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Multi-branch Convolutional Neural 
Network for Identification of Small 
Non-coding RNA genomic loci
Georgios K. Georgakilas1, Andrea Grioni1, Konstantinos G. Liakos3, Eliska Chalupova2, 
Fotis C. Plessas3 & Panagiotis Alexiou1 ✉

Genomic regions that encode small RNA genes exhibit characteristic patterns in their sequence, 
secondary structure, and evolutionary conservation. Convolutional Neural Networks are a family of 
algorithms that can classify data based on learned patterns. Here we present MuStARD an application 
of Convolutional Neural Networks that can learn patterns associated with user-defined sets of 
genomic regions, and scan large genomic areas for novel regions exhibiting similar characteristics. We 
demonstrate that MuStARD is a generic method that can be trained on different classes of human small 
RNA genomic loci, without need for domain specific knowledge, due to the automated feature and 
background selection processes built into the model. We also demonstrate the ability of MuStARD for 
inter-species identification of functional elements by predicting mouse small RNAs (pre-miRNAs and 
snoRNAs) using models trained on the human genome. MuStARD can be used to filter small RNA-Seq 
datasets for identification of novel small RNA loci, intra- and inter- species, as demonstrated in three 
use cases of human, mouse, and fly pre-miRNA prediction. MuStARD is easy to deploy and extend to a 
variety of genomic classification questions. Code and trained models are freely available at gitlab.com/
RBP_Bioinformatics/mustard.

Since the human genome was first sequenced about two decades ago1, our understanding of regulatory and 
non-coding elements in humans, and other organisms, has been steadily increasing with the identification 
and cataloguing of a variety of encoded molecule and regulatory region classes2. Several small non-coding 
RNA molecule families such as microRNA (miRNA), small nucleolar RNA (snoRNA), small nuclear RNA 
(snRNA), piwi-interacting RNA (piRNA), short hairpin RNA (shRNA), small interfering RNA (siRNA), 
promoter-associated short RNAs (PASRs), termini-associated short RNAs (TASRs)3,4, transcription initiation 
RNAs (tiRNAs)5, and others, now populate the functional expression map of known genomes. The plethora of 
functional small non-coding RNA classes supports the idea of a highly interconnected transcriptomic landscape 
and highlights the necessity of computational approaches that can effectively identify them against the enor-
mous background variability of eukaryotic genomes. Along with our deeper understanding of well-established 
organisms, the total number of sequenced genomes has been increasing hand in hand with fast pace. NCBI 
currently lists just over 7,000 eukaryotic sequenced genomes, of which almost 50 have fully assembled genomes, 
and approximately 1,000 have some assembled chromosomes. The experimental annotation of newly sequenced 
genomes is a much slower and piecemeal process that benefits greatly from the availability of computational tech-
niques that can guide and assist the annotation.

Computational methods for genomic annotation have a history at least as long as full genome sequencing, 
with computational identification of exons and protein coding genes6 starting in parallel with the sequencing of 
the first human genome. Small non-coding RNAs, with their shorter length, lack of coding three nucleotide peri-
odicity pattern, and often small number of known examples per class, offer a tougher challenge for computational 
methods. A common approach for in silico identification of putative small non-coding RNA genomic loci has 
been the use of sequence homology between molecules from well annotated species, such as humans, and the new 
species in question. These methods, while efficient when homology is high, are bound to preferentially annotate 
a subset of loci, biased towards extra-conserved molecules. However, a large number of small non-coding RNAs 
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are more evolutionary constrained. For example, an estimated 40% of human miRNAs have developed recently in 
evolutionary history and can only be found in other primates7.

