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Deep learning for high-resolution 
and high-sensitivity interferometric 
phase contrast imaging
Seho Lee1, ohsung oh1, Youngju Kim1, Daeseung Kim1, Daniel S. Hussey2, Ge Wang3 & 
Seung Wook Lee1 ✉

In Talbot-Lau interferometry, the sample position yielding the highest phase sensitivity suffers from 
strong geometric blur. This trade-off between phase-sensitivity and spatial resolution is a fundamental 
challenge in such interferometric imaging applications with either neutron or conventional x-ray 
sources due to their relatively large beam-defining apertures or focal spots. In this study, a deep 
learning method is introduced to estimate a high phase-sensitive and high spatial resolution image 
from a trained neural network to attempt to avoid the trade-off for both high phase-sensitivity and 
high resolution. To realize this, the training data sets of the differential phase contrast images at a pair 
of sample positions, one of which is close to the phase grating and the other close to the detector, are 
numerically generated and are used as the inputs for the training data set of a generative adversarial 
network. The trained network has been applied to the real experimental data sets from a neutron 
grating interferometer and we have obtained improved images both in phase-sensitivity and spatial 
resolution.

The Talbot-Lau grating interferometer is a promising technology for phase contrast imaging. Importantly for 
neutron and conventional X-ray sources, Talbot-Lau interferometry is effective for an incoherent beam through 
the use of a source grating that imparts the required quasi-coherence1,2 and is widely adopted for use with these 
radiation sources. The Talbot-Lau interferometer is composed of three gratings: source, phase, and analyzer. 
Figure 1 shows a schematic of the neutron Talbot-Lau interferometer. The source grating G0 imparts transverse 
coherence to the initially incoherent beam. The phase grating G1, modulates the phase of the wave by π, creat-
ing a near-field diffraction pattern known as a Talbot carpet. This pattern is slightly deformed by a sample and 
resolved by an analyzer transmission grating G2. The Talbot-Lau interferometer is normally classified into three 
kinds of geometry according to the distance between each grating: conventional, symmetric, and inverse. The 
conventional geometry is a common configuration in neutron and X-ray implementations, and the distance l (G0 
to G1 separation) is longer than d (G1 to G2 separation). The inverse geometry is vice versa configuration with 
the conventional geometry. When the distance l = d, the Talbot Lau interferometer is in the symmetric geometry.

Donath et al.3 derived the phase sensitivity by means of the distance d, sample position ds, period of the G2 
grating p2 and so on. From this derivation, the maximum phase sensitivity is generally satisfied under two con-
ditions4–6. The first is the symmetric configuration4, and the second is to position the sample close to the phase 
grating G15,6. Since the sensitivity of the phase contrast imaging is generally related to the image contrast, it is 
important to design a high-sensitivity system for better performance. Despite the high phase-sensitivity in the 
symmetric geometry, this configuration results in image blurring due to the large distance between the detector 
and sample. The phase-sensitivity/spatial resolution trade-off problem is severe when the radiation source has 
a large focal spot size or beam defining aperture, such is the case with conventional x-ray tubes and neutron 
beams7,8. In addition, the high sensitivity image causes image distortion in the region where the phase gradient is 
large8. In this case, it is still important to acquire high-sensitivity information even if a certain area is lost, because 
higher sensitivity can increase the contrast in regions with smaller gradients. Therefore, studies on how to correct 
these problems will be of great significance for application in medical and industrial fields.

This paper introduces a method to obtain a corrected image which has high phase-sensitivity as well as high 
spatial resolution (hereafter referred to simply as sensitivity and resolution, respectively) for a symmetric Talbot 
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Lau interferometer using a deep learning technique. We acquire two images, one with the sample positioned close 
to the phase grating G1 (high-sensitivity), and another with the sample positioned in front of the analyzer grating 
G2 (high-resolution). We then trained a neural network9 to address the sensitivity-resolution trade off problem 
for our experimental setup.

To train the neural network, the high-resolution and high-sensitivity phase contrast image should be required 
as ground-truth. Acquiring a phase contrast image with high resolution and high sensitivity in an experiment is 
challenging, so this study designed a creation system to imitate pseudo-phase contrast image with general color 
pictures. In here, we considered the phase contrast image obtained from the grating interferometer is a gray scale 
image normalized in the range of −π to + π. We then converted the RGB 3-channel matrix to a 1-channel matrix 
and normalized from −π to + π to mimic the phase contrast images. The blurring and contrast level are addition-
ally added to imitate phase contrast images in the two different positions. From the idea, we expect to train neural 
network to produce optimal results from two different inputs.

