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An integrated Asian human SnV 
and indel benchmark established 
using multiple sequencing methods
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Zhisheng cao5, Sanyang Liu6, Jie Hu2, Xinming Liang3, Ling Shang4, Yangyi chen7, 
Zhikun Liang8, Jiezhong Zhang6, Peipei chen5, Donghong Luo7, Anna Zhu8, Ting Yu1, 
Wenxin Zhang1, Guangyi fan2,9,10, Fang chen3 ✉ & Jie Huang1 ✉

Sequencing technologies have been rapidly developed recently, leading to the breakthrough of 
sequencing-based clinical diagnosis, but accurate and complete genome variation benchmark would 
be required for further assessment of precision medicine applications. Despite the human cell line of 
NA12878 has been successfully developed to be a variation benchmark, population-specific variation 
benchmark is still lacking. Here, we established an Asian human variation benchmark by constructing 
and sequencing a stabilized cell line of a Chinese Han volunteer. By using seven different sequencing 
strategies, we obtained ~3.88 Tb clean data from different laboratories, hoping to reach the point 
of high sequencing depth and accurate variation detection. through the combination of variations 
identified from different sequencing strategies and different analysis pipelines, we identified 3.35 
million SNVs and 348.65 thousand indels, which were well supported by our sequencing data and 
passed our strict quality control, thus should be high confidence variation benchmark. Besides, we also 
detected 5,913 high-quality SNVs which had 969 sites were novel and  located in the high homologous 
regions supported by long-range information in both the co-barcoding single tube Long Fragment Read 
(stLFR) data and PacBio HiFi CCS data. Furthermore, by using the long reads data (stLFR and HiFi CCS), 
we were able to phase more than 99% heterozygous SNVs, which helps to improve the benchmark to be 
haplotype level. Our study provided comprehensive sequencing data as well as the integrated variation 
benchmark of an Asian derived cell line, which would be valuable for future sequencing-based clinical 
development.

Sequencing technologies have been revolutionized in recent decades with the sequencing cost to have been 
dramatically reduced1,2. Thus, human genomes are now sequenced not only for research purposes3 but also for 
clinical applications4. Especially more recently, large-scale population sequencing projects5–8 have been pro-
posed to fulfill precision medicine and reveal genomic mechanisms of more diseases. With the rapid upgrade 
of sequencing techlogies, we are anticipating a routine usage of human genome sequencing in daily healthcare 
in the near future. Considering its wide applications, we need to carefully assess different sequencing technolo-
gies for ensuring safety and accuracy, as well as accelerating the sequencing-based applications. Accordingly, a 
human genome variation benchmark is required. Currently, a standard variation dataset of NA12878, a cell line 
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of Caucasian origin, has been established9. Significant insights have been gained from the standard variation 
dataset of NA12878, but for more applications, more reference variation datasets from different populations are 
required10. Till now, there have been several Asian genomes publicly available from individuals of Chinese11, 
Korean12 and Pakistani13 descent. However, most of these genomes were sequenced only using Massive parallel 
sequencing (MPS, also known as next-generation sequencing, NGS) platforms, and thus high confidence varia-
tions in complex regions might not be resolved. For example, targeted DNA-HiSeq identified 1,281 SNVs in 193 
genes in the Asian reference sample YH which were not detected in the original study14. These 193 genes were 
found to be probably associated with hereditary diseases with higher incidences in the Chinese population, also 
indicating the necessity of high-quality reference genomes in addition to NA1287813. It is now apparent that the 
combination of long reads, short reads, and co-barcoding read sequencing is required to fully characterize the 
variations in human genomes, and especially to establish high confidence variation dataset15. Herein, we estab-
lished an Asian reference genome with genome-wide high confidence SNVs and indels by combining diverse 
sequencing platforms with short- and long- read, which could be an approach to mitigate the influences caused 
by systematic sequencing bias of different platforms.

