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Weighted persistent homology for 
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analysis
D. Vijay Anand1, Zhenyu Meng1, Kelin Xia1,2 ✉ & Yuguang Mu2

It has long been observed that trimethylamine N-oxide (TMAO) and urea demonstrate dramatically 
different properties in a protein folding process. Even with the enormous theoretical and experimental 
research work on these two osmolytes, various aspects of their underlying mechanisms still remain 
largely elusive. In this paper, we propose to use the weighted persistent homology to systematically 
study the osmolytes molecular aggregation and their hydrogen-bonding network from a local 
topological perspective. We consider two weighted models, i.e., localized persistent homology 
(LPH) and interactive persistent homology (IPH). Boltzmann persistent entropy (BPE) is proposed 
to quantitatively characterize the topological features from LPH and IPH, together with persistent 
Betti number (PBN). More specifically, from the localized persistent homology models, we have found 
that TMAO and urea have very different local topology. TMAO is found to exhibit a local network 
structure. With the concentration increase, the circle elements in these networks show a clear increase 
in their total numbers and a decrease in their relative sizes. In contrast, urea shows two types of 
local topological patterns, i.e., local clusters around 6 Å and a few global circle elements at around 
12 Å. From the interactive persistent homology models, it has been found that our persistent radial 
distribution function (PRDF) from the global-scale IPH has same physical properties as the traditional 
radial distribution function. Moreover, PRDFs from the local-scale IPH can also be generated and used 
to characterize the local interaction information. Other than the clear difference of the first peak value 
of PRDFs at filtration size 4 Å, TMAO and urea also shows very different behaviors at the second peak 
region from filtration size 5 Å to 10 Å. These differences are also reflected in the PBNs and BPEs of the 
local-scale IPH. These localized topological information has never been revealed before. Since graphs 
can be transferred into simplicial complexes by the clique complex, our weighted persistent homology 
models can be used in the analysis of various networks and graphs from any molecular structures and 
aggregation systems.

Tri-methylamine N-oxide (TMAO) and urea are organic osmolytes widely existing in the animal metabolisms. 
Deep-sea organisms use the protein stabilizing effects of TMAO to counteract the high pressure perturbation, 
while mammalian kidneys use the strong denaturant function of urea1. As a protecting osmolyte, TMAO can 
counteract the urea protein-denaturing effects. Currently, it is well accepted that urea acts by directly binding to 
the protein backbones and side chains2. It has very little disturbance on the surrounding water structures. The 
TMAO’s stabilization is not well understood. It has been suggested that TMAO molecules form complexes with 
two to three water molecules, and protein stabilization is the result of depletion effects associated with unfavora-
ble interaction of TMAO with protein backbone3. Others suggest that TMAO interacts with polypeptides and 
protein stabilization is a result of surfactant-like effects of TMAO4. The interaction between TMAO and urea is 
also not well understood5. Even though it is suggested that the interaction is through the TMAO’s modification of 
urea-water structures, recent experiments show that the addition of TMAO induces blue shifts in urea’s H-N-H 
symmetric bending modes, indicating the direct interactions between the two cosolvents6,7. Although great 
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progress has been made in both experimental and theoretical research for urea and TMAO8–20, a detailed mech-
anism of their molecular aggregations and the corresponding hydrogen-bonding networks still remain elusive.

Theoretically, graph or network based models21–23, especially the spectral graph models and combinatorial 
graph models, play a key role in the characterization of biomolecular structures, interaction networks, and 
hydrogen-bonding networks24–30. The most commonly-used graph-based measurements31 include, node degree, 
shortest path, clique, cluster coefficient, closeness, centrality, betweenness, Cheeger constant, modularity, graph 
Laplacian, graph spectral, Erdös number and percolation information. Differential geometry tools32–38, such as 
Voronoi diagram, alpha shape, geometric flows, have also been considered to quantitatively characterize the bio-
molecular structure, surface, volume, cavity, void, tunnel and interface. These models contribute greatly to the 
better understanding of biological systems.

Recently, a new topological model known as persistent homology has demonstrated a great promise in bio-
molecular structure, flexibility, dynamics and function analysis39–41. Persistent homology based machine learning 
and deep learning models42 have achieved great successes in protein-ligand binding affinity prediction43–45, pro-
tein stability change upon mutation46,47 and toxicity prediction48. These topology based machine learning models 
have constantly achieved some of the best results in D3R Grand challenge49. Motivated by the great success of 
topological modeling in biomolecules, we have applied persistent homology in the analysis of ion aggregations 
and hydrogen-bonding networks50. The two types of ion aggregation models, i.e., local clusters and extended 
ion networks, can be well characterized by our model. Further, we have identified, for the first time, different 
types of topology for the two hydrogen-bonding network systems50. Moreover, we have studied the osmolyte 
molecular aggregation and their hydrogen-bonding networks31. Two osmolytes, i.e., TMAO and urea, are found 
to share very similar topological patterns with the two types of ion systems, i.e., KSCN and NaCl. Particularly, 
the topological fingerprints for the hydrogen-bonding network from ion systems and osmolyte systems share a 
great similarity. This indicates that our topological representation can characterize certain intrinsic difference 
between “structure making” and “structure breaking” systems31. Features from persistent homology can be used 
as topological descriptors, which have also been used in a range of atomistic water models51, coarse-grained 
Stillinger-Weber (SW) potential model51, and aqueous solubility modeling52.

More recently, weighted persistent homology (WPH) models have been proposed to incorporate physical, 
chemical and biological properties into topological modeling53. Essentially, the weight value, which reflects phys-
ical, chemical and biological properties, can be assigned to vertices (atom centers), edges (bonds), or higher order 
simplexes (cluster of atoms), depending on the biomolecular structure, function, and dynamic properties53. In 
this way, weighted persistent homology can be classified into three major categories, i.e., vertex-weighted54–58, 
edge-weighted41,44,46,59,60, and simplex-weighted models61–63. Among them, the localized (weighted) persistent 
homology (LPH) and interactive persistent homology (IPH) are found to be of great importance in the classifica-
tion and clustering of DNA structures and trajectories53, and protein ligand interactions46.

