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Gene-signature-derived ic50s/ec50s 
reflect the potency of causative 
upstream targets and downstream 
phenotypes
Steffen Renner1 ✉, Christian Bergsdorf1, Rochdi Bouhelal1, Magdalena Koziczak-Holbro2, 
Andrea Marco Amati1,6, Valerie Techer-Etienne1, Ludivine flotte2, Nicole Reymann1, 
Karen Kapur3, Sebastian Hoersch3, Edward James Oakeley4, Ansgar Schuffenhauer1, 
Hanspeter Gubler3, eugen Lounkine5,7 & pierre Farmer1 ✉

Multiplexed gene-signature-based phenotypic assays are increasingly used for the identification and 
profiling of small molecule-tool compounds and drugs. Here we introduce a method (provided as 
R-package) for the quantification of the dose-response potency of a gene-signature as EC50 and ic50 
values. Two signaling pathways were used as models to validate our methods: beta-adrenergic agonistic 
activity on cAMP generation (dedicated dataset generated for this study) and EGFR inhibitory effect 
on cancer cell viability. In both cases, potencies derived from multi-gene expression data were highly 
correlated with orthogonal potencies derived from cAMP and cell growth readouts, and superior 
to potencies derived from single individual genes. Based on our results we propose gene-signature 
potencies as a novel valid alternative for the quantitative prioritization, optimization and development 
of novel drugs.

Gene expression signatures are widely used in the field of translational medicine to define disease sub-types1, 
severity2 and predict treatment outcome3. Bridging this technology to early drug discovery was previously pro-
posed years ago4,5 but its prohibitive costs limited this approach. The recent advancement of massively parallel 
gene expression technologies such as RASL-seq.6, DRUG-seq.7, QIAseq.8,9, PLATE-seq.10, or LINCS L100011 are 
now transforming the field of compound profiling, enabling larger scale profiling and screening experiments at a 
more affordable cost12–17.

In drug discovery, dose-response experiments enable researchers to compare the efficacy of various com-
pounds to modulate biological processes of interest, finding doses for animal and human experiments and esti-
mating windows to off-target and toxic effects. Multiple statistical methods are reported for the identification of 
individual genes with a dose dependent effect from dose-response gene expression data18–23. However, in the case 
of multivariate gene expression profiling there are no generally accepted methods to estimate the key pharmaco-
logical efficacy variables EC50 (compound concentration of half-maximal activating effect) and IC50 (compound 
concentration of half-maximal inhibitory effect) from multiparametric readouts.

Connectivity Map (CMap) established the concept that compounds with similar mode of actions (MOAs) are 
highly similar in their differential expression profiles over many genes4,11,24. We postulate that this concept can be 
applied for quantifying compound potencies based on compound/pathway specific gene expression signatures. 
This work aims at defining and comparing several multivariate statistical summaries to enable classical com-
pound potency estimation. In this study, we focus mainly on methods measuring the similarity of gene-signature 
changes relative to a gene-signature induced by an active control compound, representing a defined phenotype 
of interest, e.g. a tool compound for a target or pathway of interest. The overall principal relies on assessing the 
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similarity of a compound-induced gene-signature profile relative to the one generated by an active control com-
pound; hence, the AC profile will anchor all other measurements in the form of a global reference.

The different similarity methods explored in this paper differ by their approach to assess either the direction 
of the effect (as example by the geometric angle (cosine) to the AC; referred as direction-based methods) and / 
or by how the magnitude of the effect is assessed (e.g. Euclidean distance to the NC, referred as magnitude-based 
methods). Combined, the two measures quantify the strength and direction of a phenotypic effect (see Fig. 1 and 
Table 1). Methods referred to as direction&magnitude-based combine both types of information into a single 
measure.

