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Risk of sudden cardiac arrest 
and ventricular arrhythmia with 
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Sulfonylureas are commonly used to treat type 2 diabetes mellitus. Despite awareness of their effects 
on cardiac physiology, a knowledge gap exists regarding their effects on cardiovascular events in 
real-world populations. Prior studies reported sulfonylurea-associated cardiovascular death but not 
serious arrhythmogenic endpoints like sudden cardiac arrest (ScA) or ventricular arrhythmia (VA). We 
assessed the comparative real-world risk of ScA/VA among users of second-generation sulfonylureas: 
glimepiride, glyburide, and glipizide. We conducted two incident user cohort studies using five-state 
Medicaid claims (1999–2012) and Optum Clinformatics commercial claims (2000–2016). Outcomes were 
SCA/VA events precipitating hospital presentation. We used Cox proportional hazards models, adjusted 
for high-dimensional propensity scores, to generate adjusted hazard ratios (aHR). We identified 624,406 
and 491,940 sulfonylurea users, and 714 and 385 SCA/VA events, in Medicaid and Optum, respectively. 
Dataset-specific associations with SCA/VA for both glimepiride and glyburide (vs. glipizide) were 
on opposite sides of and could not exclude the null (glimepiride: aHRMedicaid 1.17, 95% CI 0.96–1.42; 
aHRoptum 0.84, 0.65–1.08; glyburide: aHRMedicaid 0.87, 0.74–1.03; aHRoptum 1.11, 0.86–1.42). Database 
differences in data availability, populations, and documentation completeness may have contributed 
to the incongruous results. Emphasis should be placed on assessing potential causes of discrepancies 
between conflicting studies evaluating the same research question.

Second-generation sulfonylureas are a mainstay of type 2 diabetes mellitus (T2DM) management. Although 
their use is slowly declining1, this pharmacologic class remains the most common add-on to metformin2,3. 
Cardiovascular effects of sulfonylureas continue to be debated. Findings from the recently completed 
Cardiovascular Outcome Trial of Linagliptin Versus Glimepiride in Type 2 Diabetes (CAROLINA) trial4 may even-
tually assuage concerns of glimepiride-associated all-cause and cardiovascular death5 reported in prior clini-
cal trials and meta-analyses6–10, but little is known of cardiovascular safety among users of other sulfonylureas. 
Further, despite pre-existing data on sulfonylureas’ effects on cardiac physiology11–14, neither CAROLINA nor 
Thiazolidinediones or Sulfonylureas Cardiovascular Accidents Intervention Trial (TOSCA.IT) provided, and 
Glycemia Reduction Approaches in Diabetes (GRADE) will not provide data on serious arrhythmogenic end-
points like sudden cardiac arrest (SCA) and ventricular arrhythmia (VA). Thus, there exists a major knowledge 
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gap in the arrhythmogenic effects of individual second-generation sulfonylureas. We therefore set forth to assess 
the real-world comparative safety of glyburide, glimepiride, and glipizide by conducting two incident user cohort 
studies—in independent United States (US) populations of Medicaid and commercial health insurance benefi-
ciaries—to elucidate associations with SCA and VA.

Our decision to ask this clinical question in independent healthcare claims datasets acknowledges the impor-
tance of replicability in pharmacoepidemiology15–18. A historic lack of transparency in reporting detailed study 
methods and key operational decisions has hindered direct (i.e., reproducing a study result using the same data-
base) and conceptual (i.e., reproducing a study finding using a different database and subsequently a different 
population) replication16 and confused decision makers. We focused on conceptual replication because of its 
broader impact and potential to advance the T2DM evidence base16. Yet, conceptual replication can be challeng-
ing because of inherent differences in populations under study and/or databases used; data source choice can 
substantively affect results of nonexperimental population-based studies19. While examples of both randomized 
and nonrandomized studies with the same research question but conflicting results abound20–24, few have assessed 
probable causes of their inconsistencies. We therefore evaluated the same clinical question in independent pop-
ulations of second-generation sulfonylurea users, compared this to our prior results on the topic25, and explored 
potential reasons for similarities and differences among findings.