Traditional neural networks to improve image quality are convolutional neural network (CNN) and gen-
erative adversarial network (GAN). One resolution improvement technique known as super-resolution CNN 
(SRCNN) estimates unsharpness through the trained neural network and restores the resolution of the blurred 
input image8,10–18. As CPU and GPU technologies develop, very deep convolution layers of neural networks can 
be calculated. Kim et al.14 reported very deep super resolution CNN (VDSR), and verified much better perfor-
mance with 20 convolution layers. This CNN, which has excellent performance, is now applicable in a wide 
range of applications such as medical diagnosis, monitoring service, precision analysis, and other computer vision 
tasks19–29. Another architecture for resolution improvement is the GAN, a deep residual network that has also 
shown excellent results9.

However, the problem addressed in this study is somewhat different from the resolution improvement study. 
The high sensitivity phase contrast image causes irregular image distortion in regions where there is considerably 
high phase-shift, and this error is not easy to correct perfectly. Instead of acquiring a single image in the compro-
mising position, this study attempts to resolve this problem by matching two images. We built a neural network 
with two input channels to extract information of high sensitivity and high resolution, and finally reconstructed 
a phase contrast image with both high resolution and high sensitivity. Our network is described in the Methods 
section under Deep Learning Network.

Results
A simulation was conducted to evaluate our study. As inputs of our network, a low-contrast high-resolution 
image and a high-contrast low-resolution image are required. To prepare inputs, a 3-D Shepp- Logan phan-
tom was numerically created, and a projection image was acquired using ASTRA Toolbox30,31. A differential 
phase contrast image was imitated by generating a differential image of the acquired projection image. The dif-
ferential image presented in Fig. 2(a) was defined as a low-contrast, high-resolution image. The high-contrast 
low-resolution image presented in Fig. 2(b) was created by multiplying a constant to Fig. 2(a) and inducing a 
gaussian filter to make it blurred. In the neutron measurements, the sensitivity is linear in the sample position, 
so the sensitivity of these numerical studies can be mimicked by a linear scaling of the differential image. The 
resultant image corrected by our GAN model is in Fig. 2(c). Figure 2 (d) shows the profile of each input image and 
the GAN result and shows that the two input images Fig. 2(a,b) are properly combined and represents a better 
estimate of the ground truth than either of the input images.

For a more complex shape, the clinical phantom was also created by XCAT32. Figure 3(a,b) are the low-contrast 
high-resolution and high contrast low-resolution images, respectively. The GAN result shown in Fig. 3(c) shows 
that two images are well combined even in the complex shapes.

In the neutron measurements, differential phase contrast images of a sample were obtained at the sample 
position, measured by ds from the analyzer grating as shown in Fig. 1. The sample was measured at two sample 
positions for ‘high sensitivity and low resolution’ and ‘low sensitivity and high resolution’ images. The two meas-
urements were used for inputs of the GAN and the results of a Si wedge, an Al cylindrical sample and quarter 
dollar are shown in Figs. 4–8. The Si wedge has an angle of 27° on one side and 46° on the other. In Figs. 4 and 6,  
the two inputs obtained by different positions used in the experiments, and their corrected images by the GAN 
are marked as ‘GAN result’ and ‘De-noised GAN’. Figures 5 and 7 show the comparative profiles of the inputs 
and results. The wedge sample was measured with the grating parameters of Set 1 in Table 1, and the two sample 

Figure 1. Schematic of the Talbot-Lau grating interferometer of neutron.
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positions for ‘high sensitivity and low resolution’ and ‘low sensitivity and high resolution’ were chosen as 4230 mm 
and 630 mm for the inputs in the first row and 3630 mm and 430 mm for those in the second row in Fig. 4. In 
Fig. 4, the images in the column “GAN result” represent the combined image from our model and it demonstrates 
that the resolution and the sensitivity have been improved. However, the GAN results show incomplete recov-
ery due to statistical noise and partial distortions in the images. To obtain better performance, we retrained our 
model by adjusting the noise level of the dataset. The results are shown in the De-noised GAN column in Fig. 4. 
Figure 5 shows the profiles along the vertical direction, which is the y-axis, and horizontal direction, which is the 
z-axis, of the wedge. To quantify the performance of the two-input channel GAN, we considered three factors: 
sensitivity, resolution and image noise. To this end, angular-sensitivity, full width at half maximum (FWHM), and 
signal-to-noise ratio (SNR) were obtained from the positional images of the Si wedge and the corrected images 
by GAN.