For this study, two well-characterized biological pathways with multiple well-characterized ligands were 
selected: the beta-adrenergic receptor pathway for which we generated experimental biological data for this 
manuscript, and the EGFR pathway, which is publicly available through the LINCS L1000 project11. For the 
beta-adrenergic pathway we used cAMP EC50s as functional orthogonal readout25. For practical purposes, we 
had to measure a small set of biologically relevant genes, instead of the full transcriptome like in CMap. RNA-seq 
was used to determine a beta-adrenergic receptor specific gene-signature that was subsequently used to quantify 
compound potencies on the level of gene expression. The L1000 assay is a panel of ca. 1000 measured genes, 
which are used to infer the differential gene expression of a total of ca. 13k genes. This allowed us to benchmark 
our methods using all L1000 genes, and subsets thereof specific for EGFR signaling or cell proliferation. The IC50s 
calculated from gene expression were compared to compound potencies measuring the inhibition of cell growth 
rate (GR50)26. The two examples represent very different well understood biological systems with reference read-
outs upstream (cAMP) and downstream (EGFR) of the gene expression readouts and should therefore represent 
a good test case for gene expression potency measures.

Our results demonstrate that gene-signature-based compound EC50 and IC50 values estimated with multivar-
iate gene-signatures are highly related to potencies inferred with relevant but independent reference readouts. 
Therefore, we expect that these methods will find a wide application in gene-signature based assays in the near 
future. All methods in Table 1 and an EC50 and IC50 fitting method are made available in the R-package mvAC50 
on github [https://github.com/Novartis/mvAC50].

Figure 1. Introduction to gene-signature quantification methods. (a) Within the manuscript, we consider 
methods measuring the similarity of gene-signature changes relative to an active control (AC) or a neutral 
control (NC). An AC signature is the gene expression signature which is representative of a phenotype of 
interest, typically induced by a compound or genetic treatment. The NC signature represents the background 
state without compound treatment. Different ACs (with different AC sigatures), e.g. representing different 
pathways might result in different EC50 or IC50 values for measured compounds. The effect of compounds 
on gene expression can be quantified with multiple approaches relative to AC and NC, e.g. quantifying the 
norm of the vector relative to NC (vector A = vec_norm in the manuscript), the effect size in the direction of 
AC ( | A | cos θ = scalar_projection_AC), or the angle between the compound vector and the AC vector(cos 
θ = cos_AC). The distance to the AC is another option (exemplified by dashed circle around AC). (b) Two main 
characteristics of signature similarity can be distinguished: similar changes in magnitude or similar changes 
in the direction of the gene expression. The magnitude can be interpreted biologically as the efficacy, while 
the direction emphasizes the direction of the change of the phenotype, e.g. different pathways might result in 
different directions of changes in gene expression. Note that (b) shows an effect in four-gene space and (a) only 
shows the effects in two-gene space for the sake of a better illustration of our concepts, even though all methods 
work on high dimensional spaces.
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Results
Generation of the beta-adrenergic receptor dataset. Vitamin-D3 differentiated THP1 cells were 
chosen as an experimental model for its sensitivity to beta agonists over a large dynamic range of compound con-
centrations and the ease of measuring cAMP27. To identify a gene-signature for beta agonists, a series of RNA-seq 
experiments were performed on THP1 cells sampled at baseline and after four hours stimulation with adrenaline, 
noradrenaline or isoproterenol.

Genes differentially expressed over all three treatments were identified (absolute log fold change >2 and 
adjusted p-value <0.05), and prioritized for large fold change and high expression levels, for independent qPCR 
validation (Supplementary Fig. 1a). Our internal compound screening setup allows us to simultaneously multi-
plex the measurement of eight genes. Two independent sets of seven genes were defined from 14 qPCR validated 
genes (Supplementary Table 1, Supplementary Fig. 1b) with the eighth gene per set (TBP) serving as a baseline 
house keeper gene. For our analysis, we considered the two sets of genes as two independant signatures. Not all 
of these 14 identified genes produced a detectable signal in the QuantiGene Plex technology due to decreased 
sensitivity of this method compared to qPCR (Supplementary Fig. 1b). The two sets of genes contain respectively 
three (CD55, DOCK4, and NR4A1) and five genes (PDE4B, SGK1, THBS1, TOB1 and VEGFA) responding 
consistently (≥50% of technical replicates of NCs with mean rscore of genes >3 in both biological replicates) to 
10 uM of isoproterenol.