Results
Baseline characteristics. We identified 268,094 glipizide users, 124,354 glimepiride users, and 231,958 
glyburide users in Medicaid and 206,034, 151,229, and 134,677 users in Optum (Supplementary Tables 1 and 
2). Users were similar in age across datasets (median = 57.8 years in Medicaid, 58.2 years in Optum) (Table 1). 
The majority of users in Medicaid (59.8%), but not Optum (43.9%), were female. Users were largely of white race 
in both Optum (56.9%) and Medicaid (34.6%). Substantial proportions of users had diagnoses of hypertension 
(57.9% in Medicaid, 60.5% in Optum), dyslipidemia (42.5% in Medicaid, 56.7% in Optum), ischemic heart dis-
ease (20.9% in Medicaid, 14.3% in Optum), and depression (24.6% in Medicaid, 13.9% in Optum). Small pro-
portions had pre-existing cardiomegaly (5.8% in Medicaid, 3.0% in Optum), cardiac conduction disorders (2.0% 
in Medicaid, 1.6% in Optum), and congenital heart anomalies (1.3% in Medicaid, 0.4% in Optum). Episodes of 
serious hypoglycemia during baseline were uncommon (2.2% in Medicaid, 0.6% in Optum).

follow-up time and crude incidence rates. Among 201,183 person-years (p-y) of follow-up in Medicaid 
(median follow-up of 46 days per user), we identified 714 SCA/VAs (crude incidence = 3.55 per 1,000 p-y), 375 
(52.5%) of which were fatal. Among 197,848 p-y of follow-up in Optum (median follow-up of 76 days per user), 
we identified 385 SCA/VAs (1.95 per 1,000 p-y). In secondary analyses restricted to the first 30 days of follow-up, 
we identified 325 (7.52 per 1,000 p-y) and 110 SCA/VAs (3.00 per 1,000 p-y) in Medicaid and Optum respectively.

Modeled findings. The propensity score included 482 covariates in Medicaid (55 predefined and 427 
empirically identified by the high-dimensional propensity score [hdPS] algorithm) and 529 covariates in Optum 
(70 predefined and 459 empirically identified by the hdPS algorithm) (Supplementary Tables 3–5). Crude and 
adjusted hazard ratios (aHRs) are presented in Table 2. Notably, dataset-specific associations between glime-
piride (vs. glipizide) and SCA/VA were on opposite sides of and could not exclude the null (aHRMedicaid 1.17, 95% 
confidence interval [CI] 0.96–1.42; aHROptum 0.84, 0.65–1.08). Similarly, dataset-specific associations between 
glyburide (vs. glipizide) and SCA/VA were on opposite sides of and could not exclude the null (aHRMedicaid 0.87, 
0.74–1.03; aHROptum 1.11, 0.86–1.42). In the Medicaid-only analysis of the secondary outcome, glimepiride (vs. 
glipizide) was associated with an elevated risk of sudden cardiac death (SCD)/fatal VA (aHR 1.33, 1.02–1.75). 
Results from secondary analyses were generally consistent with the primary analysis (Supplementary Table 6) and 
we identified no dose-response relationships (Supplementary Table 7).

Discussion
This study examined the comparative risk of SCA/VA among users of individual second-generation sulfonylureas 
in two independent US populations. The crude incidence rates of SCA/VA in the Medicaid (3.55 per 1,000 p-y) 
and Optum (1.95 per 1,000 p-y) populations are similar to those reported in other diabetic populations26,27 and 
higher than those reported in general populations27,28, potentially explained by the two to fourfold increase in risk 
of SCA with diabetes26,29. Although analyses of both populations found non-statistically significant differences 
in the risk of SCA/VA among users of individual second-generation sulfonylureas, the effect estimates were on 
opposite sides of the null. These results demonstrate the sensitivity of study findings to the specific data source 
used despite using similar study methods, and the importance of the conceptual replication of findings in multi-
ple populations.