In this paper, for the first time, we apply the localized persistent homology and interactive persistent homol-
ogy in the study of osmolyte molecular aggregation and their hydrogen-bonding networks. To quantitatively 
characterize the topological features from LPH and IPH, we propose Boltzmann persistent entropy (BPE). We 
have revealed that TMAO and urea have very different local topologies. Local network structures are observed 
in TMAO system. With the concentration increase, the circles within these networks show a huge increase in 
their total numbers and a sharp decrease in their relative sizes. In contrast, urea shows two distinguishable local 
topological features, i.e., local clusters around 6 Å and global-scale circle structures at around 12 Å. Further, we 
have demonstrated that our global-scale IPH based persistent radial distribution function (PRDF) is similar to 
the traditional radial distribution function (RDF) and can be used to characterize the double layer information. 
Moreover, a local-scale PRDFs can be generated from our local-scale IPH model. Essentially, in global-scale IPH, 
each osmolyte molecule interacts with all the water molecules in the system. In local-scale IPH, water molecules 
are classified into different cells based on the Voronoi diagram of osmolyte molecules. Interactions only happen 
between a central osmolyte molecule and the surrounding water molecules within its Voronoi cell and between 
two osmolyte molecules from closest adjacent Voronoi cells. This classification is naturally embedded in the 
filtration process of IPH analysis. Further, IPH based PBNs and BPEs can be used in studying the interaction 
patterns between osmolyte molecules and water molecules. Other than osmolyte systems, our weighted persistent 
homology models can be applied in the analysis of various kinds of networks and graphs from material, chemical, 
and biological systems.

The paper is organized as follows. A brief introduction of persistent homology and two weighted persistent 
homology models are given in Section 1.1 and Section 1.2. The methodology and implementation details of LPH 
and IPH models are discussed in Section 1.3. The main results are presented in Section 2. The LPH based molec-
ular aggregation and hydrogen-bonding networks is discussed in Section 2.1. The IPH based topological features 
for osmolyte-water interaction networks are discussed in Section 2.2. The paper ends with a conclusion.

Methods and models
In this section, we will give a brief introduction of persistent homology and weighted persistent homology. Three 
types of persistent functions, including persistent Betti number, persistent entropy and persistent radial distribu-
tion function, will be discussed in detail. A general description of the two WPH models, i.e., localized persistent 
homology and interactive persistent homology, will also be presented.

Persistent homology.  The persistent homology, a tool from algebraic topology and computational topol-
ogy, is proposed to characterize data “shape”64. It has been widely used in data analysis64–81 with various developed 
softwares59,82–87 and visualization models88–91.

Persistent homology can be understood from three different aspects. Firstly, it is the relation between a graph 
and a simplicial complex. Mathematically, a graph, which is composed of only nodes (0-simplexes) and edges 
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(1-simplexes), is a kind of simplicial complex. A simplicial complex K can viewed as a set of simplexes that satisfy 
two conditions. Firstly, any face of a simplex from K is also in K. Secondly, the intersection of any two simplexes in 
K is either empty or a shared face92. Other than 0- and 1-simplexes, it also includes 2-simplexes (solid triangles), 
3-simplexes (tetrahedrons), and other higher-dimensional components. Secondly, it is about geometric meas-
urements and topological invariants. In persistent homology, the data is characterized by Betti numbers, includ-
ing β0, β1, β2 and higher order topological invariants93,94. These measurements are significantly different from 
previous geometric measurements, like distances, angles, areas, etc. Thirdly, it is the difference between single 
scale model and multi-scale representation. Essentially, a series of related simplical complexes are considered in 
persistent homology and they provide a multiscale representation that balances geometry and topology. A more 
detailed description of its mathematical background can be found in refs. 93–95, and its application in molecular 
biology and ion aggregation systems can be found in refs. 31,41,44,46,50,52.

Geometrically, β0 indicates the number of connected components, β1 corresponds to the number of circles, 
rings or loops, and β2 represents the number of voids or cavities. The key concept in persistent homology is the 
filtration93,94. For instance, given a point cloud data, we can associate each point with an identical-sized sphere 
and assign its radius as the filtration parameter. As the filtration value is increased, these spheres will systemati-
cally enlarge and subsequently merge with each other to form simplexes. Roughly speaking, an edge between two 
points is formed when the two corresponding spheres overlap93,94. A triangle is formed when each of two spheres 
(of the three corresponding spheres from triangle vertices) overlap. A tetrahedron is formed when each three 
spheres (of the four corresponding spheres from tetrahedron vertices) overlap92. At each filtration value, all the 
simplexes, i.e., vertices, edges, triangles, tetrahedrons, form a simplicial complex. From it, topological invariants, 
i.e., Betti numbers, can be calculated. The persistent homology hierarchically increases the complexity in data 
representation by systematically incorporating higher order simplices as the filtration proceeds. This enables a 
multiscale representation of topological invariants from simplicial complexes93–95. In this way, a systematic vari-
ation of the filtration parameter leads to a series of simplicial complexes at different scales93–95. Some topological 
invariants persist longer in these simplicial complexes, while others disappear quickly as the filtration value is 
increased. The length of the β1 bar defines the “lifespan” of the topological invariants (circles, loops, etc) and 
provides a natural geometric measurement93–95. More specifically, the lifespan, known as the persistence, meas-
ures how “large” are the circles, loops and voids in the system. We denote a filtration value at which a topological 
invariant formed or killed as birth time and death time respectively. In this way, each topological invariant has a 
“lifespan” defined by its birth and death time. Essentially, the lifespan provides a geometric measurement of the 
topological invariant. If we use a one-dimensional bar, which starts at a birth time and ends at a death time, to 
represent each homology generator, a barcode representation is generated. Figure 1 illustrates the basic topologi-
cal components, including simplexes, Betti number, filtration process, and persistent barcodes.