Comparison of EC50s from single genes, gene-signatures, and cAMP. A total of 21 beta ago-
nists (Supplementary Table 2) covering a wide range of potencies (<10 pM to ca. 5 uM), were chosen for this 
study. Other cAMP modulators were also included in this compound set: the histamine receptor H3 antagonist 
N-alpha-methylhistamine and the adenylyl cyclase activator forskolin. As additional control, we added the beta-1 
antagonist CGP-20712A, which, as expected, failed to increase cAMP levels. All compounds were measured in 
dose-response mode in the cAMP assay and for both gene signatures. An overview of dose-response curves of the 
genes is shown in Supplementary Fig. 2. The gene-expression data, derived gene-signature scores, and fitted EC50s 
are presented in Supplementary Tables 3 and 4.

The relationship of EC50 values derived from genes and gene-signatures compared to cAMP-derived EC50s 
depends on the gene-signature methods used. Representative examples for method classes are shown in 

Method Description Method class

cor_p_AC Pearson correlation of the compound signature to the active 
control signature direction

cor_s_AC Spearman rank correlation of the compound signature to the 
active control signature direction

cos_AC Cosine of the compound signature to the active control 
signature direction

cos_weight_AC

cos_AC * significance_weight. Idea: downweight cosine values 
for signatures with very small / non-significant amplitudes, 
likely caused by noise. Significance weight = weight from 
0 to 1 quantifying the significance of the signal amplitude 
of the compound gene-signature vector. Formula: min(1, 
mean(abs(gene rscores)) /3). The mean of the absolute gene 
expression value rscores of the signature readouts divided 
by 3 equals 1, if on average the rscores of the signature are 
3 standard deviations away from the background. This is 
considered the threshold from where on signals are considered 
strong enough not to be downweighted. This score requires 
the gene expression readouts to be scaled as rscores. Rscores 
give the number of robust standard deviations where a gene 
expression of a treatment is away from the median of untreated 
NC conditions (rscore = (fold change treatment – median fold 
change NC) / mad (NC))

direction

dot_p_AC Dot product of compound signature with the active control 
signature direction&magnitude

scalar_projection_AC Scalar projection of the signature to the active control signature direction&magnitude

vec_norm Norm of the compound signature vector magnitude

euc_NC Euclidean distance of compound signature from neutral control 
signature magnitude

maha_NC Mahalanobis distance of the compound signature from the 
neutral control signature magnitude

num_readouts_changed Number of readouts with signal different from background 
(abs(rscore of gene)> 3) magnitude

euc_AC Euclidean distance of the compound signature to the active 
control signature AC_similarity

maha_AC Mahalanobis distance of the compounds signature to the active 
control signature AC_similarity

Table 1. Overview over gene-signature quantification methods.
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Fig. 2a. (all methods and genes are shown in Supplementary Fig. 3). The EC50s derived from direction-based 
methods cor_p_AC and cos_weight_AC are found almost entirely within a window of one log unit around the 
cAMP-derived EC50s, which is very close considering the different incubation times and the different locations of 
the readouts in the adrenergic signaling pathway (gene expression vs cAMP). In contrast, the EC50s derived from 
gene-signature methods containing magnitude information (scalar_projection_AC and vec_norm) and EC50s 
from the individual genes NR4A1 and THBS1 are almost all more than one log unit above the cAMP-derived 
EC50s. The ranking of cAMP potencies is not preserved as well (e.g. Spearman correlation for scalar_projection_
AC to cAMP = 0.32). It is important to note that the correlation of gene signatures between compounds does not 
mean that they have similar EC50s, only that they have overlapping biology at some concentrations.