Differences in data availability between databases are an obvious potential source of discordant results. There 
were two notable data dimensions available in Optum but not in Medicaid. First, Optum provides laboratory 
results for a subset of beneficiaries. In order to more robustly characterize baseline T2DM severity and SCA/VA 
risk for Optum beneficiaries, we pre-specified relevant laboratory values to be included in the propensity scores 
(e.g., blood glucose, HbA1c, serum creatinine, hematocrit, and hemoglobin). Furthermore, we incorporated lab-
oratory values as a data dimension in the hdPS algorithm, allowing for the empirical selection of laboratory 
values as potential proxies for unmeasured confounders. Laboratory findings were unavailable in Medicaid, and 
thus were not included as pre-specified or empirically identified covariates in the propensity score estimation. 
To understand the effect of incorporating laboratory results in the propensity score, we performed a post hoc 
sensitivity analysis in Optum in which we estimated the propensity score without pre-specified and empirically 
identified laboratory covariates. The study results were consistent with the primary analysis, suggesting that dis-
crepancies between the Medicaid and Optum study findings were due to other causes. Second, socioeconomic 
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Medicaid Optum

Users, N 624,406 491,940

Person-years of follow-up, sum, among all users 201,183 197,848

Days of follow-up, median (5th, 95th percentile), per user 46 (1, 428) 76 (3, 532)

Proportion of follow-up time covered by days’ supply of sulfonylurea dispensings, median (5th, 95th percentile) 87.1 (67.4, 100.0) 88.3 (67.4, 
100.0)

Demographics Group % (unless otherwise noted)

Age, in years, at cohort entry Median (Q1-Q3) 57.8 (48.1–67.1) 58.2 (49.8–66.8)

Sex Female 59.8 43.9

Race/Ethnicity

White 34.6 56.9

Black 18.7 13.3

Hispanic/Latino 23.7 15.4

Asian 6.4 3.7

Unknown/Missing/Other 16.6 10.7

State of residence

CA 45.0

unavailable

FL 11.9

NY 27.1

OH 8.8

PA 7.2

Census level

New England 0.0 2.6

Middle Atlantic 34.3 4.8

East North Central 8.8 13.1

West North Central 0.0 8.1

South Atlantic 11.9 27.6

East South Central 0.0 4.7

West South Central 0.0 16.5

Mountain 0.0 6.8

Pacific 45.0 15.2

Unknown 0.0 0.6

Education level

Less than 12th Grade

unavailable

1.9

High School Diploma 37.4

Less than Bachelor Degree 44.9

Bachelor Degree Plus 7.7

Unknown 8.1

Housing
Probable Homeowner

unavailable
69.1

Unknown 30.9

Household income

< $40K

unavailable

18.1

$40K-$49K 6.9

$50K-$59K 6.6

$60K-$74K 8.5

$75K-$99K 10.8

$100K +  16.9

Unknown 32.1

Total net worth of the primary customer

< $25K

unavailable

11.3

$25K-$149K 21.3

$150K-$249K 14.5

$250K-$499K 21.6

$500K +  14.5

Unknown 16.8

Calendar year of cohort entry‡

2000 6.3 -

2001 7.6 3.3

2002 7.8 4.1

2003 7.6 3.9

2004 6.3 4.1

2005 8.1 12.6

2006 11.2 6.9

2007 7.6 6.2

2008 6.3 7.4

Continued
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Medicaid Optum

2009 7.1 6.4

2010 8.4 6.6

2011 7.4 6.9

2012 8.3 6.8

2013

unavailable

6.5

2014 5.6

2015 6.0

2016 6.5

Medicare enrolled Yes 48.7 30.5

Nursing home residence ever during baseline Yes 6.0 1.3

Healthcare use intensity measures, in baseline period* Group Measure of central tendency

No. prescriptions dispensed, total Median (Q1-Q3) 37.0 (9.0–78.0) 19.0 (4.0–41.0)

No. prescriptions dispensed, by unique drug Median (Q1-Q3) 11.0 (5.0–19.0) 6.0 (3.0–11.0)

No. outpatient diagnosis codes, total Median (Q1-Q3) 29.0 (10.0–69.0) 19.0 (6.0–40.0)

No. outpatient diagnosis codes, by unique code Median (Q1-Q3) 11.0 (5.0–21.0) 10.0 (4.0–16.0)

No. outpatient CPT-4/HCPCS codes, total Median (Q1-Q3) 34.0 (12.0–78.0) 21.0 (7.0–42.0)