To avoid the constraints and biases of homology based identification of small non-coding RNA loci, there has 
been a steady development of algorithms that aim at modelling characteristics of a specific class or subclass, and 
then evaluating proposed regions of a genome for their potential to encode a small non-coding RNA of this class. 
For example, over thirty computational methods aiming at pre-microRNA identification have been developed 
to date, with no tool significantly outperforming all others on benchmarked datasets8. A large drawback of such 
methods is their dependence on expert-defined features and background sets, which tend to produce methods 
that perform well in evaluations closely matching their training biases, but fail to produce robust classification 
in more realistic conditions, such as when ‘scanning’ a large genomic region. The second large drawback of these 
methods is that they are, by design, focused on one specific class or subclass of small non-coding RNA molecules. 
For example, a method tailored for pre-miRNA prediction is not suitable for snoRNA prediction and vice versa. 
This issue leads to an unbalanced development of methods towards specific families and ignores others that may 
not be populous or well-researched enough to warrant the attention of in silico method developers. For example, 
as mentioned above, pre-microRNA prediction is a well-researched field with over thirty computational methods 
published in the past decade or so, while in contrast snoRNA prediction displays a distinct paucity of options, 
with methods becoming obsolete and unusable after more than a decade9,10 and the rate of identification severely 
slowing down in new species11.

Taking into account the limitations and drawbacks of in silico methods to date, we have decided to approach 
the problem of small non-coding RNA identification from a different angle. Here we introduce MuStARD 
(Machine-learning System for Automated RNA Discovery), a flexible Deep Learning framework that utilizes 
raw sequence, conservation, and folding data to identify genomic loci with similar characteristics of a given set of 
regions (Fig. 1a). Instead of hundreds of expertly curated features, we employ a Convolutional Neural Network 
(CNN) Deep Learning (DL) architecture that can identify important characteristics from raw data directly12. 
Rather than biased background training sets, we opted for a novel iterative background selection process that 
allows the method itself to identify the background ‘hard cases’ for a specific classification task, and preferentially 
learn how to avoid them. While other tools focus on one class of small non-coding RNAs, we have developed a 
framework that can be applied, directly out of the box, on any class of genomic loci. We show the power of this 
methodology by training models that outperform the state of the art for pre-miRNAs and snoRNAs by scanning 
large genomic regions. We demonstrate the practical use of our method by performing a cross-species predic-
tion using models trained on human data to accurately identify mouse pre-miRNAs and snoRNAs in numbers 
well above homology searches. Additionally, we applied MuStARD on small RNA-Seq enriched regions and 
pre-miRNAs that have been removed from miRBase since version 14, to further highlight the usability spectrum 
of our algorithm. The source code is available at https://gitlab.com/RBP_Bioinformatics/mustard and trained 
models at https://gitlab.com/RBP_Bioinformatics/mustard_paper.

Methods
Network architecture and training scheme.  MuStARD is able to handle any combination of either 
raw DNA sequences, basewise evolutionary conservation and folding data (Fig. 1a). Each feature category is for-
warded to a separate ‘branch’ that consists of three convolutional layers and the computations from all branches 
are concatenated prior to being forwarded to the fully connected part of the network. The training scheme con-
sists of two steps (Fig. 1b). First 50 models are trained in parallel with random background selection. The 50 
trained models are used to scan a large region of the genome. From these 50 scans, the ‘hard cases’ where the 
majority of models detect a false positive are isolated and a new negative set created. The best performing of the 
50 models is then used as the starting point to train the final model on the ‘hard cases’ while keeping the same 
positive set. This final trained model is then evaluated on targets located in chromosomes completely left out of 
the whole previous process, thus ensuring no cross-contamination.

This process was repeated 6 times to train pre-miRNA detection models composed of different input com-
binations; raw sequence with secondary structure and conservation (MuStARD-mirSFC model), raw sequence 
and conservation (MuStARD-mirSC), raw sequence and secondary structure (MuStARD-mirSF), secondary 
structure and conservation (MuStARD-mirFC), secondary structure only (MuStARD-mirF) and sequence only 
(MuStARD-mirS). For the combination of raw sequence, secondary structure and conservation, we have trained 
an additional model after disabling the class weights option in Keras (MuStARD-mirSFC-U model).

The same pipeline was used to create three snoRNA detection models, one for detecting the C/D box snoRNA 
subspecies (MuStARD-snoSFC-U-CDbox), one for H/ACA box (MuStARD-snoSFC-U-HACAbox) and one for 
detecting all types of snoRNAs (MuStARD-snoSFC-U).

Detailed information related to the network architecture and training scheme can be found in Supplementary 
Methods.