A performance overview of all genes and gene-signature methods is given in Fig. 2b. The similarity between 
gene or gene-signature derived EC50s with cAMP derived EC50s over all tested compounds is quantified by the 
Pearson correlation between logged EC50s. Most methods within one method-class performed equally well. 
While direction&magnitude and magnitude-based methods showed no significant difference to individual 
genes (TukeyHSD test with p-val <0.05), direction-based methods performed significantly better than the other 
methods with Pearson correlations ranging between 0.6 and 0.9. All other method classes showed mean Pearson 
correlations <0.5. The AC_similarity method performed significantly worse relative to others (only negative 
correlations).

The relationship between all gene-signature methods, single genes and cAMP EC50s is shown by a principle 
component analysis (PCA) projection of the dataset (Fig. 2c). Each data point represents the vector of logged 
EC50s calculated by one method (for one replicate and one gene-signature) of all compounds in the dataset, 
Methods generating similar EC50s are projected close to each other. The PCA projection confirms that direction 
methods cluster together with the cAMP EC50s, and all EC50s containing magnitude information cluster together 
(green dots are hard to see but cluster together with blue dots) with single gene EC50s. As mentioned above, the 
AC_similarity methods are outliers relative to the two major clusters.

Figure 2d visualizes the expression levels of the individual genes over compound concentrations (left panel) 
and the resulting dose-response curves of derived multivariate EC50 methods (right panel). Increasing concentra-
tions of metaproterenol result in increasing expression of the genes of the gene-signature. While the shape of the 
gene-signature remains similar to the active control signature (isoproterenol [10 uM], red line), the magnitude of 
the metaproterenol signature exceeds the AC signature with increasing concentrations (left panel). The observed 
difference in gene expression magnitude between high concentrations of metaproterenol and the active control 
signature is only captured by metrics that make use of this information (Fig. 2d, right panel, green line). It is 
important to note that the difference between methods does not only lead to different maximal effect plateaus of 
the dose-response curve, but also to different EC50 values of the fitted curves.

The increase in gene expression beyond the active control also explains why AC_similarity methods cannot 
work in this scenario: the maximum similarity between compounds and AC signature is reached at identical 
magnitudes of both signatures. Both lower and larger magnitudes result in less similar signatures, resulting in 
bell shaped curves.

EGFR inhibitors dataset from L1000. For the L1000 EGFR (“Epidermal growth factor receptor”) inhib-
itor dataset, we selected a set of eight EGFR inhibitors measured in six-point dose-response in MCF10A cells 
after 3 h and 24 h incubation time11. As reference univariate readout, the corresponding growth rate inhibition 
GR50 measured after three days was used26. GR50 are the recommended potency measure for cell proliferation 
inhibition, as they are corrected for the background cell proliferation rate of a cell line26. As the LINC technology 
reported 12,717 genes, it was possible to test several gene-signatures: (1) a published EGFR signature28, and (2) a 
published cell proliferation gene-signature3, further referred to by the gene name “Targeting protein for Xklp2” 
(TPX2). As a third biologically unbiased gene-set, all genes from L1000 were used for comparison. We also inves-
tigated the performance of single gene measurements, for which we chose the 20 genes from each of the three 
signatures with the strongest response to the active control (gefitinib at 3.33 uM). All calculated IC50s are available 
in Supplementary Table 5.