Essentially, simplicial-complex-based persistent homology models are very different from traditional graph 
or network models. In general, Laplacian matrixes or adjacent matrixes are constructed from graph models and 
their eigen spectrum information is used in structure characterization. In contrast, persistent homology describes 
the structure with the topological invariants together with a geometric measurement. Figure 2 illustrates the com-
parison between persistent homology model and traditional graph models. The two types of models reveal very 
different topological information of the biomolecular systems.

We use notations ak,j and bk,j to represent birth times and death times of the j-th topological invariant of k-th 
dimension. The set of k-th dimensional barcodes is denoted as Lk. The persistent Betti number (PBN)66,88,93,96 is 

Figure 1.  The illustration of the basic components in persistent homology. Essentially, persistent homology 
is based on simplicial complex, which is composed of simplexes. In persistent homology, only topological 
invariants, known as Betti number, are considered. A series of simplicial complexes are generated through a 
filtration process. The results from persistent homology are represented as persistent barcodes.
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defined as f x L x( ; ) ( )k j a b[ , ]k j k j, ,
χ= ∑ . We propose two new functions, i.e., Boltzmann persistent entropy and 

Persistent radial distribution function.

Boltzmann persistent entropy.  The persistent entropy has been proposed96–99 to measure the system disorder. For 
the k-th dimensional barcodes, it is defined as,
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Even though persistent entropy has been a powerful tool for the characterization of “topological disorder”, its 
physical meaning is usually unclear, thus hinders its further application in chemical, physical and biological sys-
tems. In this paper, we propose a Boltzmann persistent entropy (BPE) based on the Betti energy and Boltzmann 
distribution. Essentially, we define a Betti energy for the j-th number of k-dimension Betti bar as follows,
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Here κ is an integer, η is a scale value with the same unit of the filtration parameter, and α is an energy-related 
constant value. The probability function is then defined according to the Boltzmann distribution,
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Here kB is the Boltzmann constant and T is the thermodynamic temperature. The BPE can then be calculated 
from Eq. (1). Physically, when a Betti bar has a longer length, it will contribute a larger Betti energy, thus a lower 
probability. In contrast, a longer Betti bar has a higher probability in the traditional persistent entropy. Note that 
a long persisting β0 bar always exists in β0 barcodes. In traditional persistent entropy, the probability value for 

Figure 2.  Illustration of the comparison between graph models and persistent homology for osmolyte 
molecular aggregation. (a) An ion aggregation system (from MD simulation) with both osmolytes (red balls) 
and waters (green balls). (b1) The graph or network representation is composed of only vertices (0-simplex) and 
edges (1-simplex). (b2) The simplicial complex representation has higher order simplexes, including triangles 
(faces) and tetrahedrons (solids). (c1) The distribution of Eigenvalues from the adjacency matrixes from the 
graph model. (c2) The persistent barcodes computed from a persistent homology representation.
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this long persisting bar is exactly equal to 1.0, and persistent entropy is always equal to 0 irrespective of the other 
β0 bars, if this long persisting bar is considered in persistent entropy. In our PBE, this bar contributes zero Betti 
energy according to Eq. (3), thus a probability zero. Note that in our calculation below we take α = kBT, η = 1 Å 
and κ = 2.

Persistent radial distribution function.  Based on the β0 barcodes, we propose the persistent radial distribution 
function (PRDF) as follows,

∑
δ

π
=

−
.

( )
f x L x

N

x b

x
( ; )

4 (4)
t

j

j
0

0

0,
2

Here xt is the filtration value when the PBN reduces to one, i.e., only one connected component. The integer 
N0 is the total number of β0 bars. Essentially, if we consider the global interactive persistent homology, our PRDF 
will result in the conventional radial distribution function100. On the other hand, If we use the local interactive 
persistent homology, our PRDF will focus on the interaction within each cell of the Voronoi diagram. A more 
detailed discussion is given in Section 1.2.2.

Weighted persistent homology.  The weighted persistent homology models have been proposed to incor-
porate physical, chemical and biological properties into topological modeling53. They can also be designed to 
characterize local topological information and certain special interaction patterns. In this paper, we will focus on 
two WPH models, i.e., localized persistent homology and interactive persistent homology.

Localized persistent homology.  The design of our LPH model is inspired by the great success of element specific 
persistent homology (ESPH)43,44. Different from all previous topological models, which consider the data/struc-
ture as an inseparable system, ESPH decomposes the data/structure into a series of subsets made of certain type(s) 
of atoms, which have been found to characterize very well various biological properties, such as hydrophobic or 
hydrophilic interactions43–49. Moreover, our LPH model is very different from persistent local homology92,101–105. 
Mathematically, persistent local homology studies the relative homology groups between a topological space and 
its subspace, while LPH explores the homology groups from local topology. Previously, LPH has been used to 
characterize local topological features of biomolecular structure or complexes53. In LPH, the structure is decom-
posed into a series of local domains or regions, that may overlap with each other, and persistent homology anal-
ysis is then systematically applied on part (or all) of these local domains or regions. In this paper, our main focus 
is to characterize the local features, such as ion clustering, double layer and local aggregations, that widely exists 
in ion or molecular aggregation and hydrogen-bonding networks.

