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Comparison of host immune 
responses to LPS in human using 
an immune profiling panel, in 
vivo endotoxemia versus ex vivo 
stimulation
Dina M. Tawfik1,2, Jacqueline M. Lankelma4, Laurence Vachot2,3, Elisabeth Cerrato2,3, 
Alexandre Pachot3, W. Joost Wiersinga5,6 & Julien Textoris2,3,6 ✉

Patients that suffer from sepsis exhibit an early hyper-inflammatory immune response which can 
lead to organ failure and death. In our study, we assessed the immune modulation in the human in 
vivo endotoxemia model and compared it to ex vivo LPS stimulation using 38 transcriptomic markers. 
Blood was collected before and after 4 hours of LPS challenge and tested with the Immune Profiling 
Panel (IPP) using the FilmArray system. The use of IPP showed that markers from the innate immunity 
dominated the response to LPS in vivo, mainly markers related to monocytes and neutrophils. 
Comparing the two models, in vivo and ex vivo, revealed that most of the markers were modulated in 
a similar pattern (68%). Some cytokine markers such as TNF, IFN-γ and IL-1β were under-expressed ex 
vivo compared to in vivo. T-cell markers were either unchanged or up-modulated ex vivo, compared to 
a down-modulation in vivo. Interestingly, markers related to neutrophils were expressed in opposite 
directions, which might be due to the presence of cell recruitment and feedback loops in vivo. The IPP 
tool was able to capture the early immune response in both the human in vivo endotoxemia model, a 
translational model mimicking the immune response observed in septic patients.

The host immune response in sepsis is currently known as an initial phase of a hyper-inflammatory response, 
that is concomitantly met with an anti-inflammatory response to restore homeostasis1. In the Intensive Care 
Unit (ICU), mortality attributable to sepsis can reach up to 45%2 due to organ failure – a consequence of a dys-
regulated host response including inflammatory cytokine storm– and/or acquiring secondary infections - with 
concurrent sepsis-induced immunoparalysis1. The major challenge in managing septic patients is the high het-
erogeneity in host responses due to inter-individual variability, the pathogen or source of infection and varying 
responses to treatment, which lead to different immune trajectories and outcomes3,4. Many clinical trials have 
been conducted, and are currently ongoing, to test the efficacy of several immune-directed therapies to improve 
patient outcomes. For instance, anti-inflammatory agents such as Interleukin-1 Receptor antagonist (IL-1Ra)5 
and immune stimulatory agents such as interleukin-7 (IL-7)6 and interferon-gamma (IFN-γ)7–9 and others with 
promising results are currently under evaluation. Nonetheless, it is not yet feasible to easily identify and stratify 
patients with different immune profiles in the ICU that would benefit from such treatment in day-to-day clinical 
practice10. The availability of an immune profiling tool based on immune biomarkers can help determine the 
superseding immune dysfunction (hyper inflammation or immune suppression) in septic patients. Such tool 

1EA7426 “Pathophysiology of Injury-Induced Immunosuppression”, PI3, Université Claude Bernard Lyon-1 
Hospices Civils de Lyon - bioMérieux, Lyon, France. 2Open Innovation and Partnerships (OIP), bioMérieux S.A, Lyon, 
France. 3Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location Vrije Universiteit 
Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands. 4Center for Experimental and Molecular Medicine, 
Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 
5Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, location Academic Medical Center, 
University of Amsterdam, Amsterdam, The Netherlands. 6Anaesthesia and Critical Care Medicine Department, 
Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France. ✉e-mail: julien.textoris@biomerieux.com

OPEN

https://doi.org/10.1038/s41598-020-66695-2
mailto:julien.textoris@biomerieux.com
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-66695-2&domain=pdf


2Scientific Reports |         (2020) 10:9918  | https://doi.org/10.1038/s41598-020-66695-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

can be used in personalized medicine to help stratify and assign patients that are likely to benefit from a targeted 
immunomodulatory agent and monitor their response to treatment7,11.