Like with the beta agonist pathway data, gene-signature IC50s of the EGFR inhibitors corresponded well to the 
reference GR50s (Fig. 3a for representative readouts, all results in Supplementary Fig. 4-6). Results show a strong 
influence of the incubation time. At 24 h all shown gene-signature methods over all three gene-signatures resulted 
in IC50 vs GR50 correlations > = 0.88, except scalar_projection_AC and vec_norm with the TPX2 gene-signature 
resulting in slightly lower correlations each of 0.68. The individual single gene IC50s at 24 h incubation showed 
more variance, with Pearson correlations ranging from -0.36 with the TPX2 signature to 0.9 with the EGFR signa-
ture. The individual genes from the EGFR signature resulted in the highest median correlation of 0.88. Two very 
similar median correlations of 0.68 and 0.69 were found for the individual genes of the TPX2 signature and from 
all L1000 genes, confirming the lower biological relevance for the EGFR pathway of the latter signatures. Even 
though all three gene-signatures contained individual genes that correlated very well with the GR50s ( > 0.9), all 
of them also contained genes with correlations to GR50s < 0.5, few even around 0. It is not clear how one could 
reliably distinguish more relevant from less relevant genes in the absence of another orthogonal reference-readout 
like the GR50s.

At 3 h incubation time, differences between methods and gene-signatures are more pronounced, showing 
highest correlations for direction-based methods with the EGFR signature (both above 0.75). Again individual 
genes show a wide distribution of results ranging from −0.38 for TPX2 to ca. 0.85 for all three gene-sets. Like with 
the beta agonists, the values of gene-signature IC50s are very close to the values from GR50s and more than 50% of 
the gene-signature IC50 values are within a one-log-unit window to the GR50s (Fig. 3b).
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Discussion
The two main contributions of this work are: (1) the development and validation of an analytical framework for 
calculating compound potency based on multivariate readouts and (2) the provision of an open-source R-package 
to facilitate the application of our methods on new data by the scientific community.

With this work, we demonstrate that gene signature IC50s/EC50s are well correlated with compound potencies, 
both on the causative target (cAMP example) and downstream biological readouts (EGFR example). Therefore, 
we propose our method as a valid and novel alternative for the prioritization, optimization and development of 
novel drugs. We foresee our method to be impactful in situations where (1) causative targets are unknown and 
lead-optimization has to be done against a gene-signature phenotype, (2) in situations where gene-signature 
potencies are used as supportive information to main target potency assays (e.g. off-target/tox signals), or (3) in 
situations where the gene-signatures can be used as surrogate for an in vivo response.

The principal of this framework is to first summarize the information contained in multiple-genes into a single 
value and then pass it into a logistic function for potency estimation. The optimal metrics were selected based on 
their degree of concordance with compound potencies estimated with standard readouts (cAMP/GR50).

The fact that IC50/EC50 potency measurements are specific to a given biologic process (cAMP, gene expres-
sion, cell viability), and not a general property of the compound, is a potential challenge for comparing methods. 
However, choosing experimental models where gene expression is closely linked to pathway activation provides 
us confidence in our working model. The conservation of the compounds potency rank-order regardless of using 
gene expression or standard readouts supports our premise. Indeed, very close potency relationship (Pearson cor-
relations up to 0.9) were observed for reference potency values (cAMP, GR50) upstream (cAMP in the EGFR path-
way) and downstream (GR50 cell viability in the EGFR pathway) of the gene expression readout, and independent 

Figure 2. Comparison of EC50s from gene-signatures, single-genes and cAMP for the beta agonists dataset. (a) 
Example of gene and gene-signature EC50s from representative methods compared to cAMP EC50s. Each point 
represents a compound. The dashed red lines indicates one log unit above and below the red line of equality. 
The shown gene and gene-signature EC50s are from signature one, except THBS1 from signature two. The 
shown data is from replicate two. Axes are log10 transformed. (b) Correlation of gene-signature and single-gene 
EC50s with cAMP EC50s. (c) PCA of the cAMP, gene, and gene-signature summary methods logged EC50s of all 
compounds in the dataset. Colors of (a, b, c) are according to the definition in (c). (d). Dose dependent change 
of the genes in the gene-signature (left panel, with y-axis values > 50 not shown, orange dashed lines at three 
rscores indicating significant changes from the background), compared with the dose dependent change in 
gene-signature summary score methods and cAMP for metaproterenol (right panel, boxes colored according 
concentrations shown in left panel, dashed grey line at 100% activity).
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of very different compound incubation times of readouts. The assessments of optimal methods was not influenced 
by gene-signature composition. Indeed, all signatures used in this work were previously reported, or constructed 
independently of the screening datasets.

