
key features within the stroma/other tissue class may improve the overall performance for grading by further seg-
menting tissue components (e.g. stroma, cytoplasm). This also makes sense from the clinical pathology perspec-
tive. Since higher grade cancer tissue (G5-involved cancer tissues) are poorly differentiated with merged glands 
and much less stroma tissue (Fig. 2), luminal and stroma features are not helpful for identifying those tissue types. 
Also, those tissues have larger amounts of nuclei, which leads to darker hematoxylin stain (Fig. 2). Thus, the 
3-class TCMs and raw images are likely to contain more extraneous information, compared to the nuclei maps. 
Vice-versa, this explains better performance for the G3-involved and non-cancerous tissue types (Figs. 5 and 6, 
and Table 1, G4 vs. G3) using raw images, and consistent performance across all tissue types using TCMs.

Kwak et al.29 have also previously reported that a nucleus seed map is essential for prostate cancer detection 
using machine learning techniques. On a data set consisting of 707 sample cores from 4 TMAs, they found that 
nucleus seed maps trained with their proposed convolutional neural network (CNN) yielded better performance 
than raw images trained with other CNNs (including AlexNet). The use of different data sets and sample sizes in 
their study may explain the differences with respect to our results.

Nagpal et al.26 also proposed a deep learning pipeline and validated it with large data sets from multiple 
institutions, reviewed by multiple pathologists. Their paper and ours are complementary in the sense that their 
approach focused primarily on Gleason scoring at the slide level (i.e. determining one Gleason score for the whole 
slide), whereas our study focused on region-level mapping (i.e. determining one Gleason grade for each ROI). 
They reported a secondary region-level analysis on 79 WSIs; the number of patients from which these WSIs were 
drawn was not reported. They measured their deep learning system’s accuracy as compared to the regions of those 
WSIs where all three of their pathologists were concordant in their regional assessments; the total area and grade 
distribution of these concordant regions were not reported. Their reported concordance rate between their deep 
learning system’s region-level assessments and their pathologists’ assessments was 97% for cancer vs. non-cancer 
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classification, and 88% for Gleason pattern classification. It is important to interpret these results with the consid-
eration that more potentially challenging regions on the slides, where pathologists’ assessments were discordant, 
were excluded in computing these concordance values. Interpretation of these results would also be helped by 
knowledge of the distribution of positive vs. negative and Gleason pattern labels, to understand the impact of 
any label imbalance on the data set. It would be an interesting avenue of future work to test their proposed deep 
learning system for region-level classification throughout all ROIs on all WSIs in the data set.

The results of this study must be interpreted in the context of its limitations. First, all of the tissue sections were 
processed in one clinical pathology facility. Since tissue processing conditions and protocols vary from center to 
center, multi-center studies are needed to translate these techniques to practice. We would expect these issues 
to affect the methods using raw images more than those using TCMs, the computation of which is adaptive and 
calibration-free. Second, since our study was validated using annotations made by one physician and verified by 
one of two genitourinary pathologists, measurement of the impact of inter-pathologist assessment variability not 
within the scope of this study. Third, our conventional machine learning methods may yield sub-optimal perfor-
mance due to the following reasons: 1) we only investigated first- and second-order statistical features for texture 
feature quantization, 2) backward feature selection is a greedy algorithm, and 3) there exist many types of classi-
fiers that were not tested in our study. Fourth, since our validation is at the ROI level and our pathologist’s anno-
tations were provided at the tumor level, we were unable to provide labels to ROIs from the G3 + 4 and G4 + 3 
tumor regions, which have mixed high- and low-grade Gleason patterns. Fifth, Gleason scoring at WSI-level 
and the patient-level are not included in our reference standard, and thus our analysis is limited to the ROI level. 
Although it stands to reason that performance of the method at the WSI- and patient-level would be concordant 
with measured performance at the ROI level, it would be important to verify this in future work.

In conclusion, this work demonstrated automatic prostate cancer detection and grading on gigapixel WSIs of 
RP tissue sections using machine learning approaches with the state-of-the-art performance and practical pro-
cessing time, and testing on the largest amount of expert annotated tissue so far. Fine-tuning pre-trained AlexNet 
demonstrated better performance than conventional machine learning based approaches overall. We found that 
the 3-class TCMs captured the main information for both prostate cancer detection and grading, and yielded 
robust performance across different tissue types and sample sizes. The best overall performance was achieved 
using the 3-class TCMs with transfer learning using AlexNet. In the 3-class TCMs, the nuclei maps provided 
the most important information overall, and were essential for classifying G5-involved cancerous tissue types 
for both cancer detection and grading. Future work could include detection and quantification of tissue margin 
involvement and other prognostic pathology features.