Lipopolysaccharide (LPS) is a highly antigenic molecule that is derived from Gram-negative bacteria and 
activates a plethora of inflammatory cascades via Toll-like receptor-4 (TLR-4)12. LPS stimulation can mimic the 
initial acute inflammatory response to sepsis, both in vivo and ex vivo. The human in vivo endotoxemia model is 
a well-established model that can capture the host response from half an hour after the challenge and  up to 20 
days13. In vivo endotoxemia subjects experience transient symptoms reminiscent of systemic infection in sepsis 
that include fever, chills, headaches and nausea. These symptoms are accompanied by an increase in blood pres-
sure, heart rate, as well as neutrophilia, lymphocytopenia and monocyte anergy14,15. Other widely used model in 
immunological studies is the ex vivo LPS stimulation of whole blood. The use of ex vivo models helped unravel 
many underlying mechanisms of the inflammatory response, and it can also be utilized as a standalone test of the 
immune function16. The safety, non-invasiveness and flexibility of testing different stimulants make the ex vivo 
model easy-to-use and appealing to researchers. The ex vivo model has also proved valuable in the diagnostic 
field, where functional assays such as TNF-α release post-LPS stimulation has been used to test the immune 
competency of Peripheral Blood Mononuclear Cells (PBMCs) of patients10. Such well-established model can 
help untangle the complexity of host responses at the transcriptomic and proteomic levels. The conditions of the 
ex vivo model are easier to control and replicate, while in vivo, the model better mimics the human or patients’ 
host response to inflammation, as it allows the occurrence of positive and negative feedback loops, in addition 
to recruitment and mobilization of various subsets of immune cells15,17. However, setting up an in vivo human 
endotoxemia model is met with several barriers such as the rules and regulations of each country, the need for 
screening and careful recruitment of volunteers (to minimize heterogeneity), the potential risks for healthy vol-
unteers, and the continuous monitoring directly afterwards.

In this study, we used a tool we recently described: the Immune Profiling Panel (IPP), a multiplex molecular 
tool using the FilmArray system18, to assess the host response to LPS stimulation, using 38 immune-related tran-
scriptome markers in vivo. The panel of markers targeted several immune functions, cell surface markers and the 
two arms of the immune response including inflammatory and anti-inflammatory responses. We compared the 
gene modulation in vivo versus ex vivo LPS stimulation of whole blood samples from healthy volunteers, in order 
to better understand the ability and limitations of each model in capturing  the complexity of the host response 
to endotoxemia.

Material and Methods
Healthy volunteers.  Eight healthy, non-smoking, Caucasian male subjects (aged 18–25 years) from the 
Netherlands were examined, screened and recruited for studying the in vivo human endotoxemia model14. The 
volunteers received an LPS bolus infusion (E. coli O113 Reference Endotoxin, National Institutes of Health, 
Bethesda, Maryland, USA) at a dose of 2 ng/kg bodyweight. Whole blood (2.5 mL) was collected in PAXgene 
tubes (Pre-Analytix, Hilden, Germany) at T0 (before LPS injection) and T4 (4 hours after LPS injection). The 
PAXgene tubes were inverted several times and incubated for 2 hours at room temperature according to the man-
ufacturer’s recommendation, and stored at -80 °C until the transcriptomic testing. The blood cell counts were per-
formed using fully automated hematology analyser XN-9000 (Sysmex, Etten-Leur, The Netherlands). The study 
was approved by the institutional ethics and research board (Amsterdam University Medical Centers, location 
AMC; Netherlands Trial Registration number NL4425 (NTR4549); ClinicalTrials.gov identifier NCT02127749). 
All subjects gave a written informed consent and research was conducted in accordance with the declaration of 
Helsinki.

For the ex vivo LPS stimulation, whole blood was collected in heparin tubes from 8 healthy volunteers, 6 males 
and 2 females (aged 21–55 years) obtained from the EFS (Etablissement Français du Sang, French blood bank, 
Lyon, France). One milliliter of heparinized blood was distributed into pre-warmed TruCulture tubes (Myriad 
Rbm, Austin, TX, USA) containing 2 ml of medium alone (Nul) or medium with LPS (E. coli O55:B5; 100 ng/
mL). The TruCulture tube system was selected for the ex vivo model as it is an easy-to-use culture tube supplied 
with a standardized culture medium and LPS, thus, designed for use as standardized diagnostic tests (currently 
available for Research Use Only)19,20. The samples were incubated in a dry block at 37 °C for 4 hours and directly 
tested in the IPP prototype. Informed consents from the blood donors were obtained and their personal data 
were anonymized at the time of blood donation and before reaching our laboratory according to EFS institutional 
regulations.