Training sets.  Human (GRCh38) and mouse (GRCm38) genomes and corresponding gene and snoRNA 
annotations were downloaded from Ensembl v93 repository13. Fly genome (version 5.32) was downloaded from 
FlyBase14. Pre-miRNA sequences were downloaded from miRBase v22.115. Basewise conservation scores, based 
on phyloP algorithm, of 99 and 59 vertebrate genomes with human and mouse respectively were downloaded 
from the UCSC genome repository16. For genome scanning tests, targets were extended by + /− 5,000 bp and 
the resulting regions were merged in the case of strand specific overlaps. The regions were assessed by a moving 
window of width 100 and step 5. Any prediction overlapping the target by at least 50% was considered a posi-
tive. A full explanation of the production of Training Sets, and the Methodology of comparisons can be found 
in Supplementary Methods. Results of the comparison between MuStARD models using distinct combinations 
of raw sequence, secondary structure and evolutionary conservation as input, are presented in Supplementary 
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Table 1. The evaluation of the final MuStARD models and comparisons to other state of the art programs can be 
found in Supplementary Tables 2–7. The performance of MuStARD-mir models in the first training iteration can 
be found in Supplementary Table 8.

Software and hardware requirements.  MuStARD is developed in python utilizing tensorflow and Keras 
for the Deep Learning aspect, R for visualizing the performance and Perl for file processing, reformatting and 
module connectivity. Full list of dependencies can be found on MuStARD’s gitlab page.

MuStARD is able to execute either on CPU or GPU depending on the underlying hardware configuration 
by taking into advantage tensorflow’s flexibility. The framework has been designed to maintain a minimal 
memory footprint thus allowing the execution even on personal computers. Running time heavily depends on 
input dimensionality, number of instances in the training set, learning rate and GPU availability. On a GPU 

Figure 1.  Overview of MuStARD modular architecture and iterative training pipeline. (a) MuStARD is able 
to handle any combination of either raw DNA sequences, RNAfold derived secondary structure and basewise 
evolutionary conservation from PhyloP. DNA sequences and RNAfold output are one-hot encoded while 
PhyloP score is not pre-processed. Each feature category is forwarded to a separate ‘branch’ that consists of three 
convolutional layers. The computations from all branches are concatenated prior to being forwarded to the 
fully connected part of the network. (b) The training pipeline of MuStARD consists of two steps. Initially, pre-
miRNA sequences are randomly shuffled to exonic and intronic (protein-coding and lincRNA genes) regions of 
the genome to extract equal sized negative sequences with 1:4 positive to negative ratio. This process is repeated 
50 times to facilitate the training of equal number of models. The performance of each model is assessed based 
on the test set and all false positives that are supported by at least 25 models are extracted. This set of false 
positives is added to the negative pool of the best performing model to create an enhanced training set. The 
enhanced set is used to train the final MuStARD model.
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(NVIDIA GeForce GTX 1050Ti) it took approximately 5 minutes to train a model on 30,000 positive and negative 
sequences.

MuStARD operates directly on genomic intervals in BED format, in the cases of both the training and predic-
tion modules. For example, regarding small RNA-Seq datasets, MuStARD does not directly process aligned reads. 
Instead, users need to provide a bed file with small RNA-Seq enriched regions to be scanned with MuStARD. 
Essentially, sequencing depth is not crucial as our algorithm works after a ‘peak calling’ step that can be as simple 
as a bedtools merge command followed by a bedtools coverage filtering.

For the mouse liver small RNA-Seq dataset, we scanned 14,552 intervals (both strands derived from 
7,276 peaks) with a total size of 3.9mbp, mean interval size of 268 bp and standard deviation of 50.3 bp. The 
MuStARD-mirSFC-U model was used with a sliding window step of 10 bp and the total running time was 36 min-
utes (CPU usage only).

In the case of the fly embryo dataset, we scanned 1,638 intervals (819 peaks) with 526 kb total size, 321 bp 
mean size with standard deviation of 172 bp. We used MuStARD-mirSF model with a sliding window step of 
10 bp and total running time of 3.8 minutes.

The average running time of MuStARD per peak, based on the mir-SFC-U model, was 0.17 seconds, while 
based on the mir-SF model was 0.13 seconds. Running times were normalized on 321 bp average interval size.