The ratio of the measured phase shift, Δϕ, to the refraction angle, α, is a measure of the angular sensitivity3 
with S = Δϕ/2πα. The α measured by grating interferometer is derived by Donath et al.3 and interacted with 
neutron is derived by Kim et al.7 and reminded at Eq. (1).
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where λ is the wavelength, Δφ is the phase shift of neutron grating interferometer, Δx is the displacement of the 
sample in the y-direction in Fig. 1, t is the sample thickness in the x-direction, N is the atomic density, and bc is 
the neutron scattering length. So, the α caused by one side of the Si wedge with an angle of 27° is 3.3 ± 0.2 µrad for 
a neutron wavelength of 0.44 nm, and the Δϕ is the measured phase shift of the Talbot self-image. The Δϕ was 
determined by measuring mean values in the image.

Figure 2. Simulation results using the Shepp-Logan phantom. (a) is the low-contrast high-resolution image, 
and (b) is the high-contrast low-resolution image. The GAN result combined with (a) and (b) is shown in (c). 
(d) shows the profile of the lines in (a), (b), and (c) with the ground-truth. Our 2-input GAN profile in red 
shows a good agreement with the ground truth in black.

Figure 3. Simulation results using XCAT clinical phantom, shown at the left without a label. (a) and (b) are the 
low-contrast high-resolution image and the high-contrast low-resolution image, respectively. (c) is GAN result. 
The result is well combined by (a) and (b).
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Also, the FWHM of the line spread function at the edge of the Si wedge was measured to compare the spatial 
resolution of each image. The SNR was obtained by dividing the standard deviation by the mean value of the 
same region from the images33. The results from the experimental images are reported in Table 2 and show the 
geometrical trade-off issues in the grating interferometer. However, the result obtained from the corrected images 
shown in Table 3 demonstrates that both input images are well combined by GAN. A second set of measurements 
were collected for an Al cylinder sample, and the grating configuration in this case corresponds to Set 2 in Table 3. 

Figure 4. The two different pairs, that is, (a,b) show the results of our study. Each pair shows two input images 
and corrected results of a Si wedge. In each image, the dark rectangle represents the angle of 27° and the bright 
rectangle represents the angle of 46°. The sample positions (ds) for (a) are 4230 mm and 630 mm, and those (b) 
are the 3630 mm and 430 mm. Position 1 in (a) and 3 in (b) represent high-sensitivity, and position 2 in (a) and 
4 in (b) represent high-resolution images. The corrected results are shown as ‘GAN result’ and ‘De-noised GAN’.

Figure 5. The longitudinal profiles of the images in Fig. 4(a,b) are shown in (a,b), respectively, and the 
transverse profiles are shown in (c,d). The profiles are the averaged ones in the yellow rectangle areas marked 
on the photos on the left. The solid profiles of ‘GAN result’ and ‘De-nosed GAN’ represent the compensation of 
spatial resolution and sensitivity by our 2-input GAN.
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Two pairs of measurement positions were chosen as 2317 mm and 247 mm for the first row and 2517 mm and 
347 mm for the second row. In Fig. 6, the “GAN result” column shows the processed results from the input pairs 
of each row and the “De-noised GAN” column shows the results after training with more representative image 
noise in the training dataset. Figure 7 shows the averaged horizontal profiles of the (a) and (b) sample images in 
Fig. 6. The “GAN result” and “De-noised GAN” both show enhanced contrast and resolution but with different 
noise characteristics.

To evaluate a more complex shape, a quarter dollar coin was used as sample in geometry of Set 1 in Table 1, 
with sample positions of 530 mm and 1830 mm. Figure 8 shows the acquired images and the results of the 
De-noised GAN. Unlike the previous results, the coin image was not perfectly recovered except boundary, which 
we attributed to the lack of accurate shape information in both inputs. Despite this incomplete result, the image 
registration of two input images using GAN shows promise for further study and refinement.