No. outpatient CPT-4/HCPCS codes, by unique code Median (Q1-Q3) 21.0 (9.0–40.0) 14.0 (6.0–26.0)

Other investigator pre-defined covariates, in baseline period Group %

Disorders of lipid metabolism Yes 42.5 56.7

Rheumatic heart disease, chronic Yes 2.3 1.2

Hypertensive disease Yes 57.9 60.5

Ischemic heart disease Yes 20.9 14.3

Conduction disorders Yes 2.0 1.6

Heart failure/cardiomyopathy Yes 12.8 5.9

Cardiomegaly Yes 5.8 3.0

Congenital anomalies of the heart, other Yes 1.3 0.4

Implantable cardioverter defibrillator/pacemaker use Yes 0.9 0.8

Kidney disease Yes 16.2 13.6

Depression Yes 24.6 13.9

Obesity Yes 11.7 14.1

Tobacco use Yes 8.6 8.9

Alcohol abuse Yes 3.3 1.3

Hypoglycemia, serious Yes 2.2 0.6

Diabetes mellitus, type 2† Yes 95.1 97.9

Adapted Diabetes Complications Severity Index

0 50.7 61.1

1 12.5 14.1

2 14.6 12.0

3 6.8 5.1

4 5.8 3.5

5+ 9.5 4.1

Drugs in the 30 days prior to cohort entry** Group %

alpha-glucosidase inhibitor Yes 0.3 0.1

amylin analog Yes 0.0 0.0

dipeptidyl peptidase-4 inhibitor Yes 1.9 3.6

glucagon-like peptide-1 receptor agonist Yes 0.2 1.0

insulin Yes 7.8 3.8

metformin Yes 22.3 24.4

meglitinide Yes 1.0 0.4

sodium-glucose co-transporter 2 inhibitor§ Yes 0.0 0.3

thiazolidinedione Yes 7.8 5.5

CYP2C9 inhibitor Yes 4.8 2.7

CYP3A4 inhibitor Yes 3.7 2.1

CYP2C9 inducer Yes 0.9 0.2

CYP3A4 inducer Yes 6.2 3.7

drug with known risk of TdP§§ Yes 9.0 6.3

drug with known, possible, or conditional risk of TdP§§ Yes 44.9 32.1

≥  5 prescription dispensings for unique drugs Yes 39.9 21.7

Continued
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variables (education level, housing, household income, and net worth of primary customer) were available for 
Optum but not Medicaid beneficiaries. We performed a post hoc sensitivity analysis removing these covariates (in 
addition to laboratory covariates) from the propensity score estimation; the results were unchanged.

Death dates were available for Medicaid but not Optum beneficiaries. This limited censoring on death to 
Medicaid analyses. Optum beneficiaries who died (for reasons other than the outcome of interest) would likely 
have been censored on their disenrollment date. This may be evident in differences in censoring reasons by data-
set; censoring due to disenrollment occurred in 12.7% of Optum vs. 6.6% of Medicaid beneficiaries, though 
disenrollment for some beneficiaries may have been caused by reasons other than death. Optum beneficiaries 