Results
Training of convolutional neural network model.  We compared the performance of MuStARD on all 
combinations of input data for the pre-miRNA prediction dataset (Supplementary Table 1). As expected, scan-
ning test sequences with various models shows that models including a higher number of meaningful input data 
branches perform better in retrieval of pre-miRNAs. The model trained on secondary structure and conservation 
was the best performing two-input model. This result aligns with the identification of pre-miRNA hairpins by 
the Microprocessor complex during miRNA biogenesis primarily by characteristics of their secondary struc-
ture rather than sequence17 and the fact that pre-miRNAs have highly conserved regions corresponding to the 
mature miRNA sequences. Surprisingly, the non-balanced model (MuStARD-mirSFC-U) performs best out of 
all model combinations including the balanced three input model. Since MuStARD-mirSFC-U outperforms all 
other models, we will only report results for this model in the following evaluations. For snoRNAs, the equiva-
lent best performing model is MuStARD-snoSFC-U. Detailed explanation of the training scheme can be found 
in Supplementary Methods.

Identification of homo sapiens pre-miRNA genomic loci.  While training MuStARD models, we 
left-out the entirety of randomly selected chromosome 14 as a final evaluation set that could be fairly used to 
benchmark MuStARD’s performance against the current state of the art in pre-miRNA prediction. The question 
of accurate pre-miRNA prediction has been thoroughly researched since there are currently over 30 published 
pre-miRNA prediction algorithms indexed in the OMICtools18 repository. The majority of these studies could not 
be coerced to run on our benchmarking dataset (see Supplementary Methods for details). We managed to run 
and evaluate five state of the art programs: HuntMi19, microPred20, MiPred21, miRBoost22 and triplet-SVM23. A 
list of algorithms we attempted, but failed, to evaluate can be found along with our code repository. Of these five, 
only triplet-SVM, MiPred and miRBoost provide probabilities as output scores allowing assessment of their per-
formance on multiple score thresholds. HuntMi and microPred provide fixed output score/labels limiting their 
performance comparison on a fixed threshold (Supplementary Figure 1, Supplementary Tables 2 and 3). After 
evaluating all five algorithms on the chromosome 14 evaluation set, we identified MiPred as the overall optimally 
performing state-of-the-art algorithm, thus for the sake of brevity we will only report direct in depth comparison 
to MiPred. Table 1 summarizes the performance results from the pre-labelled and scanning chromosome 14 
benchmarks.

Both MuStARD and MiPred report predictions with probability scores, and both programs would as default 
be used at a score threshold of 0.5. However, at that threshold, MiPred produces an inordinate amount of false 
positives (Supplementary Tables 2 and 3). For fairness of comparison of program precision, we have set a 
threshold on prediction sensitivity at the point where each program predicts 50% of real pre-miRNAs (Fig. 2a). 
MuStARD exhibits consistently higher precision for any level of sensitivity (Fig. 2b,c) and at a strict threshold 
where 33% of real pre-miRNAs can be annotated it produces on average one false positive prediction per 800,000 

Algorithms

Homo Sapiens - chr14 pre-labelled 
dataset

Homo Sapiens - chr14 scanning 
dataset

Precision Sensitivity F1 Precision Sensitivity F1

MuStARD-mirSFC-U 0.958 0.522 0.675 0.953 0.424 0.587

MiPred 0.128 0.977 0.226 0.069 1 0.130

miRBoost 0.063 0.840 0.118 0.080 0.898 0.146

HuntMi 0.147 1 0.256 0.070 0.979 0.131

microPred 0.114 0.977 0.205 0.197 1 0.330

triplet-SVM 0.194 0.931 0.321 0.061 0.898 0.115

Random 0.051 0.545 0.094 N/A N/A N/A

Table 1.  Performance results based on the human chromosome 14 pre-labelled and scanning datasets.
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scanned nucleotides (Fig. 2d) outperforming MiPred by an order of magnitude. Detailed information related to 
the scanning and static types of evaluation can be found in Supplementary Information.

Identification of pre-miRNAs from small RNA-Seq data.  Our method can scan large genomic regions 
with unprecedented precision, but would still produce a large number of false positives in a full genome scan of 
several billion bases. A more realistic experimental and computational approach would be the identification of 
molecules from small RNA-Seq data. In this type of commonly performed experiment, RNA is isolated and fil-
tered for sizes below a certain threshold, thus removing most mRNAs and long non-coding RNAs. However, there 
still remain fragments and other artifacts, and the bona fide small RNAs still need to be classified into different 
classes.