Discussion
According to the analysis of the sensitivity of the Talbot-Lau grating interferometer, the symmetrical Talbot-Lau 
grating interferometer can obtain the highest sensitivity for a fixed total system length. However, for neutron 
sources and conventional x-ray tubes, the increased distance between the sample and detector causes strong 
geometric blurring, and Kim et al.7,8 clearly showed the trade-off issue between the resolution and sensitivity. 
Since the blurring scale that occurs in the symmetrical geometry is very high, especially for a neutron beam line, 

Figure 6. Two different input pairs illustrate the results of our study. (a,b) show the two input images and the 
corrected results of an Al cylinder. In (a), the sample positions(ds) are 4230 mm and 630 mm, and in (b), those 
are 3630 mm and 430 mm. Position 1 and 3 represent high-sensitivity images, and position 2 and 4 represent 
high-resolution images. The corrected results are shown as ‘GAN result’ and ‘De-noised GAN’.
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the resolution improvement is quite important. In addition, nonuniform image distortion, where the phase shift 
rapidly changes in the high-sensitivity image, is also an issue.

In this study, we have applied a GAN algorithm for phase-contrast imaging to improve the phase-sensitivity 
and spatial resolution. We have constructed a two-input, very deep, residual-based GAN and successfully restored 
high resolution and high sensitivity images by setting the highest resolution image and the highest sensitivity 
image that can be obtained from a given system. The images used in our study were numerically analyzed by three 
factors: angular-sensitivity, FWHM, and SNR. As a result, we have verified that GAN is efficient to extract only 
the desired information from the two input images. To further place our work in context, in Fig. 9 we compare 
our 2-input GAN to an image guided filter (IGF)34 that corrects a blurry image using a clear image as a guide. 
The experimental image with very high sensitivity shows a kind of distortion when ds is increased. In this case, 
the IGF is not effective to restore resolution, whereas our GAN result clearly restored resolution. In addition, 
after training with a dataset whose noise more closely matched that of the raw images, is even more effective in 
restoring a clear image. Therefore, our study demonstrates the ability to extract both high resolution and high 
sensitivity information from the input images.

Figure 7. Transverse profiles of the (a,b) sample images at the Fig. 4. The profiles represent compensation of the 
resolution and sensitivity by the deep learning technique.

Design Wavelength 0.44 nm

Focal Spot size 13 mm

Set 1

Talbot order 3rd

Inter-grating distance
G0 − G1(L) 4,260 mm

G1 − G2(D) 4,260 mm

Period of gratings p(p0 = p1 = p2) 50 μm

Set 2

Talbot order 1st

Inter-grating distance
G0 − G1(L) 3,636 mm

G1 − G2(D) 3,636 mm

Period of gratings p(p0 = p1 = p2) 80 μm

Height of gratings

h0
100 μm 
(Gadox)

h1
34.39 μm 
(Silicon)

h2
100 μm 
(Gadox)

Table 1. Parameters of the neutron grating interferometer.

Figure 8. The experiment result of a quarter dollar. The experiment images were acquired in the two different 
sample position as inputs. The De-noised GAN well combine the two inputs. The inside of the quarter dollar 
was not clearly recovered, but the validity of the GAN as a tool for image registration is reliably confirmed.

https://doi.org/10.1038/s41598-020-66690-7
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In future studies, we hope to reveal the limitations and supplements of our 2-input GAN as follows.
First, our model requires at least two images acquired at two different sample positions resulting in longer 

exposure times. The longer exposure time may be a disadvantage in medical applications, but the method we 
presented has applicability for research in which is a more accurate estimate of the phase gradient is required.

Second, two results using GAN are presented as “GAN result” and “de-noised GAN” in our study. The “GAN” 
result in our paper significantly shows our goal. We were able to get a good result by merging the resolution and 
sensitivity properly. Going one step further, however, we wanted to achieve better image by reducing noise level 
in terms of image processing through neural network. To do so, we proposed two idea. One of the two additional 
studies was presented as ‘De-noised GAN’, and the other idea is to analyze the neutron quantum noise in the NIST 
facility. Using a noise model more accurately reflecting the characteristics of NG6 bema line, we could further 
enhance signal-to-noise ratio of the corrected image. Through this, it is judged that the part of additional research 
should be developed in the form of additional papers.

Third, two input images were manually registered to apply our GAN model. Due to the minute misalignment 
of the hardware, images were not perfectly aligned. Despite the minor discrepancies, GAN corrected resolution 
and sensitivity from the two input images. Looking for ways to apply these subtle inconsistencies to learning will 
yield more accurate results.