Mathematically, the global persistent homology analysis considers the complete domain, while the localized 
persistent homology is performed on a local region, subdomain or subspace. Note that topological invariants 
for the global structure is not simply the addition of all local invariants. Stated differently, topological invariants 
are usually not additive! In the current paper, we define the subspace as a sphere with radius (Rc). More specifi-
cally, a sphere of radius Rc is considered around each molecule (either osmolyte or water molecule) and only the 
molecules within this sphere are chosen for the localized persistent homology analysis. Figure 3 illustrates the 
persistent homology analysis performed on molecular dynamics simulation data using two different approaches. 
Figure 3(a) and a(1) show the osmolyte distribution and their corresponding persistent barcodes obtained from 
persistent homology analysis. Figure 3(b) depicts the way of selecting local regions. Essentially, an individual 
molecule is selected and a sphere of radius Rc is drawn around it. All molecules within this enclosure are chosen 
as its local neighbors. The persistent homology analysis is carried out for all the selected molecules to generate the 
local persistent barcodes. This procedure is repeated for each molecule in the configuration. The corresponding 
persistent barcodes are as shown in Fig. 3(b1) to (b3). In essence, each molecule in a given configuration is asso-
ciated with certain local neighbors which determine its local structure.

Interactive persistent homology.  The interactive persistent homology (IPH) was proposed to study the interac-
tion between proteins and ligands46. The essential idea is to study the topological invariants of the interaction 
networks, which are formed between protein atoms and ligand atoms. More specifically, for a protein-ligand com-
plex, an interaction matrix can be built with its elements as the Euclidean distance between two atoms. However, 
if two atoms come from the same molecule (either protein or ligand), its distance is set to infinity, meaning they 
will never interact in IPH. In this way, the IPH model can be used in the characterization of the protein-ligand 
interactions. Actually, IPH based machine learning models are found to deliver the best results in protein-ligand 
binding affinity prediction46,47,49. Note that it seems to be better called as interaction persistent homology, as the 
model studies the interactions.

In this section, we use IPH models to characterize the interactions between osmolyte and water molecules. 
Two different models, i.e., global-scale IPH and local-scale IPH, are considered. In global-scale model, when an 
osmolyte molecule is selected, the distances (dij) between all the water molecules in the domain to this osmolyte 
molecule are considered. More specifically, suppose there are Nw number of water molecules, a global-scale IPH 
matrix of size (Nw + 1) × (Nw + 1) can be constructed between a selected osmolyte molecule and all water mole-
cules as follows,
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Here Type(i) is used to tell if the i-th molecule is osmolyte or water, i.e., type of the molecule. If there are 
Ns number of osmolyte molecule, we can construct a total Ns number of global-scale IPH matrices, with size 
(Nw + 1) × (Nw + 1). From these matrices, PRDF as in Eq. (4) can be calculated and the average of these PRDFs 
will characterize the same physical properties as the traditional radial distribution function100.

In local-scale IPH, a similar IPH matrix as in Eq. (5) is considered. But this new IPH matrix is now of size 
(Nw + Ns) × (Nw + Ns), meaning all distances between water and osmolyte molecules are considered simultane-
ously. The new IPH matrix based filtration characterizes dramatically different topological information. More 
specifically, molecules with shorter distances to their neighbors will form connections at earlier stage of the filtra-
tion. In this way, a Voronoi diagram will naturally form when water molecules connect to their center osmolyte 
molecule. Later, Voronoi cells will merge with closest neighbors to become a well-connected entity. The β0 bar-
codes capture very well the above topological information. And the corresponding PRDFs describe the local 
interactions within the Voronoi cells. A comparison of the persistent barcodes obtained from persistent homology 
and interactive persistent homology is illustrated in Fig. 4. It can be seen that they show totally different patterns.

Essentially, each osmolyte molecule can interact directly with all water molecules in global-scale model and 
the resulting PRDF (from β0 barcodes) characterizes the same physical properties as radial distribution func-
tion. In local-scale IPH model, only the interactions between the osmolyte molecule and water molecules in its 
Voronoi cell, and the Voronoi cell-cell interactions are captured in β0 bars. It should be noticed that the corre-
sponding PRDFs only describe the local interaction information, and they are very different from the traditional 
radial distribution function. It should also be noticed that the value for our local PRDFs will decrease to zero 
when the filtration size is large enough.

WPH for osmolyte molecular aggregation and hydrogen-bonding network analysis.  The 
weighted persistent homology models are considered for the study of topological structures of two types of 
osmolytes, namely, trimethylamine N-oxide (TMAO) and urea. Two models, i.e., localized persistent homol-
ogy and interactive persistent homology, are used to reveal the local topological features in the ion aggregation, 
hydrogen-bonding networks and their interactions. Note that only Vietoris-Rips complex is used in all our per-
sistent homology models.

MD simulation and data generation.  The molecular trajectory or the time evolution data of the two osmolytes 
needed for the current work is generated using a molecular dynamics simulation. We consider the same molec-
ular dynamics (MD) setting as in the paper31. More specifically, we consider GROMACS-5.1.2106,107 for the MD 

Figure 3.  Illustration of the global and localized persistent homology analysis. The corresponding persistent 
barcodes for (a) Global and (b) Local approaches are demonstrated. The global persistent homology considers 
all the molecules in the simulation box as shown in (a), while localized persistent homology is carried out 
within each local region shown as grey spheres in (b). The persistent barcodes corresponding to three such local 
regions are illustrated from (b1)–(b3). In our LPH, we systematically consider all the molecules and generate a 
local region (of the same size) for each of them.
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simulation. The four point (TIP4P-EW)108 water model is used, and Kast model109 is adopted for TMAO whereas 
the urea model is from AMBER package110. Two osmolytes with eight different concentrations, from 1 M to 8 M, 
in pure water are studied, respectively. To construct the initial state, urea/TMAO molecules are randomly dis-
tributed using insert-molecules utility in GROMACS, after that 3000 water molecules are inserted randomly 
into the cubic simulation box. We carry out the equilibration process under NVT conditions (Temperature = 
300 K) for 10 ps and then under NPT conditions for 100 ps using 2 fs time step, Berendsen thermostat τ = 0.1 ps) 
and barostat (τ = 2 ps). LINCS algorithm111 is used for bonds and the angles constriction. Further, we carry out 
three repeats under NPT conditions for 100 ns with Berendsen thermostat (Temperature = 300 K, τ = 0.1 ps), 
Parrinello-Rahman barostat (Pressure = 1 bar, τ = 2 ps) and using a time step of 2 fs. The integration of Newton’s 
equation of motion is done by using a leap-frog algorithm. A cut-off of 1.0 nm is used for both van der Waals 
(VDW) interaction and short-range electrostatic interaction. Particle mesh Ewald (PME)112 method is employed 
to deal with the long-range electrostatic interactions. The configuration trajectories are output every 1 ps.

