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Structural evolution and 
mechanism of strain glass 
transition in ti48.7ni51.3 shape 
memory alloy studied by 
anomalous small-angle X-ray 
scattering
Yung-chien Huang1, cheng-Si tsao1,2 & Shyi-Kaan Wu1,3 ✉

the in-situ anomalous small-angle X-ray scattering (ASAXS) technique was used to investigate the 
strain glass transition (SGt) in as-quenched ti48.7ni51.3 shape memory alloy during a thermal cycle of 
30 °C to the SGT temperature Tg (−50 °C) and then to 30 °C again. The Ni atoms play a critical role as 
point defects in the SGT mechanism and are very difficult to characterize using conventional tools. 
ASAXS identified the distribution of Ni atoms in nanodomains, which have a disk-like core–shell 
configuration with a Ni-rich shell and a highly Ni-rich core. Moreover, the morphological evolution, 
growth and shrinkage of the highly Ni-rich core domains during the thermal cycle through Tg are 
demonstrated. The enhancement and reversible behavior of the local lamellar ordering arrangement 
of nanodomains during the SGt process at Tg are revealed. The structural evolution and local ordering 
arrangement of nanodomains can play a role in hindering martensitic transformation. The ASAXS 
results provide new knowledge about the SGT beyond that from current simulation works. However, 
this corresponding structure of the nanodomains was destroyed when the specimen was heated to 
250 °C.

TiNi-based shape memory alloys (SMAs) exhibit excellent shape memory effects and superelasticity with a 
high damping capacity due to the well-known thermoelastic martensitic transformation1. The B19′ martensitic 
phase transformation from a dynamic strain-disordered B2 phase is attributed to long-range ordered (LRO) 
lattice strains. Remarkably, the regime of phase transformation of a ferroelastic system such as Ti50-xNi50+x SMAs 
changes from martensitic transformation to strain glass transition when x is larger than a critical concentration 
of 1.2 at.%2–5. The excess Ni atoms (called point defects or doping defects) play a critical role in inducing this 
crossover from normal martensitic transformation to strain glass transition. According to reported studies of 
TiNi SMAs2,4,6–10, strain glass demonstrates a strain liquid state (also called the unfrozen strain glass state), with 
most nano-strain domains dynamically flipping among possible strain orientations at temperatures above the 
glass transition temperature Tg. With decreasing temperature, the nano-strain domains gradually grow, but they 
are eventually frozen into a statically strain-disordered state (called the strain glass state or the frozen strain 
liquid) below Tg. In contrast to the LRO (martensitic or ferroelastic) transformation, the short-range ordered 
(SRO) strain glass transition is a conjugate transition of a ferroelastic system2,3. The strain glass experimentally 
exhibits a number of unusual properties2–4,8,11,12 as the signs of strain glass transition, such as (1) invariance of the 
average structure through Tg, revealed by X-ray diffraction; (2) a frequency-dependent anomaly at Tg, detected 
by dynamic mechanical measurement; (3) non-ergodicity in field-cooling and zero-field-cooling experiments; 
and (4) negative temperature coefficients of physical properties (electrical resistivity, thermal conductivity, etc.). 
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Strain glass also demonstrates interesting properties in terms of the shape-memory effect and superelasticity13. 
An increasing number of strain glass systems (such as Ti–Ni–X and Ti–Pd–X, where X is an alloying element 
such as Fe, Cr, Mn, Co, V, or Cu) have been found, suggesting that strain glass is a general phenomenon in 
defect-containing ferroelastic systems3,6–8,10,14,15. Strain glass is a new horizon of ferroelastic systems and may offer 
opportunities for both fundamental research and new applications. However, the fundamental understanding the 
mechanism of such strain glass transition is still very limited.