Medicaid Optum

Laboratory covariates, in baseline period Group %

Blood glucose

No lab ever in past

unavailable

51.2

No lab in 1-year baseline 23.5

Normal 8.2

Low abnormal 0.2

High abnormal 16.9

Hemoglobin A1C

No lab ever in past 51.2

No lab in 1-year baseline 26.0

Normal 6.0

Low abnormal 0.0

High abnormal 16.8

Serum creatinine

No lab ever in past 51.2

No lab in 1-year baseline 23.3

Normal 19.5

Low abnormal 3.4

High abnormal 2.5

Hematocrit

No lab ever in past 51.2

No lab in 1-year baseline 30.4

Normal 16.2

Low abnormal 1.9

High abnormal 0.2

Hemoglobin

No lab ever in past 51.2

No lab in 1-year baseline 30.5

Normal 15.7

Low abnormal 2.2

High abnormal 0.4

Hypoglycemia, laboratory measured, alert value

No lab ever in past 51.2

No lab in 1-year baseline 23.5

No alert value 24.8

Alert value 0.5

Hypoglycemia, laboratory measured, clinically significant 
value

No lab ever in past 51.2

No glucose in 1-year baseline 23.5

No clinically significant value 25.2

Clinically significant value 0.2

Table 1. Characteristics of second-generation sulfonylurea users in Medicaid and Optum. CA =  California; 
CPT =  Current Procedural Terminology; CYP =  cytochrome P450; FL =  Florida; HCPCS =  Healthcare 
Common Procedure Coding System; ICD =  International Classification of Diseases; NY =  New York; 
OH =  Ohio; PA =  Pennsylvania; Q =  quartile; TdP =  torsade de pointes See Supplementary Table 1 and 
Supplementary Table 2 for intra-database comparisons of characteristics by individual sulfonylurea. * The 
following healthcare utilization covariates were excluded from presentation in the table, as their median 
values were zero for each sulfonylurea: #inpatient ICD-9 diagnosis codes; #unique inpatient ICD-9 diagnosis 
codes; #inpatient ICD-9 procedure codes; #unique inpatient ICD-9 procedure codes; #inpatient CPT/HCPCS 
procedure codes; #unique inpatient CPT/HCPCS procedure codes; #outpatient ICD-9 procedure codes; #unique 
outpatient ICD-9 procedure codes; #other setting ICD-9 diagnosis codes; #unique other setting ICD-9 diagnosis 
codes; #other setting ICD-9 procedure codes; #unique other setting ICD-9 procedure codes; #laboratory LOINC 
codes (Optum only); #unique laboratory LOINC codes (Optum only). * * Antimicrobial drugs in each category 
were examined within 14 (rather than 30) days prior to cohort entry; these agents are typically prescribed for 
acute conditions. †Defined by ratio of type 1 (e.g., ICD-9 250.X1 or 250.X3) to type 2 (e.g., ICD-9 250.X0 or 250.
X2) codes ≤ 0.5, ascertained during baseline and on cohort entry date. ‡Prespecified covariate not forced into 
propensity score, but included as a categorical variable in outcome model. §Not marketed during years of study 
in Medicaid analysis. §§Per CredibleMeds (AZCERT Inc.: Oro Valley, AZ).
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under study may have had a lag between dates of death and disenrollment (e.g., if benefits terminate at the end 
of the calendar month in which a beneficiary dies). This may be reflected in longer observed median follow-up 
times among Optum vs. Medicaid beneficiaries (76 vs. 46 days). Exposure misclassification would be present 
during this lag period, since expired individuals cannot be sulfonylurea-exposed. This misspecification could 
have resulted in longer follow-up times and subsequently underestimated incidence rates of the primary outcome 
among Optum beneficiaries.

Each database represents a distinct underlying population with different characteristics that may contribute 
to disparate findings. Optum comprises privately-insured, employed individuals across the US, while Medicaid 
comprises publicly-insured low-income adults, elders, children, pregnant women, and persons with disabilities30. 
Thus, Medicaid beneficiaries tend to have more comorbidities and be more socioeconomically disadvantaged and 
overall vulnerable compared to commercially insured beneficiaries. Clinical characteristics of the two study pop-
ulations indicate this; sulfonylurea users in Medicaid (vs. Optum) were more likely to have ischemic heart disease 
(20.9% vs. 14.3%), heart failure/cardiomyopathy (12.8% vs. 5.9%), cardiomegaly (5.8% vs. 3.0%), kidney disease 
(16.2% vs. 13.6%), and prior episodes of serious hypoglycemia (2.2% vs. 0.6%). These conditions are recognized as 
determinants of SCA risk in persons with DM11, therefore the dissimilar profiles of users may portend differential 
imbalance in unmeasured confounders and subsequently residual confounding. However, this should have been 
forestalled by use of data-adaptive hdPS methods.