LPH analysis of osmolytes.  The localized persistent homology is used to explore the topological fingerprints 
of molecular aggregation and hydrogen-bonding network at a local scale. In TMAO systems, there are 63, 125, 
204, 290, 400, 533, 700 and 887 TMAO molecules with 3000 water molecules from concentration 1 M to 8 M, 
respectively. In urea systems, there are 60, 120, 192, 267, 352, 450, 555 and 681 urea molecules with 3000 water 
molecules for concentration 1 M to 8 M respectively. To analyze the local topology in their molecular aggregation 
and hydrogen-bonding networks, the TMAO and urea molecules are coarse-grained as their nitrogen and carbon 
atoms, respectively. The water molecules are coarse-grained as their oxygen atoms. Since the configuration data is 
obtained from an NPT simulation, the size of simulation box is allowed to adjust for each configuration to attain 
equilibrium conditions. Periodic boundary condition is used in the specification of local domains. For each sim-
ulation, we consider 101 frames (or configurations) sampled at equal intervals from the simulation trajectory. Our 
topological analysis is performed on these 101 frames.

In our LPH model, a local spherical region is defined for each ion using a cutoff radius Rc and the atoms 
within this enclosure is chosen for analysis. Persistent homology is applied to each of these local regions and the 
persistent barcodes are computed. We used an open source software Ripser113 for the computation of persistent 
barcodes. The persistent Betti functions (PBNs) and the Boltzmann persistent entropy (BPEs) are calculated from 
these barcodes.

IPH analysis of osmolytes.  Both global-scale and local-scale IPHs are considered for analyzing the interac-
tions between osmolyte molecules and water molecules. In global-scale IPH, for each osmolyte molecule, we can 
construct a series of IPH matrixes as in Eq. (5) with the same size of 3001 × 3001, as there are totally 3000 water 
molecules. From the β0 barcode of the IPH matrices, a single PRDF can be calculated. Further by averaging the 
PRDFs over all the 101 frames and all osmolyte molecules in each frame, we can obtain the average global-scale 
PRDF.

In local-scale IPH, for each configuration or frame, an individual IPH can be constructed. Note that the size 
of the local-scale IPH matrix as in Eq. (5) is (Nw + Ns) × (Nw + Ns), i.e., the total number of osmolyte and water 
molecules in the simulation. The average local-scale PRDF (or PBN) can be evaluated by averaging their values 
over all the 101 frames.

Figure 4.  The persistent barcodes obtained using persistent homology and (b) interactive persistent homology. 
Note that in interactive persistent homology, interactions happen only between two types of different molecules. 
That is to say, water molecules can only interact with osmolyte molecules and vice versa. No interactions exist 
between water and water, or between osmolyte and osmolyte. It can be seen that the β1 bars generated from an 
interactive persistent homology remain persistent forever.
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Results and discussions
In this section, we systematically study the local topological features and interaction properties of the osmolyte 
molecular aggregation and their hydrogen-bonding networks. The corresponding PBNs, BPEs and PRDFs are 
used to quantitatively characterize the intrinsic local topology information.

LPH for molecular aggregation and hydrogen-bonding networks.  To facilitate an intuitive under-
standing of local topological information of molecular aggregation, we demonstrate the persistent barcodes 
calculated from TMAO and urea systems with a cutoff radius of Rc = 9 Å. More specifically, we consider the 
last configuration of the MD simulation from four different concentrations. An osmolyte molecule is randomly 
chosen from the last frame and its neighbouring osmolyte molecules located within the cutoff radius Rc = 9 Å 
are selected. Persistent homology analysis is then applied on these molecules. The results from TMAO and urea 
systems are demonstrated in Fig. 5. The indexes (a) and (b) corresponds to TMAO and urea respectively. The sub-
scripts 1–4 indicates the four different concentrations considered, i.e., 2 M, 4 M, 6 M, and 8 M respectively. In both 
TMAO and urea, the total number of β0 bars roughly increase with concentration (M), indicating the aggregation 
of neighboring molecules with the concentration. The β1 bars also seem to appear more and more frequently with 
the increase in concentration.

The results shown in Fig. 5 are based on a randomly chosen molecule in the last frame of the simulation tra-
jectories and can not characterize the overall behavior very well. To have a better comparison, we consider the 
ensemble average. Meaning, for each frame, the local persistent barcode from each molecule is calculated and 
then averaged. It should be noticed that we use the periodic boundary condition to include all the “neighboring” 
molecules. This process is repeated for all the 101 frames in each trajectory. We represent each persistent barcode 
as their PBN and BPEs. These PBNs are then averaged over all the frames and all the molecules in each frame 
to generate a single PBN for each simulation or trajectory. The BPEs are averaged over all the molecules in each 
frame, so that a total 101 BPEs are obtained from each simulation.