We used the human pre-miRNA trained model of our method to retrieve pre-miRNA predictions from three 
small RNA-Seq datasets in varying degrees of evolutionary distance from humans. The first dataset consists of 
human H1 cells, in which we only evaluated 502 small RNA-Seq enriched regions from the left-out chromosome 
14. The second dataset comes from mouse liver and we evaluated on 7,276 enriched regions genome-wide. The 
last datasets is of higher difficulty as it was derived from drosophila melanogaster, an evolutionary distant organ-
ism for which conservation information was not readily available. We evaluated our method without the conser-
vation branch (MuStARD-mirSF) on drosophila using the top 819 small RNA-Seq enriched regions (Table 2).

Figure 2.  Evaluation of MuStARD human predictions against MiPred, the best performing of state-of-the-art 
pre-miRNA prediction algorithms. (a) Genome browser visualization of each algorithm’s performance on the 
scanning windows in a 15 kb locus hosting three pre-miRNAs on the left-out chromosome 14. Both evaluated 
programs have been benchmarked at scores that give sensitivity of 0.5 over the left-out chromosome. MuStARD 
correctly predicts 2/3 of the annotated pre-miRNAs (in this particular locus), same as MiPred. MuStARD 
produces no false positive predictions, compared to 11 for MiPred (marked with red x). (b) precision-sensitivity 
curve of MuStARD and MiPred over scanned areas of the left-out chromosome 14. (c) Precision of MuStARD 
and MiPred at loose (sensitivity 0.5) and strict (sensitivity 0.33) thresholds. (d) Average length in thousands of 
base pairs for finding each false positive prediction on the left-out chromosome. Showing MuStARD at strict 
and loose thresholds, and MiPred at strict, loose, and full (score 0.5 - sensitivity ~1) thresholds, and random 
prediction (threshold sensitivity 0.5) denoting the worst performing levels an algorithm could achieve.

MuStARD-
mirSFC-U MiPred Expression

Homo 
Sapiens 
- small 
RNA-Seq in 
H1 cells

Precision 0.750 0.857 1

Sensitivity 0.500 0.157 0.027

F1 0.600 0.266 0.054

Mus 
Musculus 
- small RNA-
Seq in Liver

Precision 0.747 0.512 0.964

Sensitivity 0.581 0.097 0.065

F1 0.653 0.163 0.122

Drosophila 
Melanogaster 
- small 
RNA-Seq in 
Embryo

Precision 0.526 1 0.500

Sensitivity 0.500 0.023 0.052

F1 0.512 0.046 0.095

Table 2.  Performance summary based on the small RNA-Seq datasets from Homo Sapiens, Mus Musculus and 
Drosophila Melanogaster, at 0.84 score threshold.
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We have evaluated MuStARD and MiPred using precision/recall curves (Supplementary Figure 2) as well as 
the F1 measure at multiple score thresholds to gain a spherical view of the algorithms’ performance (Fig. 3). For 
the precision/recall curves specifically, we have added the ‘naive’ strategy of picking multiple top percentiles of 
small RNA-Seq enriched loci ranked by decreasing expression level. The ‘naive’ strategy serves as the baseline 
performance that any Machine Learning algorithm should outperform.

MuStARD outperforms MiPred at every benchmark dataset while keeping a relatively balanced ratio between 
precision and sensitivity across multiple score thresholds. For example, in order for MiPred to reach high levels 
of precision (85.7%) in human, it needs to increase the score threshold at a level that reduces the sensitivity below 
16% (Supplementary Table 4). MuStARD, on the other hand, is able to maintain sensitivity above 40%, even with 
a score threshold as high as 0.89 that translates to 82% of precision.

As expected, we notice a decreasing level of MuStARD’s prediction performance with increasing evolutionary 
distance from our training organism with human (F1 = 0.66, Fig. 3a), mouse (F1 = 0.57, Fig. 3b) and drosophila 
(F1 = 0.39, Fig. 3c) at 0.5 score threshold (Supplementary Table 4). Our method can narrow down the peaks iden-
tified from small RNA-Seq and better prioritize ones that could harbor small RNAs of a specific class. Detailed 
information related to the small RNA-Seq based strategy can be found in Supplementary Methods.