International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes are commonly 
used to measure outcomes in healthcare database studies but have varying ability to validly capture the diagnoses 
they represent31. In order to most accurately capture our primary outcome, we used a validated algorithm for 
identifying outpatient-originating SCA/VA events. This algorithm was validated against medical records in a 
Medicaid population resulting in an overall positive predictive value (PPV) of 85.3%, and event-specific PPVs 
of 92.3% and 74.4% for SCA and VA respectively32. We can expect this algorithm to perform similarly in our 
Medicaid study but its transportability to a commercial claims dataset like Optum is undetermined, as the algo-
rithm’s specificity and sensitivity is unknown. Since the algorithm’s overall PPV can change with a varied outcome 
prevalence or a varied distribution of outcome-defining events (i.e., proportion of SCA events vs. VA events), 
the algorithm may perform differently in Optum. In fact, both overall outcome prevalence (0.08% vs. 0.11%) 
and proportion of outcome-defining SCA events (59.7% vs. 79.0%) differed in Optum compared to Medicaid, 
suggesting an altered PPV for identifying SCA/VA in Optum. Varied PPVs between the two databases could have 
led to differing rates of outcome misclassification, a potential contributor to discrepant results. Additionally, the 
International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) component of the 
algorithm, used in the Optum but not Medicaid analysis, has not been validated and may have contributed to a 
varied PPV. However, only 9% of total events in Optum were captured using ICD-10-CM codes, suggesting that 
this may not have been a principal driver of the discrepancy.

Other potential reasons for incongruous findings may be subtle; thus, assessing their impact is difficult. 
Formulary considerations, for example, could affect results if medication coverage restrictions were made for 
health-related reasons. Among second-generation sulfonylurea users under study, there were notably fewer gly-
buride users in Optum (27.4%) vs. Medicaid (37.1%). This imbalance may have been driven by differing coverage 

Medicaid Optum

Outcomes during 
follow-up N

SCA/VA 714 385

SCD/fatal VA 375 —

Measure of outcome 
occurrence Crude incidence rate, per 1,000 person-years (95% confidence interval)

SCA/VA 3.55 (3.29–3.82) 1.95 (1.76–2.15)

SCD/fatal VA 1.86 (1.68–2.06) —

Relative effect 
estimates for outcome

Hazard Ratio (95% confidence interval)

Glipizide Glimepiride Glyburide Glipizide Glimepiride Glyburide

SCA/VA

Unadjusted* 1.00 (reference) 0.96 (0.79–1.16) 0.78 (0.66–
0.93) 1.00 (reference) 0.75 (0.59–0.96) 0.94 (0.74–

1.20)

hdPS-adjusted** 1.00 (reference) 1.17 (0.96–1.42) 0.87 (0.74–
1.03) 1.00 (reference) 0.84 (0.65–1.08) 1.11 (0.86–

1.42)

SCD/fatal VA

Unadjusted† 1.00 (reference) 1.03 (0.79–1.34) 0.83 (0.66–
1.05) — — —

hdPS-adjusted‡ 1.00 (reference) 1.33 (1.02–1.75) 0.91 (0.72–
1.20) — — —

Table 2. Outcomes, incidence rates, and effect estimates for primary analysis. hdPS = high-dimensional 
propensity score; SCA = sudden cardiac arrest; SCD = sudden cardiac death; VA = ventricular arrhythmia. 
*Failed a test for non-proportional hazards in Medicaid (p = 0.034), but not in Optum (p = 0.566). **Did not 
fail a test for non-proportional hazards in Medicaid (p = 0.052) or Optum (p = 0.658). †Did not fail a test for 
non-proportional hazards (p = 0.213). ‡Did not fail a test for non-proportional hazards (p = 0.265).
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restrictions on glyburide between insurance plans, possibly due to glyburide’s increased comparative risk of seri-
ous hypoglycemia among second-generation sulfonylurea agents in elderly patients33. Such a restriction could 
have resulted in a channeling effect in which a specific subset of beneficiaries was less likely to be exposed to 
glyburide. Evidence of such formulary considerations, however, is not directly attainable from the data.

Notwithstanding differences in availability of laboratory, socioeconomic, and death data, Medicaid and 
Optum both provided data on medical diagnoses, procedures, and medication dispensings, allowing for similar 
methodologic approaches to be used in the two studies. Nonetheless, there may be differences in documentation 
completeness within each of these data dimensions, as only health services billed to the particular insurance plan 
were recorded. If beneficiaries of one insurance plan had fewer health services billed to that insurance (e.g., ben-
eficiaries using secondary insurance coverage or paying out-of-pocket) than beneficiaries of the other plan, there 
would be differential capture of healthcare information between the two databases.