Figure 6 shows the β1 PBNs obtained for the TMAO and urea system at eight different concentrations, from 
1 M to 8 M, using three different cutoff radii. The indexes (a) and (b) corresponds to TMAO and urea respectively. 
The subscripts 1–3 indicates the three different cutoff radii namely., Rc = 9 Å, 12 Å and 15 Å respectively. The 
corresponding global persistent homology analysis for TMAO and urea is shown in (a4) and (b4) respectively. As 
stated above, β1 bars represent the ring, circle and loop structures in the system. For TMAO system, at each cutoff 
radius, the peak value of the local β1 PBNs systematically increases with the concentration, indicating that more 
and more circle structures are generated. At the same time, the position of these peak values shifts from around 
13 Å to 7 Å, which implies a systematic decrease in the size of these circles. When we consider larger cutoff radii, 
similar topological patterns are observed. However, the peak values of PBNs from lower concentration systems 
increase much faster, even though all PBN peak values increase with the cutoff radius. This result indicates that for 
a lower concentration system, there exists large-sized topological features which can not be well characterized by 
LPH with a small cutoff radius. For urea system, their PBNs have a dramatically different behavior in comparison 

Figure 5.  The local persistent barcodes for TMAO and urea aggregation. TMAO and urea molecules are 
coarse-grained as their nitrogen and carbon atoms. Subfigures (a1 to a4) represent the results from TMAO 
with concentration 2 M, 4 M, 6 M, and 8 M, respectively. Subfigures (b1 to b4) represent the results from urea 
with concentration 2 M, 4 M, 6 M, and 8 M, respectively. The barcodes are generated from a randomly picked 
molecule at the last frame of the simulation. A cutoff radius of 9 Å is used. Roughly speaking, both β0 and β1 
bars tend to increase with the concentration.
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with TMAO. Roughly speaking, there are two types of peak for urea system, especially the urea system at lower 
concentrations. One type of peak is located around 5 Å, and the other is around 10 Å to 12 Å. The peak at 5 Å 
appears even at very low concentrations and its magnitude keeps increasing with the concentration rise. The 
shape of this peak is much narrower than that of TMAO PBNs. The second type of peak can only be distinctly 
observed at lower concentrations. It has much smaller magnitude compared with that of the first type of peak.

From Fig. 6, we can also see that TMAO and urea demonstrate dramatically different local topological char-
acteristics. Essentially, TMAO shows a regular local network structure. The size and total number of the circle 
structures from these networks consistently decrease and increase with the concentration, respectively. In con-
trast, urea shows a cluster-like local aggregations. Urea molecules form local clusters, whose size stays relatively 
consistent but the total number consistently increases with concentration. More interestingly, if we compare our 
LPH results with the ones from persistent homology analysis of the whole osmolyte systems31, as in Fig. 6(a4) 
and (b4), we can find some unique similarities and differences. Essentially, the general pattern of PBNs at lower 
filtration values has less changes and remains relatively stable, while PBNs at larger filtration values change more 
dramatically. Stated differently, the LPH focuses more on the local topological information and systematically 
attenuates the influence from global topological features.

Other than the PBNs, we can also calculate BPEs from the LPH barcodes and use them to characterize the 
“topological regularity”. Figure 7 demonstrates the β1 BPEs for both TMAO and urea at eight concentrations and 
three cutoff radii as stated above. Note that for each simulation or trajectory, we consider 101 configurations or 
frames which generates 101 β1 BPEs. It can be seen that, at a small cutoff radius, the BPE values from 1 M concen-
tration is almost all zeros, meaning that there is almost no circle structures at local scale. This is consistent with 
the PBN profile in Fig. 6. Further, the average BPE value increases systematically with the concentration for both 
TMAO and urea. However, the BPE variance shows a very different behavior. With the concentration increase, the 
TMAO BPE variance systematically decreases, while urea BPE variance consistently increases. These results are 
also consistent with our findings from persistent homology analysis of the whole system31 and is also presented 
here for clarity. Essentially, with the concentration increase, all osmolyte systems become topologically more and 
more disordered. However, the variation of topological regularity for each trajectory decreases in the TMAO 
system but increases in the urea system. The BPE are found to be consistent with the global persistent homology 
analysis as shown in Fig.7(a4) and (b4) for TMAO and Urea respectively.

To have an intuitive understanding of the inner topological differences between TMAO and urea molecular 
aggregation, we generate simplicial complexes from the last frame of the simulation data of TMAO and urea at 
highest concentration (8 M). For a better visualization, we consider the value of filtration parameter r to be 5 Å, 
6 Å, 7 Å and 8 Å, and plot only the 2-simplexes (triangles) and 3-simplexex (tetrahedrons). The results are illus-
trated in Fig. 8. It can be seen that, TMAO molecules are more evenly distributed, while urea molecules tend to 
concentrate into clusters. Topologically, evenly-distributed molecules will generate more “large” circle structures 
(longer bars in β1 barcodes), while local clustering contributes more small circles (shorter bars in β1 barcodes).

LPH based topological features of hydrogen-bonding networks.  In our hydrogen-bonding network analysis, we 
consider the topological features for water molecules at a local scale. Similar to osmolyte systems, The LPH anal-
ysis is carried out for each water molecule along with its neighbours located within a cutoff radius Rc. For each 

Figure 6.  The comparison of average β1 PBNs for (a) TMAO and (b) urea at eight different concentrations 
from 1 M to 8 M. Subfigures (a1 to a3) are results from TMAO with three different cutoff radii namely., Rc = 9 Å, 
12 Å and 15 Å, respectively. Subfigures (b1 to b3) are results from urea with three different cutoff radii namely., 
Rc = 9 Å, 12 Å and 15 Å, respectively. The β1 PBNs are averaged over all the frames and all molecules in each 
frame. Subfigures (a4) and (b4) are the PBNs obtained from a global persistent homology analysis. It can be seen 
that, TMAO and urea show dramatically different local topological characteristics.
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frame, we systematically go over all the 3000 water molecules and calculate 3000 local persistent barcodes. Again 
periodic boundary condition is considered to include all “neighboring” water molecules. The process is repeated 
over all the 101 frames in each trajectory. A single β1 PBN is generated for each simulation by averaging β1 PBNs 

Figure 7.  The comparison of average persistent entropies for (a) TMAO and (b) urea at eight different 
concentrations from 1 M to 8 M. Subfigures (a1 to a3) are results from TMAO with three different cutoff radii 
namely., Rc = 9 Å, 12 Å and 15 Å, respectively. Subfigures (b1 to b3) are results from urea with three different 
cutoff radii namely., Rc = 9 Å, 12 Å and 15 Å, respectively. Subfigures (a4) and (b4) are the PEs for TMAO 
and urea obtained from global persistent homology analysis, respectively. The BPEs are averaged over all the 
molecules in each frames, thus a total 101 BPEs are obtained for each simulation. It can be seen that, for a 
small cutoff radius of Rc = 9 Å, both TMAO and urea BPEs at 1 M are almost all zero. Further, the average BPEs 
for both systems increase with the concentration, but their BPE variances have very different properties. The 
TMAO BPE variance decreases with concentration while urea BPE variance increases.