Transcriptome analysis.  Stimulated whole blood samples (PAXgene in vivo samples and TruCulture stim-
ulated ex vivo samples) were tested with IPP prototype18 according to manufacturer’s instructions. Briefly, the 
pouches were hydrated with the hydration solution supplied with the kit. A 100 μL of either PAXgene mix or 
TruCulture mix were mixed with approximately 800 µL of the lysis buffer provided with the kit and directly 
injected into the pouch and ran on FilmArray 2.0 and FilmArray Torch instruments (BioFire, Inc., Salt Lake 
City, UT, USA). Results were delivered in less than 1 hour and the normalized expression values of markers were 
computed18.

Statistical analyses.  Normalized expression values were analyzed using hierarchical clustering (Euclidean 
distance) and scaled to demonstrate the differential modulations of genes in a heatmap plot. Normalized data 
used in Principal Component Analyses (PCA) were scaled and centered. Missing values in the biological param-
eters and cells count were imputed using missMDA package21, where a PCA model was used to estimate the 
missing values to perform the PCA- Biplot. Normalized expression levels of genes were expressed as median 
and interquartile ranges (IQR) box and whisker plots. Samples were compared before and after LPS stimula-
tion using Mann-Whitney U test for unpaired samples (in vivo against ex vivo model), while paired Wilcoxon 
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signed-rank test was used for paired samples (in vivo model T4 against T0. P-values were adjusted using FDR 
(Benjamini-Hochberg False Detection Rate) to correct for multiple testing22. The level of significance was set 
at 5% two-sided tests. Statistical analyses were performed and computed using R software version 3.5.1(R core 
Team, Vienna, Austria)23.

Results
Gene modulation in the in vivo human endotoxemia model.  The IPP tool captured the host immune 
response in whole blood at the transcriptomic level 4 hours after LPS injection. The PCA illustrates that LPS stim-
ulation drives the variability seen in the dataset (Fig. 1A). All the unstimulated individuals (T0) are grouped on 
the left-hand side of the plot, and the stimulated individuals (T4) are sparsely grouped in the opposite direction. 

Figure 1.  Gene modulations captured by IPP in the  human in vivo endotoxemia model. (A) Principal 
component (PC) analysis of the samples before and after stimulation, where the colors differentiate the time 
points T0 (just before receiving the LPS bolus infusion) and T4 (4 hours after LPS injection). (B) Heatmap 
showing the hierarchical clustering of the samples (T0 and T4) and genes using Euclidean distance. Normalized 
gene expression values are color-coded from blue (down-modulation) to red (up-modulation).
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Principal component-1 (x-axis) explains 78.7% of the variability in the dataset and separates the two time points 
(before and after the LPS challenge).

In the upper panel of the heatmap (Fig. 1B), an up-modulation can be observed for 20 genes at T4. Markers 
from the innate immune response dominated the up-modulated genes, which included inflammatory mediators 
such as NFkB1 (transcription factor involved in inflammatory response) and ALOX5 (involved in leukotrienes 
synthesis from arachidonic acid associated with inflammation), early pro-inflammatory cytokines TNF and IL-1β, 
anti-inflammatory cytokines IL-10 and IL1RN, and neutrophil cell surface markers CD177 (neutrophil-specific 
marker), CD64, TREM1, and S100A9. The latter three are markers expressed on the surface of both neutrophil 
and monocyte cells, which are  the first line of cells that respond to the LPS challenge.

The lower panel highlights 18 genes that were down-modulated at T4. These included monocyte and T-cell 
surface markers, in addition to factors involved in the activation and differentiation of T-cells. Monocyte surface 
markers CX3CR1 (fractalkine receptor that has a major role in monocytes survival), CD74 (the invariant chain of 
HLA-DR) and CIITA (major histocompatibility complex class II transactivator) were all down-modulated. Also, 
a decreased expression of T-cell markers including IL7R (associated with lymphocyte development), TBX21 (Th1 
cell-specific transcription factor), and ZAP70 (part of T cell receptor, and plays a critical role in T-cell signaling) 
indicating a compromised functionality of lymphocytes. A decrease in CD3D (encodes T-cell surface glycopro-
tein CD3 delta chain) and GATA3 (regulator of T-cell development) expression was also captured by the IPP tool 
which might be related to a decline in the lymphocyte count.

Biological parameters and immune cell modulation observed in the in vivo endotoxemia 
model.  The kinetic changes in the absolute count of immune cells before and after the LPS stimulation were 
recorded in our prior study14. A marked decrease was observed in monocyte, eosinophil and lymphocyte popula-
tions while a 2-fold increase in the neutrophil count was detected after 4 hours of LPS stimulation (Supplementary 
Fig. S1).