Fourth, our GAN was trained with pseudo-phase contrast images, not images obtained from neutron grating 
interferometers. This is because an ideal image, that is, a high-resolution and high-sensitivity phase contrast 
image is required to train the network. However, it is challenging to experimentally acquire neutron phase con-
trast images with high-resolution and high-sensitivity information. In other words, since it is almost impossible to 
generate ground-truth, it was inevitably simulated with DIV2K. And that is the starting point of this paper. Since 
the GAN structure of this study is not a quantitative link between a phase shift value and a label like classification 

(a) (b)

ds [mm] 4230 630 3630 430

Angular-Sensitivity 129,259 20,907 67,910 15,129

FWHM [mm] 4.26 0.82 3.65 0.77

SNR 29.6 5.5 16.3 4.1

Table 2. Angular-sensitivity, FWHM, and SNR measured by Si wedge images.

(a) (b)

Angular-Sensitivity
GAN result 96,982 72,716

De-noised GAN 85,880 78,932

FWHM [mm]
GAN result 0.77 0.72

De-noised GAN 1.13 1.08

SNR
GAN result 8.4 5.1

De-noised GAN 30 18.4

Table 3. Angular-sensitivity, FWHM, and SNR measured by corrected images by deep learning techniques. The 
results show numerically that the sensitivity, resolution, and image noise are well improved.

Figure 9. Comparison the results from the IGF and our model. Two-input based results are shown in GAN 
result and De-noised result column. When ds is increased which is close to the phase grating G1, the image 
distortion occurs. IGF is not effective to solve this phenomenon, whereas our model restores more clearly.

https://doi.org/10.1038/s41598-020-66690-7
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task, we considered that the quantitative refraction angle indices are not necessary. The core idea of our thesis is 
to extract the optimal result by combining of two different images properly. Since the input images are an exper-
imental image, both images have diffraction information generated by a real neutron grating interferometer. We 
are convinced that a trained computer is just combining information from these two images, not a new price. 
Therefore, we believe that the reconstructed result image well reflects the neutron grating interferometer image.

In further studies such as phase unwrapping and phase information analysis, however, more realistic phase 
contrast images should be created for training.

Fifth, the Fig. 8 shows the significant result of our paper. The result of the “De-noised GAN” has both sharp-
ness of position 1 and contrast information of position 2. It claims to satisfy the hypothesis that NN, the core idea 
of this paper, can match the optimal result from two different input images. Nevertheless, the Fig. 8 might not 
be seen the perfect coin. It is because the experimental image itself is incomplete7. As can be seen from the input 
images in Fig. 8, it is challenging to completely restore the coin due to the limitations of the experimental image 
itself.

Lastly, in the future, we would like to assess whether the two-input model has sufficient resolution and sensi-
tivity to detect a minute crack generated in the sample. We speculate that we will need to construct an additional 
network for image segmentation to detect these fine cracks.

conclusion
Since the grating interferometer system provides three kinds of contrast images, which are absorption contrast, 
phase contrast, and dark-field contrast, our 2 input GAN increases the chance to detect a low contrast signal by 
combining with another contrast modality. Moreover, in the phase contrast image, one has the capability to adjust 
the phase contrast sensitivity based on the sample position. The phase contrast sensitivity increases as the sample 
gets closer to the phase grating, and the maximum sensitivity of a grating interferometer is highest when it is 
designed in symmetric geometry given the same source-to-analyzer grating distance. However, since the sample 
must be positioned closer to the phase grating for the highest sensitivity, the distance between the sample to the 
detector increases and we cannot avoid geometric blur. Hence, a trade-off problem with resolution and sensitivity 
becomes an important issue.

We hypothesized that the phase contrast images acquired at two positions between the phase grating and the 
analyzer grating contain abundant resolution and contrast information, and a deep learning method combining 
them helps generate a high phase-sensitive and high spatial-resolution image. We have trained a neural network 
using simulated phase contrast data pairs of “high sensitivity and low resolution” and “low sensitivity and high 
resolution” which can be acquired at two different positions between the phase contrast grating and the analyzer 
grating. We have applied the trained network to the neutron phase contrast images of a wedge, a cylinder sample, 
and a quarter dollar and demonstrated its effectiveness. Two representative image results with different de-nosing 
conditions and their profiles were shown for each sample cases. They clearly show that our GAN model signifi-
cantly improves the sensitivity and resolution.