Of the five methodological classes of metrics: (1) direction-based, (2) distance based (magnitude) to the NC, 
(3) distance based (magnitude) to the AC, (4) magnitude and direction-based and (5) single genes, results show 
that magnitude-based methods to the AC clearly underperformed to other methods while direction-based meth-
ods performed consistently well in the two explored datasets. We did not find large differences in the perfor-
mance of the methods within a single method class in these two datasets. Yet we recommend cos_weight_AC 
for direction-based methods due to its ability to down-weight signal with very small magnitude. To our surprise, 
adding information about the magnitude of the gene expression did not improve the results.

To this date, there is still very limited data available in the public domain that enables the comparison of mul-
tivariate EC50/IC50 with standard readouts, hence it is impossible to generalized current findings to future situa-
tions. Nonetheless, with the raise of novel sequencing methods that enable low to medium throughput compound 
screening based on hundreds to thousands of genes, the need for multivariate potency estimation will be strong.

Finally, our work enables the use of gene-signatures as screening readouts and biomarkers throughout all 
stages of research from early cell line experiments, to animal models and clinical studies. Using the same readout 
will in many cases contribute to increased biological relevancy at all stages of the drug discovery process. Similar 
multiplexed readouts like the data from cell painting or metabolomics29,30 might also benefit from our multi-
plexed potency methods.

The algorithms and datasets used in this publication are available in the R-package mvAC50 from https://
github.com/Novartis/mvAC50.

Methods
THP1 cells. Human promonocytic THP-1 cells (TIB-202, ATCC) were cultured at 37 °C/CO2 in medium 
(Hepes (72400-054, Life Technologies), with 10% FBS (2-01F16-I, Amimed/Bioconcept), 1% Pen/Strep (15140-
122, Life Technologies), 1 mM Sodium Pyruvate (11360-039, Life Technologies), 2mM L-Glutamine (25030-
024, Life Technologies), 0.0 mM Mercaptoethanol (31350-010, Life Technologies)). Before compound treatment 
and for all experiments, the THP1 cells were differentiated with 100 nM Vitamin D3 (Biotrend Chemicals AG, 
Switzerland, Cat. No. BG0684) for 3 days at 37 °C/CO2.

cAMP HTRF assay. The assay was run using the Cisbio cAMP dynamic 2 Kit (62AM4PEB), in white 
384well-plates BioCoat #354661, with 20,000 cells/well in 10 µL/well HBSS/HEPES/IBMX. Isoproterenol [10 uM] 
was used as active control. Cells were incubated with compounds for 20 min. at 37 °C in HBSS/HEPES, in the 
presence of the Phosphodiesterase (PDE) inhibitor IBMX. Then, cells were lysed and the amount of generated 
cAMP was quantified by HTRF (Homogeneous Time Resolved Fluorescence).

Beta agonists gene-signature. RNASeq experiments were done comparing untreated cells with a treat-
ment with isoproterenol, adrenaline or noradrenaline for 4 h in THP1 cells.

Figure 3. Comparison of gene and gene-signature IC50s to growth rate inhibition GR50s of EGFR inhibitors. 
(a) Pearson correlation of representative methods and 20 individual gene IC50s to GR50s. (b) Comparison of 
representative EGFR gene-signature IC50s in MCF10A vs. GR50s. The dashed red lines indicate one log unit 
above and below the red line of equality.
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qPCR was run in THP1 cells for 4 h incubation time with isoproterenol and formoterol at 1, 10 and 100 nM. 
Total RNAs were isolated with MagMAX™−96 Total RNA Isolation Kit (Ambion ref#AM1830), and cDNA was 
made using a cDNA Synthesis Kit (Applied Biosystems™ Ref#4368813) RT-PCRs were performed in 384-well 
plates on an AB7900HT cycler (Applied Biosystems) using specific TaqMan probes (Applied Biosystems). 
Housekeeper normalization was done relative to the one of the three genes GAPDH, PPIB or TBP, which had the 
most similar expression level to the gene of interest, according to our DMSO qPCR data. All measurements were 
done in quadruplicates.