Results
Sequencing and quality control. To develop a representative high confidence variation data-
set of Asian origin, we recruited a health Han Chinese adult male from Beijing, China (Research ethics ID: 
XHEC-C-2019-086, HJ). With the blood sample from the recruited individual, we constructed a cell line and after 
the fourth generation of the subculture, we finally obtained a stabilized cell line. We then extracted DNA from the 
stabilized cell line in a single batch and the extracted DNA were sequenced using five frequently-used massively 
parallel sequencing (MPS) short-read sequencing platforms (BGISEQ-500, DNBSEQ-G400, NextSeq-CN500, 
NextSeq550Dx and NovaSeq6000; three technical replicates for each of these platforms). We further applied 
single tube long fragment read (stLFR)16 technology on DNBSEQ-G400, and single-molecule real-time circular 
consensus sequencing (HiFi CCS) long-read17 on PacBio Sequel II to obtain long reads (synthetic long reads 
for stLFR). After data filtering (Figure 1), we obtained 3.56 Tb high-quality MPS sequencing data for this cell 
line in total. For the ordinary MPS data (short insert size libraries), we obtained an average coverage of 86.58× 
from each sequencing library on two BGI sequencers (2 × 100 bp), and 60.07× from each sequencing library on 
three Illumina sequencers (2 × 150 bp). We obtained 250.78 Gb (~83.02×) stLFR data with the average molecular 
length to be 11.7 kb, and 77.23 Gb (~24.4×) PacBio HiFi CCS data with an average read length of 12.1 kb. For the 
ordinary MPS data, ~99.88% of the filtered reads could be mapped to the human reference genome (hs37d5), 
resulting in a coverage of ~99.92%. Among these mapped reads, 85.75% can be uniquely mapped. For the stLFR 
data, we aligned 98.98% of the filtered data to the reference genome, resulting in 98.86% coverage. For the CCS 

Figure 1. Overview of variation calling pipeline. The major steps included data filtering, alignment, variation 
calling, and integrated analysis.
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reads, all of them can be mapped to the reference genome using pbmm218 and the genome coverage was 93.2% 
(Figure S1 and Table S1).

SnV and indel detection using MpS data. To find the saturated sequencing depth of the different plat-
forms for variation detection, we detected SNVs and indels in different sequencing depth fulfilled by randomly 
extracting from the alignment results. We found that 30× sequencing depth ensured consistency in the ratio of 
uniquely mapped reads (~99%) and the number of SNVs (~3.77 million) (Figure 2 and Figure S2). We noticed 
that the number of indels kept increasing as the read depth increased for short-read sequencing. To explore why 
the detected number of indels kept increasing beyond 30×, we compared the quality distribution of increased 
indels to those identified in 30× data. We found more low-quality indels were identified with more sequencing 
data. Thus, we thought the increased indels beyond 30× were more error prone, probably caused by accumulated 
sequencing errors(Figures S3 and S4).

We then evaluated the consistency of variations identified through the ordinary MPS data from the two differ-
ent sequencing platforms (BGI and Illumina). Combining the replicates within platforms, we obtained 3,603,066 
and 3,529,989 SNVs based on the data from BGI and Illumina platforms, respectively. We compared these two 
sets of SNVs to find 3,484,189 common SNVs (95.49%), 118,877 BGI platform-specific SNVs (3.26%) and 45,800 
(1.25%) Illumina platform-specific SNVs (Figure S5). Nevertheless, despite the relatively high sequencing depth 
(~30×), ~44.41 Mb of the genome with 33.62 Mb of which to be located on chromosomes, could not be covered 
by single short-reads sequencing experiment (Figure3, Table S2,Table S3). These regions (here to be called “blind 
zones”) formed 51,612 blocks, with an average length of 860.55 bp, which possible composed by the specific Asian 
sequences and the regions recalcitrant to short-read MPS sequencing19. We aligned these blind zones against the 
YH reference genome and found about 28.19 Mb (~84.41%) sequences can be unambiguously matched, suggest-
ing these 28.19 Mb blind zones were probably caused by the limitation of short MPS reads and the remaining 
blind zones might be the different regions between the two reference genomes. Interestingly, 73.3% and 68.53% of 
these blind zones were covered by stLFR and CCS reads (Table S4). Except for blind zones, we defined the remain-
ing regions to be UMRs (uniquely mapped regions). We next wished to characterize SNVs and indels in the HJ 
cell line sequencing data that could not be mapped to the Caucasian reference genome, even with long-read 
sequencing data.