Methods
Data. Materials and imaging. We obtained informed consent from all 71 patients in our study, and this study 
was approved by our institutional Health Sciences Research Ethics Board. All experiments were performed in 
accordance with relevant guidelines and regulations. All patients had biopsy-confirmed prostate cancer, clinical 
stage T1 or T2. From these patients we obtained 299 H&E-stained, 4 μm thick, paraffin-embedded mid-gland 
tissue sections, and acquired a whole-slide image from each. We used the same protocol as described in our 
previous paper36 and processed all tissues in our clinical pathology laboratory. We used two different scanners 
to obtain images at 20× (0.5 μm/pixel) in bigtiff pyramid format without compression: an Aperio ScanScope GL 
(Leica Biosystems, Wetzlar, Germany) for sections from 46 patients and an Aperio ScanScopeAT Turbo (Leica 
Biosystems, Wetzlar, Germany) for sections from the other 25 patients. This process yielded 24-bit RGB color 
images at 0.5 μm/pixel.

Manual annotation. A trained physician (Gaed) contoured and graded each WSI at 20× magnification using a 
Cintiq 12WX pen-enabled display (Wacom Co. Ltd., Saitama, Japan) with the ScanScope ImageScope v11.0.2.725 
image viewing software (Aperio Technologies, Vista, CA, USA)3. Each contour was verified, and edited as neces-
sary, by one of two genitourinary pathologists (Moussa or Gomez). The zoomed region in Fig. 2 demonstrates the 
level of precision of our contouring.

Ground truth ROI labeling. We separated each WSI into a set of square 960 × 960 pixel ROIs. We assigned 
each ROI a label according to the manual pathology annotations with 50% threshold. For cancer detection, 
ROIs containing more than 50% cancerous tissue were considered cancerous; all other ROIs were considered 
non-cancerous. Non-cancerous regions contained confounders such as atrophy, benign prostatic hyperplasia 
(BPH), high-grade prostate intraepithelial neoplasia (PIN), and inflammation. For cancer grading, ROIs contain-
ing more than 50% high-grade cancer tissue were considered positive, otherwise negative. The sample size of each 
tissue type is shown in Table 2.

Data separation for system tuning and feature selection. We used a “tuning data set” of 13 WSIs 
from 3 patients for hyper-parameter tuning and feature selection. The tuning data set was entirely separate from 
the rest of the data and was not used for cross validation. We used the 68 remaining patients for cross-validation. 
WSIs from both scanners were included in both the tuning and cross-validation data sets.

Tissue component mapping. Tissue staining makes salient tissue components that have semantic meaning 
to the pathologist. We used our previously developed methods37 to assign a label to each image pixel to generate 
(1) a nuclei map, (2) a lumina map, (3) a 3-class TCM for further analysis, via (1) segmentation of nuclei using 
color deconvolution39 and our previously proposed adaptive thresholding algorithm37 to generate the nuclei map, 
(2) segmenting luminal areas by global thresholding in the red-green-blue (RGB) color space to generate the 
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lumina map, and (3) combining the results of nuclei and lumina segmentation and designating the rest pixels as 
“other” to generate the 3-class TCM. The details of these methods are described as follows.

Nucleus mapping. We separated the H&E stains into three image channels of hematoxylin stain, eosin stain, and 
the background, using a color deconvolution algorithm39. We applied this algorithm to each ROI independently 
using the standard deconvolution matrix used by Ruifrok and Johnston39, which separated each ROI into three 
grey-level images corresponding to the amount of hematoxylin, eosin, and background respectively. Most sub-
stances within nuclei bind to hematoxylin since they are basophilic. Therefore we used the hematoxylin channel 
for nuclei segmentation by adaptive thresholding37.