Strain glass is characterized by random nano-strain domains. According to the existing phenomenological 
models and simulations of strain glass transition3,6,9,16, point defects (excessive dopant Ni atoms), or most prob-
ably defect pairs randomly distributed in the whole sample, form locally-ordered nano-strain domains and thus 
induce SRO strain at T < Tg to effectively inhibit the LRO or martensitic transformation2,3. These simulations 
suggest non-compositional transformation and fixed doped defects during strain glass transition. However, the 
existence of nano-strain domains in TiNi strain glasses was reported from observations by high resolution trans-
mission electron microscopy (HRTEM)3,4. It is extremely difficult to use HRTEM to observe the real morphology 
of excess Ni-containing nanodomains because of their low electron density contrast. Therefore, the observed 
nanodomains may be mainly caused by the diffraction strain contrast from the lattice misfit. No HRTEM image 
of the real morphology of nano-strain domains has been published to date. On the other hand, the realistic 
morphology of well-defined nanodomains of as-quenched Ti48.7Ni51.3 SMA was recently confirmed due to the 
atom/electron density contrast (Δρ) between nanodomains and matrix through studies by small-angle X-ray 
scattering (SAXS) technique17 and neutron scattering (SANS) technique18. The advantage of SAXS or SANS 
technique is that the scattering intensity is not only contributed by the large number of domains but also is 
proportional to the product of (Δρ)2 and (domain size)6, leading to changes in intensity of orders of magnitude 
over the measured Q range19,20. The diameter (~50 nm) and thickness (~1.3 nm) of the disk-like morphology of 
well-defined nanodomains were determined in our previous SAXS study17. The roughly observed sizes of the 
randomly-distributed strain domains observed by TEM were 1–5 nm at room temperature (RT), 20–25 nm at T < 
Tg for the point-defect-induced domains4, and 20–40 nm at T < Tg for the precipitate-induced domains21 because 
the precipitate was thought to be composed of Ni atom defects. There still exists a gap in the relationship between 
the real well-defined nanodomains and nano-strain domains. In fact, the real spatial distribution at the large scale 
of the strain nanodomains at RT and the way the frozen nanodomains lead to the SRO strain in bulk glass when T 
decreases to Tg remain experimentally unknown due to the limitations of TEM and sampling.

For further in-depth study of the formation mechanism and the microstructural evolution of the real nanodo-
mains through Tg, it is necessary to solve some critical experimental challenges: (1) The actual distribution of the 
excess doped Ni defects in the well-defined nanodomains (formed during quenching) needs to be determined so 
that they can be accurately correlated with the nano-strain domains; (2) the variation of the Ni point defects and 
well-defined nanodomains during the strain glass transition needs to be examined. (3) Is the similar hindrance 
effect to LRO (martensitic transformation) or the formed SRO at Tg related to the variation of well-defined nano-
domians? Direct experimental determinations to resolve these two challenges could yield actual solutions to the 
mechanisms, rather than the methods involved in examining nano-strain domains, the concept of which origi-
nated from simulation works. Compared with the current structural characterization tools, synchrotron in-situ 
anomalous small-angle X-ray scattering (ASAXS)22–27 with a tunable energy only sensitive to Ni atoms performed 
during a thermal cycle through Tg may be the most effective or even a unique approach for solving the above chal-
lenges. Basically, SAXS allows quantitative studies of the size, geometry and spatial orientations of a number of 
nanoparticles in the bulk sample, as has been demonstrated in various alloys26,28–34. In this study, the synchrotron 
in-situ ASAXS technique was performed during the thermal cycle (RT → Tg → RT→ annealing temperature) of 
as-quenched Ti48.7Ni51.3 specimens. The challenges mentioned above were successfully resolved, and the ASAXS 
results provide breakthroughs regarding the strain glass transition beyond the current simulation works.