Figure 8.  The comparison of the simplicial complexes from TMAO and urea molecule aggregation at 8 M 
concentration. The subfigures (a1 to a4) are for TMAO and subfigures (b1 to b4) are for TMAO. The filtration for 
(a1 to a4) is 5 Å, 6 Å, 7 Å and 8 Å, respectively. Note that we only plot the 2-simplexes and 3-simplexes for better 
visualization. The same setting is used for urea systems in b1 to b4.
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over all the 101 frames and all the 3000 water molecules in each frame. The β1 BPEs are averaged over the 3000 
water molecules in each frame, so that a total 101 β1 BPEs are obtained from each simulation. Two cutoff radii, i.e, 
Rc = 7 Å and Rc = 9 Å, are considered in our LPH analysis.

Figure 9 shows the comparison of average β1 PBNs for TMAO and urea hydrogen-bonding networks. 
Figure 9(a1) and (a2) indicates that, for TMAO system, the PBNs have a peak value located at around 3.5 Å. With 
the concentration increase, the peak value of TMAO PBNs gradually decreases. In the meantime, there is a con-
sistent rise of the PBN values in the range from around 4.5 Å to 7.0 Å. Even though all PBNs significantly increase 
with the cutoff radius, the general PBN profile pattern from eight different concentrations is highly consistent. 
Similar to TMAO, Fig.9(b1) and (b2) shows that, urea PBNs also have a peak value at filtration value 3.5 Å. The 
peak value slightly decreases with the concentration increase. Further, the general PBN profile pattern from eight 
different concentrations shares a remarkable similarity at two different local scales, even though the PBN peak 
values are systematically increased.

From Fig. 9, we can see that TMAO and urea hydrogen-bonding networks demonstrate dramatically differ-
ent local topological characteristics. For TMAO hydrogen-bonding networks, with the concentration increase, 
there is a systematic decrease of small-sized circle structures as well as an increase of relatively large-sized circle 
structures. For urea hydrogen-bonding networks, there is only a slight decrease of small-sized circle structures 
and no significant increase of large-sized circle structures. More interestingly, if we compare our LPH results 
with the ones from the whole hydrogen-bonding network in both ion and osmolyte systems31,50, we can see 
that there exists a great similarity in their PBNs. Essentially, TMAO and urea hydrogen-bonding networks show 
two types of topological behaviors. With the concentration increase, TMAO molecules tend to destroy the local 
hydrogen-bonding networks, resulting in a significant increase of the large circle structures. In contrast, the urea 
molecules have a much less impact on the hydrogen-bonding networks.

The persistent entropy from the LPH barcodes can also be used to characterize the “topological regularity” of 
hydrogen-bonding networks. Figure 10 demonstrates the β1 BPEs for both TMAO and urea hydrogen-bonding 
networks at eight concentrations and two cutoff radii. The indexes (a) and (b) denote TMAO and urea systems 
respectively, at eight different concentrations from 1 M to 8 M. The subscripts 1–2 indicates the cutoff radii 
Rc = 7 Å and Rc = 9 Å respectively. Similar to molecular aggregation analysis, for each simulation, we consider 101 
configurations or frames and generate 101 β1 BPEs. It can be seen that, the average BPE value for both TMAO 
and urea hydrogen-bonding networks decreases with the concentration increase. The same pattern is observed at 

Figure 9.  The comparison of average β1 PBNs for hydrogen bonding networks of (a) TMAO and (b) urea using 
two different cutoff radii at eight different concentrations from 1 M to 8 M. Subfigures (a1 to a2) are results 
from TMAO hydrogen bonding networks with two different cutoff radii namely., Rc = 7 Å and 9 Å, respectively. 
Subfigures (b1 to b2) are results from urea hydrogen bonding networks with two different cutoff radii namely., 
Rc = 7 Å and 9 Å, respectively. Subfigures (a3) and (b3) are the corresponding PEs obtained from global 
persistent homology analysis. The coarse-grained representation of water as its oxygen atom is considered. The 
indexes (a) and (b) corresponds to TMAO and urea respectively. The PBNs are averaged over all the molecules 
and configuration numbers. It can be seen that, TMAO and urea show very different topological characteristics.
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two local scales. Topologically, these results indicate that both the hydrogen-bonding networks become more and 
more regular and lattice-like with concentration increase. Note that molecular aggregation has a totally different 
topological behavior, their BPE value systematically increases with the concentration. More interestingly, the urea 
BPE variance is significantly larger than that of TMAO and consistently increases with the concentration. This is 
exactly the same as in the urea aggregation system.

In summary, we have used LPH models to explore the osmolyte molecular aggregation and their 
hydrogen-bonding networks. Essentially, we segregate osmolyte molecules from water molecules, and study their 
local topological features separately. In the next section, we will focus on the interaction between osmolyte mole-
cules and water molecules and characterize the topology of their interaction networks.

Figure 11 illustrates the simplicial complexes of the hydrogen-bonding networks from TMAO and urea. They 
are generated from the last frame of the simulation data of TMAO and urea at highest concentration (8 M). We 
consider the value of filtration parameter r to be 3 Å, 4 Å, 5 Å and 6 Å, and plot only the 2-simplexes (triangles) 
and 3-simplexex (tetrahedrons), for a better visualization. It can be seen that, similar to the results in Fig. 8, water 
molecules in TMAO systems are more evenly distributed, while water molecules in urea sytems tend to concen-
trate into clusters. Topologically, evenly-distributed water molecules will generate more “large” circle structures 
(longer bars in β1 barcodes), while local clustering contributes more small circles (shorter bars in β1 barcodes). 
For the above analysis, it can be noticed that persistent barcode provides a unique way of analyzing the inner 
topological structures of the systems.