There are large staining differences across different images from different patients even if the tissue sectioning, 
staining and scanning were performed using consistent protocols in the same laboratory. The grey-level inten-
sity variation in the hematoxylin channel across different WSIs, which results from staining variability, makes 
global thresholding not applicable for nucleus segmentation. We therefore used our previously proposed adaptive 
thresholding method37. For each WSI, the segmentation threshold was selected based on a cumulative assessment 
of 2,000 randomly-selected 120 µm × 120 µm ROIs to lie within the prostate (i.e. to avoid clear slide areas) and to 
not contain tissue marking dye (i.e. to avoid areas of artefact). This makes the segmentation threshold specific to 
each WSI of the RP tissue section, therefore compensating for the staining variability across different WSIs. The 
thresholds for sample selection were derived by inspection of the tuning data set only.

This process will sometimes mislabel RBCs as nuclei because, like nuclei, RBCs stain with hematox-
ylin. We can distinguish RBCs from nuclei based on the fact that RBCs have higher red-pink saturation. We 
computed a cumulative histogram from 100 40 µm × 40 µm RBC ROIs from our tuning data set and used 
hue-saturation-intensity thresholds (hue ≥ 0.95/1, saturation ≥0.72/1, and intensity ≥0.6/1). After morpholog-
ical dilation with a disk-shaped structuring element of radius = 4 µm (approximate radius of human red blood 
cells), we obtained an RBC mask and subtracted it from the nucleus map to eliminate false RBCs37.

Lumina mapping. Lumen is typically nearly white on microscopy images. We therefore thresholded luminal 
pixels with values of red ≥ 0.86/1, green ≥ 0.71/1, and blue ≥ 0.82/1, using the same approach as described above 
(cumulative histogram based on the tuning data set).

Tuning ROI size and down-sampling ratio. Experimenting with our tuning data set, we selected a 
nearest-neighbor down-sampling ratio of 0.25, and an ROI size of 480 µm × 480 µm (960 pixels × 960 pixels). We 
ranked cancer detection performance according to the area under the receiver operating characteristic curve 
using FisherC with all features in a leave-one-patient-out cross-validation scheme to select these parameters37. 
These parameters were unchanged for all experiments in this paper.

Feature extraction and selection. 24 first-order and 132 second-order statistical features were calculated 
from the TCM of each ROI, giving a total of 156 features. The second-order statistical features were calculated 
from the grey-level co-occurrence matrix (GLCM)40 and grey-level run length matrix (GLRLM)41. GLCMs and 
GLRLMs were calculated using neighbors in four directions without aggregation ([(0,1) represents direction 1 
in the Supplementary Table S1, (−1,1) represents 2, (−1,0) represents 3, and (−1,−1) represents 4]). 22 different 
GLCM (neighbor distance = 1) and 11 GLRLM features were calculated. We calculated a total of 156 features; (22 
GLCM + 11 GLRLM) × 4 directions + 24 first-order features = 156.

For cancer vs. non-cancer classification, the 14 top-ranked features were selected from the calculated fea-
ture set of 156 features using backward feature selection on the tuning dataset, which selects the features by 
ranking the AUCs from the LOPO CVs using a Fisher linear classifier. The chosen texture features are listed in 
Supplementary Table S1. For high- vs. low-grade cancer classification, we selected the 41 top ranked features 
by using the same feature selection method for cancer vs. non-cancer classification with the tuning dataset of 
high-(G4) and low-(G3) grade cancer samples. The chosen features were used for both G4 vs. G3, and G4 & G5 
vs. G3 grading experiments. The chosen texture features are listed in Supplementary Table S2.

Cancer detection and grading using machine learning. For prostate cancer detection, we classified 
each ROI as cancerous vs. non-cancerous using the 14 selected features calculated from the 3-class TCMs. We 
performed supervised machine learning using (1) a Fisher’s least square linear discriminant classifier, (2) a logis-
tic linear classifier, and (3) a NU-SVM with a radial basis function kernel (parameters tuned as cost = 12.5, and 
gamma = 0.50625 using our tuning dataset). Each of these approaches is denoted as follows throughout the 
paper: (1) FisherC, (2) LoglC, and (3) SVM, respectively.

For cancer grading, we classified each ROI of all relevant cancerous regions as high- vs. low-grade by two 
experiments: (1) all cancerous regions of G4 and G3 for high-(G4) vs. low-(G3) classification; (2) all cancerous 
regions of G4 & G5 and G3 for high-(G4 & G5) vs. low-(G3) grading); using the 44 selected features calculated 
from the 3-class TCMs. Similarly as for cancer detection, we performed supervised machine learning using (1) 
FisherC, (2) LoglC, (3) SVM (a C-SVC with a linear kernel with parameters tuned as cost = 2.7, and gamma = 
0.03375 by tuning using high-(G4) and low-(G3) grade samples from the tuning data set).