We previously examined the comparative risk of SCA/VA with individual second-generation sulfonylureas in 
1999–2010 Medicaid data using similar methods25. Results were generally consistent with the current Medicaid 
study containing two more years of data, with only two minor differences. First, the primary outcome effect esti-
mate for glyburide shifted slightly towards the null (aHR 0.82, 0.69–0.98 in prior study vs. 0.87, 0.74–1.03 in cur-
rent study), no longer reaching statistical significance in the current study. This may have been due to differences 
in variables included in the propensity score model (e.g., the inclusion of the adapted Diabetes Complications 
Severity Index in the current but not prior study) or changes in prescribing patterns and confounding by indica-
tion introduced by the additional two years of data. Second, the secondary outcome effect estimate for glimepiride 
reached statistical significance in the current study but not in the prior study—potentially due to the increase in 
sample size. The general agreement between the two Medicaid studies further supports that discrepancies in 
the current findings may be attributed to differences between databases rather than issues with methodologic 
reproducibility.

Our studies have limitations. First, a lack of access to biosamples prevented examination of genetic determi-
nants of SCA/VA risk. Second, adjustment for family history of diseases was under-ascertained due to reliance on 
diagnostic coding. Third, sulfonylurea exposure was defined using prescription dispensings and may not reflect 
ingestion. To partly address this, we conducted sensitivity analyses in which we modified grace periods between 
prescriptions. Fourth, outcomes may have been under-ascertained due to the inability to capture fatal events that 
did not result in hospital presentation, potentially biasing effect estimates towards the null. However, prior work 
suggests that 69–80% of persons experiencing an out-of-hospital cardiac arrest34,35 and up to 88% of persons 
experiencing a witnessed ventricular tachycardia survive to hospital admission36, although recent registry data 
from Cardiac Arrest Registry to Enhance Survival (CARES) suggests poorer survival-to-admission rates (18–
49%, depending on presenting characteristics)37. Lastly, although we explored potential reasons for discrepancies 
in findings between databases, we were unable to directly confirm these effects on study results.

Healthcare claims databases contain both obvious and subtle differences in data availability, population char-
acteristics, and documentation completeness. Our results demonstrate the potential impact of these differences 
on study findings, despite similarity in study design and analytic methodology. With a growing emphasis on the 
replication of pharmacoepidemiologic study findings in multiple datasets to inform regulatory decision making 
and clinical practice, future studies investigating the same clinical question may arrive at differing conclusions. 
Rather than discount these results, investigators should focus more effort on assessing the specific causes of dis-
crepancies to better elucidate study findings.

Methods
overview and study populations. We conducted two hdPS-adjusted cohort studies to determine rates 
of SCA/VA among second-generation sulfonylurea users aged 30–75 years. We excluded younger users because 
SCA/VA is rare and unlikely due to prescription drugs in this population38, and older users because compet-
ing comorbidities may mimic SCA/VA. The cohorts consisted exclusively of person-time exposed to glime-
piride, glipizide, or glyburide. Data sources included demographic, enrollment, and healthcare claims from: 1) 
1999–2012 Medicaid programs of California, Florida, New York, Ohio, and Pennsylvania (~40% of the national 
Medicaid population), supplemented with Medicare claims for dual-enrollees, and linked to the Social Security 
Administration Death Master File; and 2) 2000–2016 Optum Clinformatics commercial health insurance data, 
which includes >71 million commercially insured and Medicare Advantage beneficiaries of the largest US-based 
private health insurer by market share39. Optum, but not Medicaid, included laboratory results for a subset of 
individuals. Medicaid, but not Optum, included death dates.

Defining the cohort. We defined cohort entry upon incident use of a second-generation sulfonylurea, i.e., 
we required a preceding 12-month baseline period devoid of any sulfonylurea dispensing. We excluded obser-
vations with the following baseline events: (1) interruption in insurance plan enrollment; (2) any-setting SCA or 
VA diagnosis (broader than the outcome definition below, to minimize the inclusion of recurrent events); and 
(3) pregnancy, to avoid channeling bias (pregnant sulfonylurea-treated patients almost exclusively receive glybu-
ride)40. We included only the first observation meeting these criteria, per user.