The biological parameters measured for the same volunteers were analyzed using PCA to identify and eval-
uate the contribution of each variable to the separation of T0 and T4. The highest contributing variables to the 
observed responses were the absolute count of monocytes and lymphocytes, as well as coagulation factors II 
and X, prothrombin time (PT), Plasminogen activator inhibitor-1 (PAI-1), inflammatory cytokines: IL6, IL8, 
TNF-α and anti-inflammatory cytokine IL10 (Supplementary Fig. S2). The correlations of various markers that 
are biologically related to immune cell counts are illustrated in Fig. 2. S100A9 and CD177 had a strong correlation 
(Pearson coefficient > 0.7) with neutrophils count. Monocytes count was also strongly correlated; positively with 
CX3CR1 and negatively with TNF expression (Pearson coefficient > 0.8). As for the lymphocytes count, it was 
strongly correlated with CD3D and GATA3 (Pearson coefficient > 0.7). The rest of the correlations between the 
biological markers and cell counts with IPP markers were above 0.7 (Pearson coefficient), an indicator for a strong 
correlation, are shown in Supplementary Fig. S3.

To assess the impact of immune cell count changes on gene expression, we adjusted the expression level of 
each marker to the absolute number of the corresponding immune cell. Most of the markers remained differ-
entially expressed between T0 and T4, with the exception of CD64, GATA3 and CD3D (Fig. S4). In the case of 
CD177 and CD74, we observed a clear differential expression that did not reach statistical significance, which 
might be due to the limited number of samples.

Comparison of the in vivo Human Endotoxemia Model with the ex vivo LPS Stimulation in 
TruCulture System.  IPP markers were used to study the difference between the in vivo endotoxemia model 
and LPS blood stimulation ex vivo. The majority of the IPP markers (68%) showed a similar pattern of expression 
in both models post-LPS stimulation. PCA analysis was performed on the entire dataset (Fig. 3), and it can be 
observed that the unstimulated (NUL) ex vivo samples clustered closely to the in vivo control samples on the 
first PCA axis, while stimulated samples (T4) were grouped on the other side of the same axis (PC-1). Principal 
component-1 (x-axis) represents 47% of the dataset variability and separates the LPS response after 4 hours from 
unstimulated samples with an equal distance. Of particular interest is PC-2 (y-axis) in this analysis, which sep-
arates the two LPS responses according to the type of model whether ex vivo or in vivo, explaining 41.2% of the 
variability of the whole dataset (Fig. 3). Interestingly, Fig. 3 shows that the direction of variance is opposite in the 
two models. The genes that mostly contributed to this difference along PC-2 axis were TDRD9, GSN, S100A9, 
CD177, TREM1, CD64, ALOX5, ADGRE3 and IL1RN (up-regulated genes in vivo), and CTLA4, TIM3, GATA3, 
IL7R, CCNB1IP1 and ZAP70 genes (down-regulated in vivo).

We compared the markers that showed an opposite and different magnitude of expression patterns between 
the two models, by subtracting the unstimulated expression from the LPS stimulation for each marker (Fig. 4). 
The comparison revealed that the expression of ADGRE3, ALOX5, CD177, CD64, GSN, S100A9 and TREM1 were 
up-modulated only in the in vivo model, which are chiefly associated with the early innate immune response 
(Fig. 4A). In contrast, some genes were down-modulated in vivo only and were mainly related to the adaptive 
immune response (IL7R, CTLA4, GATA3, TIM3, and GNLY) (Fig. 4B). Interestingly, some markers had different 
magnitudes of expression in the two models, such as IFN-γ, IL-1β, and TNF, and were strongly up-regulated 
ex vivo compared to the in vivo model (Fig. 4C). The comparison between the two models highlighted that the 
majority of the IPP markers were expressed in a similar pattern, while others, interestingly, were mostly modu-
lated in vivo only, and clearly discriminated the two models.
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Discussion
The in vivo human endotoxemia model is a translational model that can be used to mimic the acute inflammatory 
profile reported in septic patients15. Once the volunteers are challenged with LPS, the innate immune response 
is triggered initiating several pro-inflammatory cascades and the secretion of inflammatory cytokines, quickly 
followed by an increase in neutrophil count24. The peak of neutrophilia, mono-, eosino- and lympho-cytopenia 
occurred at 2–4 hours after the endotoxin challenge in vivo25–28. This initial systemic inflammatory response is 