We have seen that it is possible to reconstruct a phase contrast image with both high phase-sensitive and 
high resolution using phase contrast image measurements at multiple positions in a grating interferometer using 
the GAN. This trade-off issue can often be met in a variety of other imaging modalities such as polychromatic 
far-field interferometer (PFI), single grid phase contrast imaging, super resolution phase contrast imaging, 
CT-MRI, PET-CT, and so on. Our model implemented in this study is expected to be similarly applicable to them 
as well to improve their sensitivity, spatial resolution, or other high dimensional images. Our results in this study 
is a demonstration of its initial feasibility and we expect further enhancement will be made in the near future.

Methods
Design of the high sensitivity talbot-Lau interferometer. To design the high-sensitivity Talbot-Lau 
interferometer, we use the equation of a maximum sensitivity derived by Tilman Donath3:

= ≈ = =S S l l d
p

d
M p

( ) 1 ,
(2)

max s
e2 1,

where p2 is the period of G2 grating, p1,e the effective period of grating G1, and M the geometrical magnification 
described by (l + d)/l. In the cone beam geometry, the p1, e is described as the term of Talbot distance:

λ
=p

n
d
M

2 , (3)e
n

1,
2

where dn is Talbot distance in the cone beam geometry, n integer number represented by Talbot order, and λ 
wavelength. Now, the Smax is transformed by substituting Eq. (3) into Eq. (2):

λ
= .S d

M
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Interference fringe behind G1 occurrs when the d is same as dn. Among the various designs of the grating 
interferometer, the phase-sensitivity according to the l is derived as:

λ
=

+
.S l ndl

l d
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2 ( ) (5)
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At fixed system length where l + d is a constant, Eq. (5) shows that the phase-sensitivity is proportional to the 
square root of ld. Therefore, Fig. 10 shows that among the interferometer geometries, the image with the highest 
phase-sensitivity is obtained in the symmetric geometry with the same distance between l and d.

Hardware setup. In this study, we used two sets of neutron gratings to acquire images8. The images were 
obtained at the cold neutron imaging beam line NG6 at the NIST Center for Neutron Research (NCNR)35. The 
source is polychromatic, and the mean energy wavelength is 0.44 nm. For one of the sets, all gratings have the 
same period of 50 μm; l = d = 4,260 mm; the Talbot order is 3. In the second set, all the gratings have the same 
period of 80 μm; and l = d = 3,636 mm; the Talbot order is 1. The detailed parameters are summarized in Table 1. 
This paper uses differential phase contrast images acquired through phase stepping in a direction perpendicular 
to the grating lines. The total number of steps is 8 and the acquired images are processed through Fourier anal-
ysis36. A single image per step was acquired over a few seconds of exposure time, and a total of six images were 
integrated through a median filter. The detector in the experiment is an Andor Neo, a scientific complementary 
metal-oxide semiconductor, camera viewing a 200 μm thick LiF:ZnS scintillator screen through a 50 mm lens 
yielding an effective pixel pitch of 51.35 μm. (Certain trade names and company products are mentioned in the 
text or identified in an illustration in order to adequately specify the experimental procedure and equipment used. 
In no case does such identification imply recommendation or endorsement by the National Institute of Standards 
and Technology, nor does it imply that the products are necessarily the best available for the purpose.) (scientific 
complementary metal-oxide semiconductor) camera viewing a 200 µm thick LiF:ZnS scintillator screen through 
a 50 mm lens yielding an effective pixel pitch of 51.35 μm. Figure 11 shows the silicon (Si) wedge, aluminum (Al) 
cylinder, and quarter dollar samples for the experiment. The Si wedge has different triangular prism angles from 
both corners to vertexes, so the different phase-shift for each side will be measured. The Al cylinder will measure 
linear gradient of the phase-shift along the surface. The quarter dollar is used as demo sample for low sensitivity 
as well as complex shape.