Accessibility of SNVs and indels in blind zones. Using the stLFR data and the CCS data, we detected 
3.87 M and 3.80 M SNVs, along with 822 K and 797 K indels, respectively (Table S1). Among these variations, we 
found a total of 74.7 K SNVs and 23.4 K indels were supported by both stLFR and CCS data but not detected using 
the ordinary MPS data. Those variations might be difficult to be identified through traditional whole-genome 
sequencing-based on short insert size libraries, and they can only be identified through long-read sequencing. 
We found these variations to affecting genes enriched in the gene ontology (GO) categories of olfactory receptor 
activity, IgG binding, transmembrane signaling receptor activity, G protein-coupled receptor activity, molecular 
transducer, and signaling receptor activity pathways. Among these 74.7 K SNVs, ~7.9% (5,913/74,700) SNVs 
located in blind zones, with 969 novel SNVs which were not included in the current databases of dbSNP and 
1000 Genome database. Most of these novel SNVs located in the non-coding regions, with six of them in the 

Figure 2. Saturation analysis. The relationship between SNVs(A)/indels(B) and depth, with the X axis for 
sequencing depth and the Y axis for the number of SNVs/indels detected.
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coding genes. For instance, the gene LILRB3, which is associated with the diseases of Takayasu Arteritis and 
Anencephaly20,21, harbored such a novel nonsynonymous SNV.

We then used the 1000 Genomes database to assess the frequency of these 5,913 SNVs located in blind zones, 
classifying them into rare and common SNVs. We calculated the proportion of rare and common SNVs of the 
301 Chinese dataset, the 504 East Asian dataset and the entire 1000 Genomes dataset. For the Chinese dataset, 
there are 52.81% and 35.64% rare SNVs in UMRs and blind zones, respectively. In the Asian dataset, there are 
62.38% and 42.97% rare SNVs in UMRs and blind zones, respectively. In the entire 1000 Genomes dataset, there 
are 83.24% and 67.27% rare SNVs in UMRs and blind zones, respectively. Surprisingly, we found the percentage 
of rare SNVs to be high in all three datasets, and the percentage of rare SNVs in blind zones are notably less than 
that of UMRs (Table S5). We speculated the possible reason is that all the SNVs of 1000 Genomes database located 
in blind zones were identifiable, but these SNVs are sparse and the majority of SNVs in blind zones could not be 
detected using normal WGS short reads. Thus, we compared the SNV density between blind zones and UMRs in 
three datasets. Interestingly, we found the SNV density of blind zones is far less than UMRs in all three datasets 
with >10 times (Table S6).

In the blind zones, MPS is difficult to fully cover due to its read length, which may lead to false negatives of 
mutations, but stLFR and CCS perform well. Complex genes are hard to be covered by MPS platforms, while 
linked-reads method and long-reads sequences platforms do well in detecting the regions. For example, IGV 
shows a typical gene NBPF422, who is a member of the neuroblastoma breakpoint gene family (NBPF) which 
consists of dozens of recently duplicated genes primarily located in segmental duplications on human chromo-
some 1 (Figure 4). Another gene is NAIP23,24 which is part of a 500 kb reverse replication on chromosome 5q13, 
contains at least four repeated elements and genes, and making it easy to rearrange and delete. The repeatability 
and complexity of the sequences also make it difficult to determine the organization of this genomic region. It is 
thought that this gene, modifier of spinal muscular atrophy, is a mutation in a neighboring gene SMN1. Variations 
detected on NAIP for MPS platform are relatively small and nearly included in linked-reads and long-reads 
platforms (Figure S6). In addition to the genes mentioned above, there is XAGE2 (Figure S7), and other genes.

Comparison of different sequencing technologies and other variation benchmarks. Uniquely 
mapped regions (UMRs) were the exact opposite of blind zones which were in the non-N reference genome 
and easily mapping. In the UMRs, 3,345,294 SNVs and 384,653 indels could be detected by all seven sequenc-
ing methods (Figures 5 and 6). There were 234.46 K specific SNVs and 240.74 K specific indels using CCS data, 
210.45 K and 223.25 K using stLFR, 11.78 K and 71.00 K using DNBSEQ-MPS, as well as 5.57 K and 1.98 K using 
Illumina-MPS (Figures 5 and 6). We compared the SNV quality distribution between specific SNVs and whole 
SNVs found that the quality of the majority of specific SNVs were lower than whole SNVs, likely stemming 
from sequencing method bias. Interestingly, CCS and stLFR consistently resulted in high-quality variant calls 
(Figure S8).