Figure 2.  Pearson correlations of IPP markers with the absolute count of immune cells. Six IPP markers were 
correlated with the absolute count of immune cells at T0 (red cirlces) and T4 (blue triangles), with a strong 
correlations above 0.7 (Pearson coefficient). All correlations were statistically significant p < 0.001. A positive 
correlations indicates that the normalized expression of IPP markers increases as the count increases. (A) 
correlations between S100A9 and CD177 expression with neutrophils count. (B) Correlation between TNF and 
CX3CR1, and monocytes count. (C) Correlation between CD3D and GATA3, and lymphocytes count.
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concomitantly met with an anti-inflammatory response to restore homeostasis. In sepsis, this immune response 
can become dysregulated causing detrimental consequences. The use of the Immune Profiling Panel (IPP) helped 
capture the gene modulations observed in the in vivo endotoxemia model. An increase in neutrophil-associated 
markers (S100A9, TREM1 and neutrophil specific marker CD17729) reflects the increased recruitment and acti-
vation of neutrophils, while the increased expression of CD64 might indicate an increase in neutrophil count. A 
down-modulation in monocyte surface markers (CX3CR1, CIITA and CD74, a surrogate marker for HLA-DR30) 
may indicate monocyte deactivation. The down-modulation of the adaptive immune markers (GNLY, TBX21, 
RORγt, CTLA4) highlights an alteration in lymphocyte function, signaling and the activation of Th1, Th17 and 
Treg cells. When CD3D and GATA3 were adjusted to the lymphocyte count they seem to be non-differentially 
expressed indicating that their expression might mainly reflect lymphocytopenia. An overall increase was 
observed in both pro- and anti-inflammatory cytokines expression such as TNF, IL-1β, IFN-γ, IL10 and IL1RN 
after stimulation (Fig. 1B). Each of these modulations pinpoints to a functional alteration, that resembles the 
acute inflammatory phase observed in septic patients31. These results underscore future possibilities of using 
novel molecular tools such as IPP at the bedside in the ICU to help characterize the immune profile of patients at 
risk, enabling personalized medicine based on immune markers.

In the second part of our study, we compared the same 38 IPP markers with the ex vivo LPS stimulation of 
whole blood after 4 hours. Most of the markers (~70%) were expressed in a similar pattern and direction with 
minor non-significant differences in magnitude (data not shown). This slight difference in magnitude between the 
two models might be due to the use of different healthy volunteers or the type and concentration of LPS. Recently, 
two markers S100A9 and TREM1 which are included in our panel were identified as LPS dose-dependent, 
where their expression increased with an increase in the LPS dose32. Curiously, some markers such as TNF were 
highly expressed ex vivo compared to the in vivo model, while IL10 had the same expression level in both models 
(Fig. 4C). These results differ from the protein data reported by Dorresteijn et al., where TNF and IL10 levels were 
higher in vivo compared to ex vivo17. In our data, IL-1β and IFN-γ were highly expressed ex vivo compared to 
in vivo after 4 hours of stimulation, which corresponds with the findings of Dorresteijn et al. at the protein level 
24 hours post-stimulation17. Nonetheless, the difference in timing regimens and the nature of markers (tran-
scriptome versus protein) might also contribute to the differences reported above. Sometimes, the local produc-
tion of cytokines in tissues exert a “spillover effect”, where the tissues can pour cytokines into peripheral blood, 
thus increasing the serum levels33. Although transcriptomic tests are more sensitive than protein detection, the 
post-transcriptional regulation mechanisms can vary across tissues, and the detection of mRNA does not nec-
essarily imply its translation17. The stability of transcripts can also affect their detection in blood, for instance, 
IL1RN mRNA tends to remain effective and detectable in blood after 4 hours compared to the mRNA of IL-1β 
which decays rapidly (T1/2 ~1.8 hours)34. All the previous points should be considered when extrapolating results 
from the ex vivo model to the in vivo model.