Data. Figure 12 shows differential phase contrast images of the Si wedge and Al cylinder with same gray scale. 
Images of the Si wedge and Al cylinder were acquired by set 1 and set 2, respectively. Each image was obtained 
at different ds which was achieved by a motorized stage. In Fig. 12, the sensitivity is linearly increased when the 
sample is close to the phase grating G1. Thus, in the same system, the phase sensitivity ratio is almost similar to 
the ds ratio. In addition, the degradation of the resolution is shown as image blurring and distortion. To improve 
the image clarity by GAN, we additionally consider image magnification as well. Since the image magnification 
depends on the distance ds, we can simply match the alignment of two images.

creation of training dataset. A large amount of high-sensitivity low-resolution image and low-sensitivity 
high-resolution image pairs are required to train neural network. Instead of using real differential phase contrast 
images, this study created a large dataset that simulates phase contrast image by converting color images to 32-bit 
gray scale images. The DIV2K dataset37,38 were thus prepared and then the gray scales were also normalized from 
−π to +π to mimic the differential phase contrast images. From these converted images, two images with differ-
ent sensitivity and resolution are created and converted image itself was used as the ground-truth. Since the phase 
sensitivity in the measurements is linearly proportional to ds, the training images are simply scaled by a liner 
constant. The high-sensitivity low-resolution image was realized by convolution with a Gaussian smoothing filter 
in the converted image to express unsharpness. Finally, a random gaussian noise was added to realize the Poisson 

Figure 10. Sensitivity curve. The red line describes sensitivity along the grating G1 position. In the total length 
L, symmetric geometry (l = d) shows the highest sensitivity.

Figure 11. Silicon wedge (left), aluminum cylinder (middle), and quarter dollar (right) samples.
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noise of the neutron beam. The noise level was determined by measuring the standard deviation of experimental 
background image in our system. A total of 890 iamges were converted to normalized gray scale images, so 890 
image pairs were created for training input. Due to a large size of each picture size of larger than 2000 × 2000 
pixels, however, we made 128 × 128 patches. So, more than 200,000 training datasets were created.

Deep learning Network. We designed a deep residual network-based GAN9, and the model was imple-
mented by Tensorflow. In general, a GAN network consists of two different networks. One is a generator, and 
another is a discriminator. The generator network is trained to generate images similar to the ground-truth, and 
the discriminator network is trained to determine whether the ground-truth and generated image from the gen-
erator are equal or different.

To build a generator, variables, known as placeholders in Tensorflow, are first defined with size of 128 × 128 
× 2. In each trial, many training datasets go through a convolution operation process with these placeholder 
variables. The variables are connected through convolution layers where each convolution layer has a 3 × 3 kernel 
and the number of kernels is 64 in our model. A batch-normalization layer was applied between each convolution 
layer to reduce the internal covariate shift issue39,40. The output of a convolution layer is then passed through a 
rectified linear unit (ReLU) function known as one of the activation functions41. The ReLU function converts 
complex convolution values into a simple logistic regression model by transferring zero when the input is neg-
ative and equal value when input is zero or positive value. Total 20 pairs of convolution, batch normalization, 
and ReLU layers were created for the generator. These layer pairs are connected based on the residual blocks 
and skip-connections42 shown at Fig. 13. The output image is now updated by comparing with ground-truth, 
and the optimization is conducted by minimizing the mean square error (MSE) between the output image and 
ground-truth. The MSE in our model is defined as generator loss.

To build a discriminator, variables known as placeholders in Tensorflow are defined with size of 128 × 128 × 
1. A total of 10 pairs of convolution, batch normalization, and leaky ReLU layers were then created and directly 
connected to the variables. Each convolution layer has 3 × 3 kernel and the number of kernels varies from 64 to 
512. The leaky ReLU43 transfers a small positive gradient rather than zero when the input is negative value and 
equal value when input is zero or positive value. In the last layer, we additionally inserted a dense layer that fully 
connects a large amount of convolution values into one layer. The fully connected layer is converted to a proba-
bility map through the logits function.

To optimize the discriminator, two logits of the generator output and ground-truth are created, respectively. 
The generator output is defined as fake image, and cross entropy is calculated by its logits approaching zero. The 
ground-truth is defined as real image, and cross entropy is calculated by its logits approaching one. The sum of 
two cross entropies in our model are defined as discriminator loss. Our network is now optimized by minimiz-
ing both generator loss and discriminator loss. Unlike the general architecture, in this study, the first layer and 

Figure 12. Differential phase contrast images of silicon wedge acquired by set 1 (top) and aluminum cylinder 
acquired by set 2 (bottom). Each sample is obtained at different ds. The longer distance of the ds presents the 
higher sensitivity and lower spatial resolution.
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input-channels were set to 2. Therefore, we demonstrate how the neural network combines image sensitivity and 
resolution from each input image.
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