Cross-species identification of pre-miRNA genomic loci.  Having established a substantial increase in 
precision for intra-species pre-miRNA prediction we evaluated our model on an inter-species prediction. Briefly, 
we used the best performing pre-miRNA identification model trained on human data, to scan swathes of the 
mouse genome (in total ~9.8Mbps) containing 1,227 annotated mouse pre-miRNAs. The inter-species prediction 
correctly identified pre-miRNAs with a small number of false positives, at a rate of 1/260kbp. Figure 4a shows a 
browser snapshot of a mouse pre-miRNA cluster locus. As expected, the precision of the inter-species prediction 
was lower than the intra-species evaluation set (Fig. 4b), and even lower for pre-miRNAs that do not have a 
human homologue as they have lower levels of conservation which is one of our model’s input branches (Fig. 4c). 
MuStARD exhibits exceptional levels of generalisation capacity (Supplementary Table 5) identifying correctly a 
large majority (94/129) of homologous pre-miRNAs and more than double (212) non-homologous pre-miRNAs. 
Detailed information can be found in Supplementary Methods.

Evaluation of miRBase retracted pre-miRNAs.  In order to evaluate our method on another difficult 
and realistic task, we mined all pre-miRNAs that were annotated in previous versions of miRBase (version 14 to 
22.1) but have since been retracted from it. Extensive details can be found in Supplementary Methods. These are 
loci that show a close similarity to bona fide microRNAs, enough to be suggested by some experimental method. 
We evaluated 57 human and 64 mouse pre-miRNAs with our pre-miRNA prediction model trained on the latest 
human miRBase. Since these retracted pre-miRNAs do not exist in this latest version, our training model has 
never seen them before. At the 0.5 score threshold (loose) used for the evaluation, MuStARD correctly identified 
as negative 54/57 (95%) which increased to 56/57 (98%) at 0.85 threshold (strict) for human pre-miRNAs. For 
mouse pre-miRNAs, still using the human trained model, we correctly retrieved as negative 64/64 (100%) of the 
targets even at the most loose threshold (Supplementary Table 6).

Identification of homo sapiens sno-RNA loci.  Despite its high accuracy on pre-miRNA classification, 
MuStARD was not specifically developed for pre-miRNA detection. To demonstrate its flexibility we trained 
models on a completely different class of small non-coding RNAs, small nucleolar RNAs (snoRNAs). SnoRNAs 
are a class of small RNAs with widely varying structure, sequence, and conservation patterns. We experimentally 
trained a model on all snoRNAs as well as two additional models for the most populous snoRNAs sub-families, 

Figure 3.  Evaluation of filtering for small RNA-Seq datasets for pre-miRNAs. F1 score per score threshold of 
the prediction method. MiPred default score threshold is 0.5. We evaluated three datasets: (a) human H1 cells, 
left out chromosome 14. (b) mouse liver, whole genome. (c) drosophila melanogaster embryo, whole genome. 
For the drosophila evaluation, vertebrate evolutionary conservation track was not available so the MuStARD-
mirSF (sequence, folding) model was used instead.
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the H/ACA and C/D box. H/ACA box snoRNAs have a secondary structure consisting of hairpins and single 
stranded regions. In contrast, C/D box snoRNAs have a stem-box structure that is much more variable than H/
ACA box. In addition, our ‘all snoRNA’ dataset includes snoRNAs beyond these two sub-families. For the two 
sub-families we were also able to benchmark against snoReport24 a state-of-the-art snoRNA prediction soft-
ware developed specifically to identify each of these two categories against background (Table 3, Supplementary 
Table 7). We observe that MuStARD matches snoReport on the Homo Sapiens C/D box training set (Score 0.8, 
F1: 0.759 vs 0.769), but completely outperforms snoReport in Mus Musculus prediction for both C/D box (Score 
0.8, F1: 0.704 vs 0.570) and H/ACA box (Score 0.8, F1: 0.810 vs 0.033). MuStARD also outperforms snoReport 
at the Homo Sapiens H/ACA box model (Score 0.8, F1: 0.755 vs 0.094). Furthermore, we tested the inter-species 
capabilities of the MuStARD model, by applying the human-trained snoRNA model to the mouse genome 
(Supplementary Table 7). These results demonstrate that the MuStARD method is capable of producing well 
trained models beyond the state of the art without domain knowledge, and even with relatively heterogeneous 
positive samples (“all snoRNAs”).