For both cancer detection and grading, we also used transfer learning via fine-tuning AlexNet with our 
nuclei maps, lumina maps, 3-class TCMs and raw image ROIs, denoted as: AlexNet-Nuclei, AlexNet-Lumina, 
AlexNet-TCMs, and AlexNet-RawIM, respectively. AlexNet was trained using 1.2 million non-medical images 
from the ImageNet LSVRC-2010 challenge38. The final fully connected layer of AlexNet was replaced by a fully 
connected layer with a 2-way output followed by the 2-way softmax algorithm with a 2-class label output for each 
of our experiments ((1) cancerous vs. non-cancerous for cancer detection, (2) high- (G4) vs. low-grade (G3), 
and (3) high-(G4 & G5) vs. low-(G3) grade for cancer grading). We used cross-entropy as our loss function.  
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We used random numbers to initialize the weights and biases of the replaced layers. For all other layers, we set the 
initial learning rate to α = 0.0001, and α = 0.002 for the output layer. For gradient descent, we used the adaptive 
moment estimation (‘Adam’) optimizer42, with β1 = 0.9, β2 = 0.999, and ε=10−8 42. We used our tuning data set to 
set mini-batch size = 200, maximum epoch = 10.

We used nuclei maps, lumina maps, and 3-class TCMs as input images to fine-tune pre-trained AlexNet 
respectively for each of the 3 experiments. These maps were converted into RGB color images, such that the 
nuclei, stroma/other tissue, and lumina are labeled in red, green, and blue respectively. We resized each ROI with 
size of 240 × 240 × 3 to 227 × 227 × 3 to conform to the standard input size for AlexNet by using bilinear inter-
polation. We repeated the experiment using the same method with the “raw” unmodified H&E images instead 
of the TCMs.

Experiments and validation. Prostate cancer detection. We performed LOPO CV for each of the tested 
machine learning approaches. No same-patient samples were used in both the training and testing sets in any CV 
iteration. Our data set contains many more non-cancerous than cancerous ROIs in our data set. Consequently, 
during training, we performed random subsampling of the negative samples to balance the positive (cancerous) 
and negative (non-cancerous) samples. During testing, all tissue on all slides was classified. That is, we performed 
testing on all ROIs covering each WSI in our 68-patient set. The receiver operating characteristic (ROC) curve 
was computed using the cumulative predicted confidences from each trained system, and we calculated the AUC 
from the ROC. We calculated the cumulative error rate, FPR, and FNR by comparing the predicted labels (using 
the fixed operating point corresponding to the confidence level of 0.5 in all experiments) of each ROI to the 
designated ROI label based on the pathologist’s annotations, with an ROI considered positive when assessed 
by the pathologist to contain ≥ 50% cancer. The sample sizes for each tissue type are shown in Table 2. We also 
calculated the error rates (FNRs for cancerous tissue types; FPRs for non-cancerous tissue types) for each tissue 
type using LOPO CV.

Prostate cancer grading. We performed the same CV as for cancer detection, for each approach for high- vs. 
low-grade cancer classification. During training, we balanced the positive (high-grade) and negative (low-grade) 
samples by random duplication of the samples for whichever class had the smaller sample size. The validation was 
done by comparison to the pathologist’s annotations, with an ROI considered high-grade when assessed by the 
pathologist to contain ≥ 50% 1) G4 for high-(G4) vs. low-(G3) grading, and 2) G4 or G5 for high-(G4 & G5) vs. 
low-(G3) grading. For high-(G4 & G5) vs. low-(G3) grading, we calculated the FNRs for the high-grade cancer 
tissue types using LOPO CV.

Ethical approval and informed consent. This study was approved by our institutional Health Sciences 
Research Ethics Board (Western University Health Sciences Research Ethics Board, London, Ontario, Canada) 
with the written consent obtained from all patients.

Data availability
The raw data (classifier output for each ROI) are available on request, to test the reproducibility of the reported 
error metric values. The algorithms and methods are available from the corresponding author upon request.
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