Figure 3. Blind zones by MPS in each sequencing platform.
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We finally identified 3.35 M SNVs and 348.65 K small indels of the HJ cell line by integrating all 17 data sets 
of seven platforms. In order to identify genetic variants of clinical significance, we annotated HJ cell line special 
variants against the ClinVar25 database. 4,404 variants (4,256 SNVs and 148 indels) in the HJ cell line were docu-
mented in ClinVar, including 37 variants that were classified as ‘pathogenic’. Among the data set, 52,026 SNVs and 
18,148 indels had minor allele frequency (MAF) 0.01 in the 1000 Genomes Project of the Asian population, and 
1.36 M SNVs were absent from the YH dataset. Comparing to NA12878 variant sets, 1.91 M SNVs and 176.72 K 
small indels were shared by the HJ cell line and NA12878. We also found 625.17 K SNVs shared by both the YH 
dataset and the HJ cell line dataset, suggesting these SNVs might be Asian only. We compared the characters of 
specific variations of HJ cell line, NA12878 and YH dataset, such as homozygous or heterozygous ratio, and found 
they showed a similar distribution in dbSNP, 1000 Genomes database and genomic regions (Table 1).

Haplotype phasing small variants. Human genomes are diploid, with chromosome pairs from each 
parent. However, most paired-end reads cannot assign variants to a particular chromosome, resulting in a 
combined haplotype (genotype)26. Haplotype information is very useful for the identification of genetic vari-
ants associated with human diseases. Haplotypes can not be directly observed from the short-read sequencing 
except linked-reads but could directly observed using the long-read sequencing27,28. The popular MPS sequenc-
ing technology is all about shuffling sequences together for sequencing. We cannot directly distinguish which 
of these sequences are the parent source,but only after phasing we can make this distinction. Phasing is strongly 
correlated with the functional interpretation of genetic variation. Therefore, due to the BGI and Illumina short 
sequence reads generated from short-insert libraries, we using long-range information from PacBio HiFi CCS 
and stLFR data to phasing, 99.63% and 99.91% of heterozygous SNVs could be phased into 19,584 and 1,262 

Figure 4. Depth and coverage of NBPF4 gene in blind zones.

Figure 5. Consistency analysis: BGI regular MPS platforms, Illumina regular MPS platforms, linked-reads 
library, and PacBio CCS mode SNV(A) and indel(B) consistency analysis.
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Figure 6. Density maps of SNV and indel variations normalized with Chinese population in 1000 Genome 
project. From inside to outside circles are DNBSEQ-MPS, Illumina-MPS, stLFR and Pacbio CCS respectively, 
and the last but one contains several lines, which means Chinese population failed in those regions detection 
while our data set contains variations here. Window =1 Mb, Inside and outside are indel and SNV.

Sample HJ YH NA12878

Total 3,345,294 3,072,912 3,259,653

dbSNP (%) 99.29 87.13 99.89

1000genomes (%) 98.28 95.93 98.68

Novel (%) 0.01 12.87 0.10

Homozygous 1,492,029 1,352,822 1,289,007

Heterozygous 1,853,265 1,720,090 1,970,646

Intronic 1,366,626 1,256,586 1,344,882

5′ UTRs 4,306 3,871 4,207

3′ UTRs 22,396 22,182 21,248

Upstream 47,789 43,612 44,056

Downstream 47,217 43,627 43,574

Intergenic 1,827,269 1,674,057 1,775,196

Ti/Tv 2.1 2.01 2.1

Table 1. Annotation of HJ, YH and NA12878 SNVs.
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blocks, respectively. Of these, 1.96 M were shared, with a phasing N50 of more than 11.26 M and 388.5K. What’s 
more, some of the chromosomes (such as Chr5 and Chr6) were almost completely phased (Table 2). According 
to the results of phasing, stLFR data performed better, it showed that the long-range reads may a good choice in 
the phasing process.