Results
temperature-dependent ASAXS measurement of the as-quenched ti48.7ni51.3 SMA.  Figure 1 
(a)(a’), (b)(b’), (c)(c’) and (d)(d’) show the results of the temperature-dependent 2D ASAXS patterns of the 
as-quenched Ti48.7Ni51.3 SMA measured using 8000 eV and 8226 eV at 30 °C, −50 °C (at Tg), 30 °C (end of cycle) 
and 250 °C (aging), respectively. The radial streaks in the 2D ASAXS patterns shown in Fig. 1 provide direct 
evidence of the plate-/disk-like morphology of the nanodomains17,28,35–38. The corresponding 1D ASAXS profiles 
are shown in Fig. 2. In that figure, the power-law scattering behavior (I(Q) ∝ Q−2) in the middle Q range (0.02–
0.06 Å−1) of the ASAXS profiles also reveals direct evidence that the nanodomains are plate-/disk-like in shape26. 
The power-law scattering behavior of the exponent of −4 in the low Q range (0.003–0.009 Å−1) is contributed by 
the very large particles (surface scattering), which are beyond the scope of this study26. Also in Fig. 2, one can find 
that the 1D ASAXS profiles measured at different energies for the same temperature have similar profile shapes, 
except for some small peaks (i.e., structure peaks) only appearing in the ASAXS profiles measured at 8000 eV. 
Unlike the 1D ASAXS profiles without the structure peaks measured at 8226 eV (near the absorption edge of Ni), 
the structure peaks in the profiles measured at 8000 eV were apparently induced by Ni atoms in the nanodomains 
and thus provide evidence of Ni-rich nanodomains. These small structure peaks in the 8000 eV profiles could 
not be measured by the in-house SAXS instrument because its incident X-ray intensity was much lower than 
that of synchrotron X-ray radiation. On the other hand, Fig. 2 also indicates that two ASAXS profiles measured 
at two different energies substantially demonstrated a slight discrepancy between them, suggesting that the nan-
odomains were comprised of two components, (1) a Ni-rich component and (2) a highly Ni-rich component, in 
contrast to the Ti-Ni matrix. The present study further characterized the nanodomains to have a two-component 
structure by two approaches as follows.
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Structural characterization of core–shell disk domains in the as-quenched sample by 
ASAXS
Model fitting of ASAXS intensities measured at two X-ray energies.  The first proposed method of 
model fitting is called approach I here. The X-ray scattering amplitude (or length) of an atom, f(E), can be expressed by

Figure 1. (a)(a’), (b)(b’), (c)(c’) and (d)(d’) 2D ASAXS patterns of the as-quenched Ti48.7Ni51.3 SMA measured 
using 8000 eV and 8226 eV at 30 °C, −50 °C, 30 °C (again) and 250 °C, respectively. (e)(e’) Magnified images of 
the green square and blue square in (a,b), respectively, using 8000 eV at 30 °C and −50 °C, to show bright spots 
along the streak by the arrows.

Figure 2. Evolution of 1D ASAXS profiles with the temperature measured at (a)30 °C, (b)−50 °C, (c)30 °C 
(again) and finally (d)250 °C. The model-determined ASAXS intensities by approach I are also shown by solid 
curves in diagrams for comparison. The standard deviations of each point associated with data are less than 2%.
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where Z is the atomic number and f(E) is a complex number. The anomalous dispersion correction terms f′ and 
f ″ are significant only near the absorption edge. The real part, Z + f′, is related to the coherent scattering. The 
imaginary part, f ″, is related to the absorption. The real and imaginary parts of the scattering length of Ni and Ti 
atoms as a function of incident X-ray energy E are shown in Fig. 3. Thereafter, the scattering length density of each 
phase, including the matrix and the Ni-rich and highly Ni-rich components in the nanodomains, can be obtained 
by dividing the average scattering length by the average atomic volume within the phase27:

ρ =
∑

Ω

f X
(2)

i i i

where Xi is the fraction of the atom i and Ω is the average atomic volume. The difference (or contrast) between the 
component phase and the matrix phase is given by27

∆ρ =
∑ − ∑

Ω

f C f C
(3)

i i i
p

i i i
m

where Ci
p and Ci

m are the concentrations of element i in the component p and the matrix m, respectively. Ω can be 
assumed to be identical in the component phase and matrix. Therefore, the ASAXS profile measured at 8226 eV 
can be modelled by

ρ= ⋅ + ⋅ ⋅ ⋅−I Q Q P Q S Q( ) A ( ) ( ) (4)4 2

where A is a constant describing the smooth surface of a large particle, Δρ denotes the scattering length density 
contrast between the nanodomains and the matrix, and P(Q) is the form factor of the nanodomains. S(Q) is the 
structure factor describing the interaction between the nanodomains and signifying a kind of ordered arrange-
ment of nanodomains. S(Q) exhibits the form of several discrete small peaks whose amplitude of intensity is 
strongly affected by the incident X-ray energy or scattering contrast here. The form factor of the polydispersed 
disk-like nanodomains with a radius R and a Schulz distribution of thickness t can be given by39–42:
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where η and Vp are the volume fraction and the particle volume, respectively, and j0 and j1 are the zero-order 
Bessel function and the first-order Bessel function, respectively. The integral over α averages the form factor over 
all possible orientations of the disks with respect to Q. f(t) is the normalized Schulz distribution of the thickness, 
in which the polydispersity of the thickness is related to σ /tavg, where σ is the variance of the Schulz distribution 
and tavg is the mean thickness. Generally, S(Q) can be approximately 1.0 within the region outside the discrete 
peak. In the present study, the intensities of discrete small peaks of the structure factor S(Q) are much weaker than 
the form factor, so the model fitting of ASAXS profiles using Eq. (5) can ignore the discrete contribution of small 
structure peaks (let S(Q) = 1 for the full profile), unlike the continuous profile. The ASAXS profiles measured at 
different energies for all temperatures can be fitted well with Eq. (5), as shown by the solid curves in Fig. 2. The 
structure parameters determined by approach I are listed in Table 1. The determined polydispersity parameter is 
less than 0.05, showing the monodispersed system. There are certain uncertainties in model fitting.