Figure 4.  Prediction of mouse pre-miRNAs by the model trained on human. (a) Genome browser visualization 
of MuStARD performance on the scanning of a 35 kb locus hosting 36 pre-miRNAs. MuStARD correctly 
identifies 20/36 pre-miRNAs with 2 false positives, out of which one falls on the first “exon” of a long non 
coding RNA Mirg annotated as “miRNA containing lincRNA”. (b) Precision-Sensitivity curve of human 
trained MuStARD predictions on mouse pre-miRNAs. Orange line shows the model prediction on human 
for reference. Solid blue line shows the prediction on all mouse pre-miRNAs, and dashed blue line shows the 
prediction on mouse pre-miRNAs without a direct human homologue. (c) A visualization of the mouse pre-
miRNA evaluation set denoting the number of predicted and non-predicted, orthologous and non-orthologous 
pre-miRNAs.

All snoRNAs C/D box H/ACA box

MuStARD MuStARD snoReport MuStARD snoReport

Score 
Threshold 0.5

Homo Sapiens

Precision 0.545 0.476 0.512 0.705 0.100

Sensitivity 0.791 0.954 0.954 0.764 0.058

F1 0.645 0.635 0.666 0.733 0.073

Mus Musculus

Precision 0.549 0.494 0.332 0.730 0.103

Sensitivity 0.928 0.969 0.897 0.951 0.146

F1 0.689 0.654 0.484 0.825 0.120

Score 
Threshold 0.8

Homo Sapiens

Precision 0.820 0.645 0.666 0.909 0.250

Sensitivity 0.708 0.954 0.954 0.647 0.058

F1 0.759 0.769 0.784 0.755 0.094

Mus Musculus

Precision 0.656 0.580 0.420 0.772 0.055

Sensitivity 0.769 0.897 0.887 0.853 0.024

F1 0.708 0.704 0.570 0.810 0.033

Table 3.  Evaluation of prediction for all snoRNA, and CD-box orH/ACA-box subfamilies separately.
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Discussion
We present here a flexible Deep Learning framework that can be used to identify small RNA genomic loci based 
on the sequence, conservation, and secondary structure characteristics of the class. A model can be easily trained, 
without any changes on the code, to identify any class of small RNA loci provided enough examples of the class 
exist. Training of the model does not require expertly curated features specific to the RNA class. In contrast to 
highly specific methods that rely on extraction of hundreds of features, our method operates directly on raw 
sequence, conservation scores, and a simple linear folding representation. Despite the simplicity of the inputs, and 
the generality of the method, it manages to convincingly outperform all state of the art methods that have been 
each developed and trained on one single class of RNAs specifically.

An important aspect of our method is the ability, for the first time, to scan large genomic regions, or even 
several thousand sequencing peaks, at an acceptably low false discovery rate. Machine learning methods can only 
learn variation that is presented to them. When looking for extremely rare events, such as small RNA genomic 
loci, it becomes evident that large genomic regions will need to be scanned, and the background variation will 
be enormous. However, most negative loci have extremely low potential of being confused for small RNA loci. 
A static classification between real loci and randomly selected background is prone to overestimate the pre-
dictive power of evaluated methods. Some methods have attempted to create ‘harder’ negative sets by includ-
ing sequences that have characteristics similar to the predicted class. This approach implies that the researcher 
already knows the major characteristics of the predicted class, and that these characteristics will remain stable for 
each training model. In our case neither of these prerequisites were true.