Discussion
Genome sequencing is an important part of precision medicine, widely used in the detection and diagnosis of 
various diseases, and brought potential benefits to patients. However, the MPS technologies also have some defi-
ciencies, such as short reads and structural variation detection, especially the detection of variations in the blind 
zones. There is currently a lack of standard dataset that represents Asian populations due to ethnic differences. 
In this paper, a Han Chinese adult male was recruited and seven sequencing platforms were used to detect and 
integrate SNVs and indels. Finally, a total of 3.35 M high-quality SNVs were supported by seven methods, while 
co-barcoding read stLFR and long-read PacBio HiFi CCS resolved an additional 74.7 K SNVs, providing a com-
prehensive small variation benchmark of Asians. stLFR and CCS could be well supplemented and improved based 
on the MPS results. In addition, our study also identified 5,913 high-quality SNVs which located in the blind 
zones of MPS while supported by both stLFR and CCS long-read benefit from their long-range information. Our 
analysis revealed a number of unreported SNVs and small indels, supplied a completely high confidence standard 
small variant sets for further basic studies and precision medicine.

Many variation benchmark studies using cross-platforms, such as WGS or WES, were reported in recent 
years9,11,29. For the WES data, we all know, it just captures the exon regions, which are the small proportion of 
whole-genome sequences and many diseases caused by the mutations in the non-coding region were reported30,31. 
For the normal WGS sequencing data with short insert size, due to its limited alignment ability against the highly 
complex regions32,33, the complementation of the stLFR co-barcoding reads and CCS long reads used in our study 
fill the gap of the previous studies16.

Study limitations might arise as a consequence of the type of variant calling pipelines and parameters per-
formed. As for the effect of process or parameters on the results, the different analysis pipeline, software and 
parameters will influence the accuracy and integrity of the variation calling results34,35. Several studies have con-
ducted a detailed evaluation of 70 bioinformatics pipelines comprising the combination of 7 short-read aligners 
and 10 variant calling algorithms to process WGS samples. The results showed remarkable differences in the 
number of the variants were called by different pipelines and proved BWA + GATK is the optimal combination35. 
Besides, in our previous study, we also assessed multiple parameters of the WGS analysis strategy and finally 
adopted a similar pipeline36. Thus, in this study, we straightly used a similar analysis pipeline with the evaluated 
empirical parameters for MPS. For the analysis pipelines of stLFR reads, we used the long-range WGS pipeline 

Chr

CCS stLFR

Heterozygous Phased SNV Phased rate(%) Heterozygous Phased SNV Phased rate(%)

1 169,906 169,174 99.57 172,790 172,682 99.94

2 167,518 166,806 99.57 103,486 103,435 99.95

3 143,618 142,968 99.55 101,126 101,070 99.94

4 151,585 151,033 99.64 102,317 102,274 99.96

5 128,296 127,772 99.59 75,908 75,874 99.96

6 131,798 131,325 99.64 70,091 70,064 99.96

7 123,689 123,253 99.65 68,411 68,379 99.95

8 120,782 120,391 99.68 72,564 72,536 99.96

9 94,946 94,653 99.69 53,789 53,762 99.95

10 99,256 98,894 99.64 60,279 60,254 99.96

11 100,822 100,465 99.65 49,744 49,724 99.96

12 101,519 101,168 99.65 172,818 172,720 99.94

13 75,515 75,282 99.69 43,553 43,531 99.95

14 68,223 67,954 99.61 37,388 37,370 99.95

15 67,759 67,549 99.69 34,105 34,089 99.95

16 69,062 68,823 99.65 145,073 145,017 99.96

17 54,620 54,358 99.52 151,677 151,603 99.95

18 59,025 58,847 99.7 130,925 130,865 99.95

19 48,314 48,195 99.75 135,438 135,376 99.95

20 42,939 42,750 99.56 126,619 126,552 99.95

21 39,076 39,010 99.83 122,931 122,888 99.97

22 31,029 30,979 99.84 111,751 111,697 99.95

X — — — 4,418 3,636 82.3

Y — — — 4,444 4,354 97.97

Genome 2,089,297 2,081,649 99.63 2,151,645 2,149,752 99.91

Table 2. Haplotype phasing small variants.
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to process stLFR reads for human germline variant calling and phasing37. Using a high accuracy pipeline to call 
variants of CCS long reads, which was also used in the previous study of human HG002/NA24385 with high 
precision and recall values of variant-calling38.