According to Table 1, the determined thicknesses of the nanodomains for different energies are almost the 
same for each temperature. However, the values of the determined radii at 8000 eV for 30 °C, −50 °C and 30 °C 
again are larger than those determined at 8226 eV by a factor of ~2 nm. Therefore, based on this ASAXS analysis 

Figure 3. Coherent scattering, Z+ f ′, and absorption, f ″, parts of the scattering length of (a) Ni atom and (b) Ti 
atom in the vicinity of K absorption-edge of Ni atom.
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result, we can propose that the structure model of a nanodomain is a core–shell disk. The disk-like core–shell 
nanodomain is comprised of a highly Ni-rich disk as the core and a Ni-rich shell around it, as shown in Fig. 4. The 
shell thickness (the difference in radii of the inner disk and outer disk) for each temperature is ~2 nm. This thick-
ness can be explained by the fact that the 8000 eV beam can “see” the morphology of the full core–shell disk, while 
the 8226 eV beam can only “see” the morphology of the core (highly Ni-rich domain). The difference between the 
determined structures is the shell (Ni-rich domain). Further explanation of this model fitting method is provided 
as follows. The form factor of the nanodomains, Eq. (5), can be alternatively expressed by the following equation.

ρ ρ= Δ + ΔI Q P Q P Q( ) ( ) ( ) (6)c c s s
2 2

where ∆ρc
2 and P Q( )c  are the scattering contrast and the associated form factor of the core domain, respectively; 

∆ρs
2 and P Q( )s  are the scattering contrast and the associated form factor of the shell domain, respectively. As illus-

trated in Fig. 3, when the incident 8000 eV energy is switched to 8226 eV energy, fNi can be reduced by 4% and 
approach the value of fTi. Meanwhile, the f  ″Ni and fTi (including f  ′Ti and f  ″Ti) values remain unchanged. The Ni 
concentrations, CNi and XNi, in the core domain are much higher than that in the shell domain. According to Eqs. 
(2) and (3), the scattering length density of the shell phase is much lower than that of the core phase. Therefore, 
∆ρs

2 of Eq. (6) can be very small and be relatively neglected compared to the ρΔ c
2 value, providing the explanation 

of why the incident 8226 eV energy only “sees” the core part.

Model fitting of difference between ASAXS intensities measured at two X-ray 
energies
The present study also adopted another approach, approach II, for cross-checking the above proposed approach I.  
Because the different incident energies can change the atomic scattering length f, Eq. (6) can be expanded into 
the following equations:

I Q E P Q P Q( , ) ( ) ( ) (7)H Ni H Ni Ni Ni1 ,1
2

,1
2ρ ρ= Δ + Δ− −

ρ ρ= Δ + Δ− −I Q E P Q P Q( , ) ( ) ( ) (8)H Ni H Ni Ni Ni2 ,2
2

,2
2

where I Q E( , )1  and I Q E( , )2  are the ASAXS scattering profiles at E1 (8000 eV) and E2 (8226 eV), respectively. .. and 
P Q( )i  are the scattering length density contrast and form factor of the domain i at the incident energy j, respec-
tively. The subscripts H-Ni and Ni denote highly Ni-rich and Ni-rich, respectively. The atomic fraction of Ni in the 
Ni-rich shell can be regarded as only slightly higher than that of the matrix compared to the highly Ni-rich 
domains. The scattering contrasts of the Ni-rich domains for both energies may be approximately the same rela-
tive to those of highly Ni-rich domains. The scattering contrasts of highly Ni-rich domains for both energies are 
also significantly different. Therefore, the difference between the ASAXS profiles measured at E1 (8000 eV) and E2 
(8226 eV) can be expressed as

Incident energy Parameter (nm)

Temperature

30 °C −50 °C R30 °C 250 °C

8000 eV
Radius 31.8 ± 0.1 34.0 ± 0.2 31.6 ± 0.1 36.1 ± 0.1

Thickness 2.7 ± 0.3 4.3 ± 0.7 2.9 ± 0.7 4.4 ± 0.8

8226 eV
Radius 29.3 ± 0.1 32.8 ± 0.2 29.5 ± 0.1 35.0 ± 0.2

Thickness 2.7 ± 0.4 4.1 ± 0.6 2.6 ± 0.6 4.4 ± 0.7

Table 1. The structure parameters of the nanodomain are determined by the approach I.