IPH based topological features for osmolyte-water interaction network.  Figure 12 shows the 
comparison of global-scale and local-scale PRDFs for both TMAO and urea systems. The indexes (a) and (b) rep-
resents TMAO and urea respectively. The subscripts 1–2 corresponds to the global-scale and local-scale PRDFs 
respectively. Both global-scale and local-scale PRDFs are normalized with the number density of the oxygen 
atom. The number density in global-scale is calculated by considering the number of oxygen atoms averaged 
over all the spheres around each ion with radius rmax. The value of rmax is half the box size. In the local-scale, the 
number density is simply the number of oxygen atoms divided by the volume of the simulation box for a given 
concentration. Essentially, the global-scale PRDFs are identical to the traditional radial density functions. It can 
be seen that both TMAO and urea have two very obvious peaks, one located at around 4 Å and the other located 
at around 7 Å. However, their behaviors are dramatically different. For TMAO, the first peak value consistently 

Figure 10.  The comparison of average β1 BPEs for hydrogen-bonding networks from (a) TMAO and (b) urea 
systems using two different cutoff radii at eight different concentrations from 1 M to 8 M. Subfigures (a1 to a2) 
are results from TMAO hydrogen bonding networks with two different cutoff radii namely., Rc = 7 Å and 9 Å, 
respectively. Subfigures (b1 to b2) are results from urea hydrogen bonding networks with two different cutoff 
radii namely., Rc = 7 Å and 9 Å, respectively. The BPEs are averaged over all the water molecules in each frames, 
thus a total 101 BPEs are obtained for each simulation. It can be seen that, the average BPE decreases with the 
concentration for both TMAO and urea. However, the BPE variance for urea systematically increases. (a3) and 
(b3) are the PEs obtained from a global persistent homology analysis.
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increases with the concentration while the second peak value decreases with the concentration. The change of the 
TMAO peak values are relatively small, especially for the second peak. In contrast, both peaks of urea PRDFs vary 
greatly with concentration change. In local-scale IPH, PRDF values converge quickly to zero when the filtration 
value is larger than 12 Å, which is dramatically different from the situation in global-scale PRDFs when their 
values converge to 1 at large filtration value. However, the first peak of local-scale PRDFs has similar pattern as 
the global-scale ones. The TMAO peak value increases with concentration, while urea peak value decreases with 
concentration. Moreover, at the region of filtration value from 5 Å and 10 Å, which is the region for the second 
peak of global PRDFs, the TMAO PRDF values decrease much faster than those of urea. When the concentration 
is larger than 5 M, nearly all TMAO PRDF values drops to zero, while urea PRDF still remains largely positive.

To have a better understanding of the local-scale PRDFs, we check the PBNs and PEs from the local-scale 
IPH. Figure 13 demonstrates β0 PBNs for TMAO and urea. The indices (a) and (b) represents TMAO and urea 
respectively. The subscripts 1–2 corresponds to the PBNs and PEs respectively. The β0 PBNs are directly related to 
PRDFs. It can be seen that indeed the TMAO β0 PBNs decrease much faster than those of TMAO at the filtration 
region from 5 Å to 10 Å, consistent with our observations in local-scale PRDFs. Further, we study the correspond-
ing BPEs. It can be seen in Fig. 13, that the average BPE values for both local-scale IPH models increase with the 
concentration. More interestingly, the BPE variance for TMAO decreases with the concentration, while that for 
urea systematically increases with the concentration.

Figure 11.  The comparison of the simplicial complexes from hydrogen-bonding networks from TMAO and 
urea molecules at 8 M concentration. The subfigures (a1 to a4) are for TMAO and subfigures (b1 to b4) are 
for TMAO. The filtration values for (a1 to a4) is 3 Å, 4 Å, 5 Å and 6 Å, respectively. Note that we only plot the 
2-simplexes and 3-simplexes for better visualization. The same setting is used for urea systems in b1 to b4.

Figure 12.  The comparison of global-scale and local-scale PRDFs for (a) TMAO and (b) urea. Subfigures (a1 to 
a2) are results from global-scale and local-scale PRDFs of TMAO systems, respectively. Subfigures (b1 to b2) are 
results from global-scale and local-scale PRDFs of urea systems, respectively. The PRDF of N-O is examined in 
the case of TMAO and C-O for the urea osmolyte. It can be seen that, the first peak value of the TMAO PRDFs 
increases with the concentration, while the first peak value of urea PRDFs decreases with the concentration.
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Conclusion
In this paper, we use the weighted persistent homology to study the topological properties for osmolyte molecular 
aggregation and their hydrogen-bonding networks at a local scale. Two different models, i.e., localized persistent 
homology (LPH) and interactive persistent homology (IPH), are considered. We propose Boltzmann persistent 
entropy (BPE) to quantitatively characterize the topological features from LPH and IPH, together with persistent 
Betti number (PBN). Based on persistent barcodes, we have proposed the persistent radial distribution function 
(PRDF). It has been found that the global-scale PRDF will reduce to traditional radial distribution function. 
While local-scale PRDFs can efficiently characterize the local interactions within the Voronoi cells. We will con-
sider MD simulations, including high pressure conditions, solution with both urea and TMAO, and protein with 
TMAO or urea, in our future works to fully elucidate the mechanisms for protein stabilization. Note that since 
any graph can be constructed into a simplicial complex (through clique complex), our weighted persistent homol-
ogy models can be used in the analysis of graph and network structures from material, chemical and biological 
systems114–116.

Data availability
Our codes are available at https://www.ntu.edu.sg/home/xiakelin/WPH_Osmolytes.zip.
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