We initially prototyped our method with a small set of negatives, four for each real training example, randomly 
selected from regions within the coding and intronic regions of mRNAs, and long non-coding RNAs. We quickly 
realized that while our method could separate between these categories easily, it still produced a large amount 
of false positives in the more realistic large region scanning evaluation. Training several models using different, 
but equal, background sets showed us variability in the number and range of identified false positives. However, 
we noticed that a number of false positives appeared consistently in several of the trained models. These ‘hard 
cases’ of background variation are the ones that have sequence, conservation, and folding characteristics closest 
to the real training examples and are thus harder to differentiate. We decided to attempt an iterative enrichment 
technique for the training background in which ‘hard cases’ that confuse our models consistently are added into 
the training set for a second round of training. This method achieved a great leap in performance when evaluated 
in completely independent data. Importantly, this automatic iterative method does not rely on an expert user to 
select the characteristics of importance. The ‘hard cases’ are identified by the training model itself and will fit to 
whatever positive set it is training on. The enriched background for pre-miRNA and sno-RNA models is radically 
different, representing the differences of these classes between them, and allowing the models to be easily and 
accurately trained on any positive set of small RNA loci.

Using a number of pre-miRNA prediction algorithms for region scanning was time consuming and arduous 
labor. To calculate hundreds of features on regions spanning less than one percent of the human genome, all other 
algorithms (with miRBoost being the sole exception) required to group the scanning region into smaller batches 
of 2000 sequences in order to parallelize the analysis into a computer cluster (MetaCentrum-CERIT). Even so, the 
computing time for each single batch was approximately 4 days. In contrast, our algorithm was able to scan the 
mouse benchmark dataset that includes several million base pairs in a few hours on a single CPU.

We have demonstrated that our method can be used for cross-species prediction of small RNAs. As a proof 
of concept we trained models on human pre-miRNAs and snoRNAs and then identified their counterparts in 
mouse, a pair of well annotated species that have considerable evolutionary distance. The pre-miRNAs we cor-
rectly identified on the mouse genome were enriched in evolutionary conserved pre-miRNAs in human (approx-
imately 30% of our true positive predictions vs 10% of all mouse miRNAs). That said, the majority (70%) of our 
predicted pre-miRNAs are not homologous to human pre-miRNAs and would not be easily identified by a simple 
homology search.

The method presented here can be generalized for any class of small RNAs on any species. We chose to high-
light two examples (pre-miRNAs and sno-RNAs) that differ radically. Where pre-miRNAs have high levels of con-
servation and fold into characteristic hairpin structures, sno-RNAs show a much wider size distribution (118.8 
mean / 59.1 sd vs 81.9 mean / 16.9 sd) and have a variety of subclasses with variable secondary structure and 
evolutionary patterns, making their identification harder. Thousands of known pre-miRNA sequences against a 
few hundred sno-RNAs reduce the size of the training set, adding a level of difficulty to the task. It follows that 
several methods for pre-miRNA identification have been developed to date, while sno-RNA identification meth-
ods have not been developed in the past decade. The need for modern, easy to use, easy to train, methods becomes 
self-evident, especially for RNA classes with fewer members, for which no new development is performed. It is 
beyond the scope of this paper to develop models for each class of small RNAs, but using our openly available 
method researchers can easily produce such models for their own RNAs of interest. MuStARD has been specifi-
cally designed to automate this process and facilitate ease-of-use by simplifying the input requirements. Regions 
of the targeted small RNA class can be loaded as a bed file, and MuStARD handles all pre-processing steps such 
as sequence and evolutionary conservation extraction as well as secondary structure calculation. Additionally, 
the iterative training module provides an interface for the automatic selection of background genomic loci that 
optimally represent the negative set, specifically tailored for the specific small RNA class. MuStARD can be easily 
applied on any small RNA identification problem that would not be easily identifiable by using older methods. 
Extensive documentation and tutorials on using MuStARD for novel RNA class predictions are available along 
with the MuStARD code repository at gitlab.com/RBP_Bioinformatics/mustard.
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Conclusion
To conclude, we have developed a method that is easy to train and deploy for any class of small RNA genomic loci. 
Using the novel iterative background selection our method can choose the background ‘hard cases’ specific for 
each training, boosting performance. We show that our method outperforms class specific methods, both in accu-
racy, and computational performance. We achieved cross species identification of small RNAs beyond homology, 
and also highlighted a realistic use case in the identification of pre-miRNAs out of small RNA-Seq peaks.
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