Figure 4. Core-shell model of the disk-like nanodomain.
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I Q E I Q E P Q( , ) ( , ) ( ) ( ) (9)H Ni H Ni H Ni1 2 ,1
2

,2
2ρ ρ− = Δ − Δ− − −

According to Eq. (9), the difference between the ASAXS profiles measured at E1 and E2 can be considered to be 
mainly contributed only by highly Ni-rich domains or by net scattering of the highly Ni-rich domains. This con-
cept, exhibited in Eq. (9), has frequently been adopted in ASAXS analysis and is described in the literature23–25. 
Approach II adopts the core–shell form factor model26 to directly fit the difference between the ASAXS profiles 
measured at 8000 eV and 8226 eV shown in Fig. 5, which is fitted well. The structure parameters determined by 
approach II are listed in Table 2.

Pair distance distribution function (PDDF) or DDF is a model-independent method to check the results 
obtained from the above model-fitting methods. The DDF, P(r), describing the real space of nanodomains can be 
directly calculated from the inverse Fourier transformation of the SAXS or ASAXS data according to 

∫= 



P r r Q I Q Qr Qr dQ( ) ( ) sin( )/2 2 . The P(r) functions corresponding to the SAXS profiles measured at 8000 eV 

for 30 °C, −50 °C and 30 °C again are shown in Fig. 6(a). The P(r) functions corresponding to the ASAXS profiles 
measured at 8226 eV for 30 °C, −50 °C and 30 °C again are shown in Fig. 6(b). The comparison of P(r) functions 
measured at two energies for 30 °C, −50 °C and 30 °C again are shown in Fig. 6(c–e), respectively. The typical 
curve of P(r) for a disk-like particle shows two characteristics: (1) The maximum r position corresponds to the 
diameter of this particle, and (2) the peak position of P(r) is close to but less than the radius of this particle43. 
According to Fig. 6(a,b), for either 8000 eV or 8226 eV, the maximum r positions (domain diameter) of P(r) for 
30 °C, −50 °C and 30 °C again are located at ~ 60 nm, 65 nm and ~60 nm, respectively, being roughly consistent 
with the model-fitting result of approach I in Table 1. The variation trend of domain size with temperature is the 
same for all used methods. The area-averaged peak (roughly close to the domain radius) of P(r) for 30 °C, −50 °C 
and 30 °C again are located at ~ 28 nm, 30 nm and ~28 nm, respectively, also showing the same relative trend. 
According to Fig. 6(c–e), the area-weighted peak position of 8000 eV is higher than that of 8226 eV for each tem-
perature, showing the evidence of core-shell structure.

Structural transition and ordering behavior revealed by the in-situ ASAXS structure factor 
under the thermal cycle.  The morphological characterization and evolution of the core–shell nanodomains 
during the thermal cycle are revealed by the form factor analysis of ASAXS profiles in the previous sections. This 
morphological evolution should be closely related to the movement of Ni atoms governed by temperature change. 
This behavior of Ni atomic movement into/out of the nanodomain core can be independently evidenced by the 
change in height of the structure peaks (also called the structure factor) within the ASAXS profiles shown in 
Fig. 2. Basically, the structure factor results from the interaction between domains or the spatial arrangement of 

Figure 5. The difference between the ASAXS profiles measured at difference energies for the measurement at 
30 °C, −50 °C, 30 °C (again) and finally 250 °C (heating). The model-determined ASAXS intensities by approach 
II (solid curves) are shown for comparison. The standard deviations of each point associated with data are less 
than 4%.