Interestingly, some markers showed an opposite expression pattern between the two models. Most of these 
markers were related to neutrophils such as CD177 as well as CD64, S100A9 and TREM1 that are highly expressed 
on the surface of both monocytes and neutrophils. This phenomenon might be observed in vivo due to the direct 
stimulation of circulating neutrophils by LPS, and the recruitment of new neutrophils from the bone marrow25,29. 
Besides, the ex vivo model is mainly dependent on peripheral blood, while in vivo has both tissue and blood com-
partments, actively contributing to the detected response. However, this is not the case for the ex vivo model that 

Figure 3.  Comparison between in vivo and ex vivo LPS stimulation using IPP. PC analysis was used to compare 
the difference of expression between the human in vivo endotoxemia model (blue) and the ex vivo stimulation 
model (red) before (NUL, circles) and after the LPS challenge (LPS, triangles). The contribution of each gene to 
the plot is represented as arrows.
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Figure 4.  Boxplots showing the fold change of IPP markers observed between the in vivo and the ex vivo 
models after LPS stimulation. On the y-axis is the fold change of both models (normalized expression in the 
stimulated condition (LPS) minus the unstimulated condition) presented as boxplots, in vitro stimulation (blue) 
and in vivo endotoxemia (green). (A) Fold change of markers associated with the early innate immune response. 
(B) Fold change of markers associated with the adaptive immune response. (C) Fold change of markers 
associated with inflammatory and anti-inflammatory cytokines. Fold changes were compared using Mann-
Whitney U test and P values were adjusted using FDR (Benjamini-Hochberg), where NS: p > 0.05, *p < 0.05, 
**p < 0.01 and ***p < 0.001.
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lacks feedback loops, cell recruitment and communication with the tissue compartment. Our data also showed 
that the down-modulation in the adaptive immune response markers (CTLA4, GATA3, GNLY, IL7 and TIM3) are 
linked to the function and activation of T-cells in the in vivo model. This interesting observation might be due to 
the reduced capacity of antigen-presenting cells to activate the T-cells post-LPS challenge35.

One of our limitations is the use of different E. coli LPS serotypes and concentration, which could contribute 
to the difference in the host response observed between the two models. However, we wanted to assess the ability 
of ex vivo and in vivo models to capture the complexity of the host response to LPS and understand their limita-
tions in a standardized manner. This will help provide insights and data about the tool’s ability to capture such 
modulations which will make it comparable to future studies and tool users. Another limitation was the use of 
a mixed-gender population for the ex vivo model in comparison to an all-male population in vivo, which might 
influence the differences observed in immune response between the two models. Wegner et al. observed a higher 
pro-inflammatory cytokine response to LPS in females compared to males, which was significant only in vivo but 
not ex vivo36. Nonetheless, we performed a preliminary analysis on the healthy volunteers population (n = 180) in 
the REALISM project37 and so far we didn’t observe a significant gender-related difference for the transcriptomic 
markers included in the IPP tool (unpublished data).

To the best of our knowledge, this is the first study to report a direct comparison between the in vivo and ex 
vivo models after only 4 hours of LPS stimulation using transcriptomic immune markers. This study underscores 
that caution must be taken when interpreting and extrapolating the results of certain markers from the ex vivo 
model. Our study also highlights how employing an immune profiling panel can capture and describe the host 
immune responses in vivo after 4 hours of LPS stimulation. The use of the in vivo human endotoxemia model 
showed gene modulations and alterations similar to those observed in the early inflammatory response associated 
with sepsis syndrome and other critical conditions in the ICU. However, in sepsis, a complex dysregulation in the 
immune response can occur such as the early onset of immunosuppression making it hard to predict the disease 
trajectory or outcomes. More than 100 clinical trials were conducted on novel immunotherapies in sepsis, those 
trials mainly targeted the modulation of the systemic inflammatory response in patients with acute clinical man-
ifestations. However, almost none of these trials have resulted in new treatments available in the market. Those 
clinical trials might have failed as all patients were treated in the same manner, and few patient stratification 
approaches were adopted11,38. Septic patients have heterogeneous responses and a patient stratification strategy 
based on a panel of immune biomarkers can help identify an individual patient’s dysfunction11. An immune 
profiling tool can guide the use of targeted immunotherapies and contribute to the success of future clinical tri-
als. Testing IPP in human in vivo endotoxemia model showed the potential value of such tool to determine the 
immune status of critically-ill patients. The immune profiling panel has 5-mins only hands-on, immune markers 
are measured directly from whole blood and results can be achieved in less than an hour. The ease and rapid 
turnaround time of IPP suggest its future use at the bedside compared to the currently available techniques that 
offer limited information about the host response and require long and complicated technical procedures. Our 
next step is to evaluate the capability and the predictive performances of the IPP markers in a dedicated cohort of 
critically-ill patients to stratify patients at high risk of stratify patients at high risk of deterioration and enable the 
use of new immunotherapies and personalized medicine.
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