For the detection of SNVs in the blind zones of MPS technologies, we found two resources including the 
specific sequences of Asians and the inaccessible regions limited by short reads. The second resource could be 
remedied by long-range information technologies, such as CCS long reads and stLFR co-barcoding reads. The 
previous study reported that some additional regions that are now accessible with longer CCS reads include 
numerous medically-relevant genes which have been previously reported as recalcitrant to MPS sequencing19,38. 
With the powerful DNA co-barcoding strategy of stLFR, it enables analysis of regions which can be difficult for 
regular WGS. For example, SMN1 gene whose mutations are responsible for the genetic disorder SMA and its 
homolog SMN2 gene are extremely similar. Thus, this makes it impossible to analyze because it results in the 
ambiguous mapping of short reads, but stLFR successfully rescued those reads and properly mapped them using 
co-barcoding information. Taken together, we proposed the long-range information of stLFR and CCS data to 
help the SNV calling of some genomic regions more amenable to particular long-read technologies. Moreover, we 
noticed the variannts indentified by the two different long-read technologies were unique to its platform.So we 
checked all of the specific SNPs, including the sequencing depth, SNP calling quality, allele frequency and genome 
region. But we could not distinguish which result was accurate or not and we conclude that the ambitious result 
may be caused by different library construction or sequencing platforms.

In summary, MPS results will miss some mutations in the blind zones. By adding analysis results of stLFR 
and CCS platforms, standard data sets and high confidence regions that are considered relatively reliable can be 
obtained. This dataset can be well used for further study. In order to improve the data set, it may be necessary to 
add samples and analysis methods for integrated analysis.

Methods
Sample collection. This study was carried out in accordance with relevant guidelines and regulations, in line 
with the principles of the Helsinki declaration39 and was approved by the Instituted Review Board of Bioethics 
and Biosafety of BGI (BGI-IRB). In this experiment, cell line genomic DNA was prepared from the National 
Institutes for Food and Drug Control (NIFDC), and it contained 10 μg per tube. Used Qubit 3.0 to quantified the 
genomic DNA and agarose gel to make sure the genomic DNA molecular was not substantially degraded.

Library and sequencing. Massive parallel sequencing (MPS) library construction was adopted by the nor-
mal MPS construction process. The difference between the BGI and Illumina platforms was that the former 
involved rolling amplification while the latter used PCR amplification technology. In particular, the DNBSEQ 
library protocol contained three steps: including making DNA nanoballs (DNBs), loading DNBs, and sequencing. 
Single tube long fragment read (stLFR) library construction physically breaked the DNA into fragments of about 
50Kbps, and then Tn5 transposase was used for library construction, so that each identical fragment could bear 
the same barcode16, after the ligation step, PCR was performed and the library was ready to enter any standard 
MPS workflow.

Large-insert single-molecule real-time circular consensus sequencing (HiFi CCS) library preparation was 
conducted following the Pacific Biosciences recommended protocols40. In brief, a total of 60 μg genomic DNA was 
sheared to ~20 kb targeted size by using Covaris g-TUBEs (Covaris). Each shearing processed 10 μg input DNA 
and a total of 6 shearings were performed. The sheared genomic DNA was examined by Agilent 2100 Bioanalyzer 
DNA12000 Chip (Agilent Technologies) for size distribution and underwent DNA damage repair/end repair, 
blunt-end adaptor ligation followed by exonuclease digestion.

MpS data preprocessing. Data filter: SOAPnuke (version 1.5.6) was used to pre-process the 15 MPS data 
by removing reads from raw data with (1) adaptor contaminations, (2) more than 10% low-quality bases (base 
quality <10), (3) more than 10% N bases.

Mapping and variant calling: All filtered reads were mapped to the human reference genome (hs37d5) using 
BWA 0.71.541 (an in-house Apache Hadoop version) and removed duplication reads by Picard 1.23 (an in-house 
Apache Hadoop version). The Genome-Analysis-ToolKit (GATK) 2.3.9-lite42 (an in-house Apache Hadoop ver-
sion) was used for variant calling from BAM files with HaplotypeCaller v2.3.9-lite.