Follow-up began at cohort entry and continued until the first occurrence of a/an: (1) outcome (defined 
below); (2) diagnosis suggestive of the outcome, but otherwise failing to meet the outcome definition; (3) death 
(Medicaid only); (4) >15-day therapy gap for the cohort-defining sulfonylurea; (5) dispensing of a sulfonylurea 
different than that defining cohort entry (i.e., switching); 6) dispensing of a drug with a known risk of torsade de 
pointes41; (7) insurance plan disenrollment; (8) pregnancy; or (9) the end of the dataset. We did not censor upon 
a non-outcome hospitalization, but excluded hospitalized time from follow-up to minimize immeasurable time 
bias42.
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exposure and covariate ascertainments. We defined exposure by the second-generation sulfonylurea 
(glimepiride, glipizide, or glyburide) dispensed on the cohort entry date. We excluded sulfonylurea-unexposed 
individuals from the study. This allowed for direct comparisons between the three exposures of interest, and min-
imized the potential for selection bias and confounding by indication and other unmeasured patient characteris-
tics, further improving the performance of hdPS43,44. We pre-specified glipizide as an active comparator referent, 
as animal models showed that it lacks a direct effect on myocardial contractility45–49.

Potential confounders included pre-specified variables and those identified via empiric methods, both of 
which informed the propensity score. Pre-specified variables included demographics, putative risk factors for 
SCA/VA, and measures of intensity of health care utilization (e.g., numbers of prescription drugs dispensed)50. 
Empiric variables included those identified during baseline via a high-dimensional data-adaptive approach51,52 
which ranks and selects potential confounders based on their empiric associations with the exposure and out-
come as described below.

outcome ascertainment. The primary outcome was an incident outpatient-originating SCA/VA event 
precipitating hospital presentation. Outcomes were identified in emergency department or inpatient claims hav-
ing at least one discharge diagnosis code of interest in the principal or first-listed position (indicative of the 
reason for presentation/admission) (Supplementary Table 8). The ICD-9-CM component of this algorithm was 
validated against primary medical records in a Medicaid population and had a PPV of ~85% for identifying 
outpatient-originating SCA/VA not due to extrinsic causes32. We did not study inpatient-originating SCA/VA 
because: (1) sulfonylureas are rarely used in the hospital setting; (2) in-hospital arrhythmogenic events are often 
attributable to causes other than ambulatory drug exposures; and (3) neither Medicaid nor Optum record inpa-
tient drug exposures. The secondary outcome was the subset of primary outcomes that were fatal, i.e., SCA/VA 
events in which the person died on the day of or the day after the event occurrence (Medicaid only).

Statistical analysis. We calculated descriptive statistics for baseline variables, crude incidence rates, and 
unadjusted association measures, the latter via Cox proportional hazards models. We utilized a semi-automated, 
data-adaptive hdPS approach—an algorithm identifying proxies for important confounders53—to reduce the 
impact of measured and unmeasured potential confounders. We used pairwise hdPS to identify potential con-
founders for each sulfonylurea of interest vs. glipizide (the referent) and included all such empirically identified 
variables (and pre-specified variables) in a multinomial propensity score model. We first identified the 200 most 
prevalent diagnosis, procedure, and drug codes in each identified dimension to assess their associations with the 
sulfonylurea of interest (vs. glipizide) and with the outcome. We then used these associations to select the top 500 
codes with the largest potential for confounding. Then, the union of all confounders arising from the two sets of 
500 hdPS-identified variables (one for each sulfonylurea of interest vs. glipizide) was included in the multino-
mial PS, modeled using multinomial logistic regression53. Differences in selected covariates by exposure group 
were assessed using weighted conditional standardized differences54. We included propensity score and calendar 
year of cohort entry in each Cox proportional hazards regression outcome model, then calculated PS-adjusted 
conditional HRs and 95% CIs. Analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC). The 
institutional review board of the University of Pennsylvania approved this research.

Data availability
The data that support the findings of these studies are available from the US Centers for Medicare and Medicaid 
Services (CMS) and Optum Inc., but restrictions apply to the availability of these data, which were used under 
license for the current studies and so are not publicly available. Data may be available from the authors upon 
reasonable request and with explicit permission from CMS and Optum Inc.
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