QuantiGene Plex assay. Gene expression changes were measured using a customized QuantiGene Plex 
assay (Thermo Fisher Scientific).

Two different eight-gene-signatures were designed (obtained from Thermo Fisher Scientific), as the 
internal QuantiGene process was set up to handle custom-designed signatures of eight genes. Each of the 
eight-gene-signatures consisted of seven target genes responding to cAMP and one housekeeper gene (TBP).

Measurements were done in THP1 cells. Compounds were measured in six replicates on the same day on 
different plates, and the procedure was repeated on another day using three replicates on different plates (referred 
to as biological replicates in the manuscript).

For the assay, 100,000 cells were seeded in a volume of 20 uL in each well of a 384 well plate (Greiner PP V 
bottom 781280). Compounds were added in serial dilutions of 1:10 (200 nL volume added per well) with maxi-
mal compound concentrations of 100uM. After 4 h incubation, cells were lysed with QuantiGene lysis mixture 
(10 uL), and after 2 min, stored at −80 °C.

Targeted mRNA transcripts were captured to their respective beads by combining lysis mixture (5 uL), block-
ing reagent (2 uL), probe mix (1.125 uL), water (11.25 uL), and magnetic beads (0.3 uL; 500 beads/region/uL) and 
incubated overnight.

Signal amplification via branched DNA is added by sequential hybridization of 2.0 Pre Amplifier biotinylated 
label probe, and binding with Steptavidin-conjugated Phycoerythrin (SAPE). For this purpose, each 15 uL/well 
pre-amplifier, amplifier and label probe & SAPE were added after washing followed by 1 h incubation at 50 °C and 
multitron shaking 300 rpm 1 h.

The amount of RNA in 90 uL of probe was quantified using a Luminex Flexmap 3D instrument (Luminex). 
The identity of the mRNA is encoded by the hybridized Luminex beads, and the level of SAPE fluorescence is 
proportional to the amount of mRNA transcripts captured by the respective beads.

QuantiGene Plex data processing. The raw readout of the assay was processed as follows:

 1. Fold change = 50 * log2 (mRNA count / median mRNA count for NC well)
 2. Rscore = (Fold change for well – median Fold change for NC wells) / MAD (mRNA count for NC wells)
 3. HKnorm = Rscore for well – HK_Rscore for well; with HK = housekeeper gene.

L1000 / GR50 dataset. EGFR inhibitors in MCF10A cells were selected as model system, because (1) 
they showed a strong GR50 dynamic range (Dose-response curves visualization http://www.grcalculator.org/
grbrowser/.), and (2) were measured in six concentrations in L1000 (10 uM, 3.33 M, 1.11 uM, 0.37 uM, 0.12 uM, 
0.04 uM).

The L1000 data was obtained in two files (GSE70138_Broad_LINCS_Level4_ZSVCINF_mlr12k_
n78980x22268_2015-06-30.gct.gz and GSE70138_Broad_LINCS_Level4_ZSVCINF_mlr12k_
n115209x22268_2015-12-31.gct.gz) from NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE70138).

This version of the data contains the changed gene-expression normalized as z-scores relative to the DMSO 
controls on each plate, a similar normalization procedure to the one performed for the beta-agonists expression 
data. When multiple probes were measured for the same gene_symbol, the probe with the highest variance was 
kept, for each timepoint. The gefitinib treatment at 3.33 uM was defined as the active control of the experiment. 
Compounds, smiles, and inchi_key were downloaded from the LINCS webpage (http://lincs.hms.harvard.edu/
db/datasets/20000/).