Saturation analysis of the MPS data. Picard (version 2.18.9) was used to randomly select BAM files 
from 10× to the maximum depth in a 10×-step for each MPS data. Next, MegaBOLT (version 1.15) was used 
for variant calling and then hard-filtering the SNVs with parameters of “QD < 2.0 | | FS > 60.0 | | MQ < 40.0 | | 
MQRankSum < −12.5 | | ReadPosRankSum < −8.0” and Indels with parameters of “QD < 2.0 | | FS > 200.0 | | 
ReadPosRankSum < −20.0”.

Identification of the blind zones. For each MPS data, the read sequencing depth of the whole reference 
genome was calculated by GATK. First, N-bases in the reference genome were filtered out. Then, a non-N block 
or base in reference genome would be considered as uncovered for each MPS data if the sequencing depth was 
less than 5. Those non-N blocks or bases were considered homologous if they were uncovered by all 15 MPS data. 
Finally, all those non-N homologous blocks and bases were considered as blind zones. In the blind zones, using 
the short-read library and sequencing technologies might result in false-negative of variation calling. The remain-
ing parts in the non-N reference genome except blind zones were defined as uniquely mapped regions (UMRs). 
In the UMRs, the sequencing reads were unambiguously mapped and used to perform SNVs and indels calling.

Variants calling of the stLFR reads. The output files (FASTQ) of the linked-read sequencing method 
from the stLFR library and DNBSEQ-G400 sequencing platform, enabling the use of the 10X Genomics Long 
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Ranger software after converting the stLFR barcodes to a Chromium compatible format. Firstly, we converted 
the stLFR barcodes to 10X Genomics barcodes used in-hourse Perl script. Then, we used SOAPnuke 1.5.6 to 
filter out low quality and adapter reads, and converted the data to 10X Genomics data format. Finally, clean reads 
were mapped and phased using the Long Ranger 2.1.2 wgs model. Briefly, de-multiplexed FASTQ files were 
de-duplicated, filtered,phased and SNVs/ indels were called. The SNV and indel information was parsed from the 
final VCF file using GATK SelectVariants.

Data analysis of PacBio CCS reads. PacBio single-molecule real-time circular consensus sequencing 
(HiFi CCS) have low base error rates, providing both highly-accurate variant calls and long-range information 
needed to generate haplotypes. We used the pbmm2 (version 1.0.0) alignment tool to map reads which produced 
by PacBio HiFi CCS to the hs37d5 human reference genome, with the parameter “–preset CCS–sample HJ –sort”. 
GATK HaplotypeCaller was used to call SNVs and small indels. Different values of the HaplotypeCaller param-
eter “–PCR-indel-model” and VariantFiltration parameter “–filter-expression” were adapted, setting 60 as the 
minimum mapping quality, using allele-specific annotations and “–pcr_indel_model AGGRESSIVE”. SNVs and 
small indels were filtered using GATK VariantFiltration with "–filter_expression of AS_QD < 2.0". Longer read 
lengths improve the ability to phase variants, as tools like WhatsHap demonstrate for PacBio reads40.

Haplotype phasing. Data from different technologies or BAM files for the same individual was used differ-
ent tools for haplotype phasing. By using high-confidence variant calls which were standard SNVs VCF format 
and sorted BAM file, we adopted WhatsHap (version 0.18) phase and stats commands to phase and statistic vari-
ants for PacBio HiFi CCS platform data43. Linked reads were different from normal MPS short reads or long reads 
and required an extra step to link short reads together into co-barcoding molecules. HapCUT2 tools were suited 
for stLFR data to phasing, which designed for speed and accuracy across diverse sequencing technologies and 
good for diploid organisms phasing. The flowing three-steps were needed. First of all, the BAM file was converted 
to the compact fragment file format containing only haplotype-relevant information by extractHAIRS command. 
Next, we used LinkFragments command to link fragments into co-barcoded molecules. In the end, HAPCUT2 
was used to assemble the fragment files into haplotype blocks44.

Data availability
The sequence data from this article can be found in the CNSA databases under the following accession numbers: 
CNP0000091.
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