From the 12,727 genes in the L1000 dataset, two different subsets were selected based on published 
gene-signatures. An EGFR (entrez gene_id 1956) signature28 (“EGFR_UP.V1_UP” with 193 genes, “EGFR_
UP.V1_DN” with 196 genes) was downloaded from msigdb31,32, of which a total of 381 genes could be mapped 
to the L1000 data. This gene-signature was derived from profiling of MCF-7 cell lines stably overexpressing 
ligand-activatable EGFR. A TPX2 (entrez gene_id 22974) signature (50 genes, of which 39 could be mapped to 
L1000) was taken from Farmer et al.3, representing a more general signature for cell proliferation.

The GR50 cell viability potency values after three days compound incubation time were also obtained from the 
LINCS consortium (http://lincs.hms.harvard.edu/db/datasets/20252/results). To make the data more comparable 
to the fitted IC50’s from the gene-signatures, compounds with flat GR50 dose-response curves were set to either 
one log unit above or below the highest or lowest tested concentration, depending whether their fitted GRInf 
value was larger or smaller than 0.5.

As the files from L1000 and the GR50s contained slightly different compound and cell line names, the names 
were set all to lowercase and whitespaces and “-“ were removed. Eight known EGFR inhibitors afatinib, neratinib, 
pelitinib, gefitinib, erlotinib, canertinib, lapatinib, and HG-5-88-01 overlapped between the two datasets. The 
two EGFR/ERBB2 dual inhibitors neratinib and afatinib were considered as EGFR inhibitors for this study (even 
though they are annotated as ERBB2 inhibitors in the LINCS nominal target annotation).

https://doi.org/10.1038/s41598-020-66533-5
http://www.grcalculator.org/grbrowser/
http://www.grcalculator.org/grbrowser/
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Dose-response (DRC) fitting. Four-point parametric logistic fits were calculated with an R func-
tion included in the mvAC50 R-package [https://github.com/Novartis/mvAC50]. The fitting algorithm in the 
R-package was adopted from our in-house HTS analysis software Helios33. The fits were constrained to A0 and 
Ainf (minimal and maximal fitted activities) between −50% and 500% of the active control effect, respectively, 
and a hill slope between 0.1 and 10. The IC50s or EC50s were constrained to one log unit above and below the 
experimentally measured range of concentrations, (for the beta agonists ranging from 0.00001 uM to 100 uM, and 
for the L1000 data ranging from 0.04 uM to 10 uM)

In the case of constant fits, IC50 or EC50 values one-log unit above or below the range of tested concentrations 
were assigned to the compounds to be able to use those data points as well in the correlation of calculated poten-
cies to the reference potencies. Depending on whether the Amax of the constant fit was below or above 50%, a 
potency of either one log unit below or above the tested concentration range was assigned. Fitted AC50s with Ainf 
values <50% were set to one log unit above the highest tested concentration as well, assuming that the observed 
effect is not caused by the same mode of action as in the active control.

In parallel to the four-point parametric fit and constant fits, a nonparametric fit was also calculated and com-
pared to the other fits, to allow for more unusual curve shapes, e.g. bell shaped curves. For these fits the reported 
potency is the concentration at which the fit crosses the line of 50% activity. The decision for the reported fit 
and potency was done as follows: If the non-parametric fit resulted in r2 < 0.5, the data was considered as not 
suitable for curve fitting and assigned as constant fit. If the curve had a bell-shape, the nonparametric potency 
was reported. If parametric fits had r2 < 0.5 or the absolute (amin-amax) <30, a constant fit was reported as well, 
where amin and amax correspond to A0 and Ainf within the measured concentration range. For the remaining 
curves (the majority) parametric potencies were reported.

cAMP EC50s were fitted with the same algorithm and settings, to ensure a higher consistency in the data. The 
fitted cAMP EC50s were in agreement with the fits generated by the biologists who ran the assays. For the GR50 
dataset this approach was not feasible, as no raw data was available, and the GR50 algorithm was claimed to be 
superior to four-point parametric fits of the same data26.
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