Δ(I8000-I8226) Parameter (nm)

Temperature

30 °C −50 °C R30 °C 250 °C

Intensity difference 
between 8000 eV and 
8226 eV

Core Radius 29.2 ± 0.2 32.0 ± 0.2 29.6 ± 0.2 —

Core Thickness 2.6 ± 0.5 4.0 ± 0.8 3.0 ± 0.7 —

Shell Thickness 2.0 ± 0.3 2.0 ± 0.7 1.7 ± 0.6 —

Table 2. The structure parameters of the nanodomain are determined by the approach II.
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domains26,42. These relatively weak structure peaks are marked in detail by the arrows shown in Fig. 7 and do not 
appear in the SAXS profiles measured by the in-house X-ray instrument17. This difference can be attributed to the 
high resolution and high intensity of synchrotron X-ray radiation. The small structure peaks caused by the spatial 
arrangement of the concentrated Ni-rich domains are easily self-attenuated in the bulk sample, leading to diffi-
culty in detection. These structure peaks are also detected in the form of bright spots in the radial streaks of the 
2D ASAXS patterns, as marked in Fig. 1(e) (e’). The relative positions of these structure peaks of the as-quenched 
TiNi sample reveal the relationship of integer times. The nth order peak follows the first order peak with a rough 
position ratio of 1: 2: 3: 4: … : n. For example, from Fig. 7, the position of the first order peak for group A is 
0.007 Å−1, that of the second order peak is 0.014 Å−1, and so on. This relationship agrees with the prediction of the 
structure factor of concentrated lamellar stacks with periodic distance44,45. According to the general concept of 
the ordered lamellar structure, the average distance between lamellae (or plates) D can be approximated by D = 
2π/Q1. Here, the Q1 value is the peak position of the first-order peak. Therefore, it can be proposed that the sev-
eral plate-like nanodomains construct an ordered arrangement with equal spacing (like the structure of lamellar 
stacks).

Discussion
The ASAXS profiles shown in Fig. 2 could be fitted by two possible form-factor models. One is the disk form 
factor to depict the whole disk of the nanodomain, comprising the shell and core components, at 8000 eV and 
only the core component at 8226 eV, followed by constructing the real morphology with a Ni-rich shell and highly 
Ni-rich core, denoted by approach I. The other is the form factor of the core–shell disk model26,42,46 with two 
scattering contrast values directly fitting the profile resulting from the difference between the ASAXS profiles 
at 8000 eV and at 8226 eV, denoted by approach II. Both single disk and core–shell form factors can fit well the 
continuous scattering profiles under ignorance of S(Q), as shown in Figs. 2 and 5. The corresponding structure 
parameters determined by approach I and approach II, shown in Tables 1 and 2, respectively, are close to each 
other. The core radius Rc and thickness tc of core-disk nanodomains determined by approach II grew from Rc = 
29.2 nm and tc = 2.6 nm at 30 °C to be 32.0 nm and 4.0 nm, respectively, when the irradiated sample was cooled 
down to −50 °C (at Tg). Moreover, the Rc and tc of core-disk nanodomains shrank to 29.6 nm and 3.0 nm, respec-
tively, when the irradiated sample was subsequently heated to 30 °C. The shell thickness under the thermal cycle 
(30 °C → −50 °C → 30 °C end) remained at about 2 nm. The fitted radius (~26 nm) of nanodomains in our previ-
ous SAXS result17 was less than that (~ 30 nm) of this synchrotron ASAXS analysis. The discrepancy is attributed 
to the Qmin of the Q range in this ASAXS study having a much lower value and accounts for the greater power-law 
scattering intensity than that of the SAXS data of the previous SAXS measurement. If the fitted ASAXS data had 
been limited to a short Q range and had no power-law model fitting, we would have had the same fitting result as 
the previous result. In this study, we found that the morphological change (growth) of the highly Ni-rich domain 

Figure 6. Distance distribution functions of the ASAXS profiles measured at (a) 8000 eV and (b) 8226 eV for 
each temperature. The comparison of P(r) functions measured at two energies for (c) 30 °C, (d) −50 °C, (e) 
30 °C again.
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(core part) occurs when the sample is cooled from 30 °C towards Tg. This morphological change is reversible 
in the sample heated back to 30 °C. Notably, the structural evolution and then the reversible behavior of the 
highly Ni-rich disk nanodomains exhibited in as-quenched Ti48.7Ni51.3 SMA during this thermal cycle of 30 °C → 
−50 °C (~ Tg) → 30 °C (end) are evidenced in this ASAXS study for the first time. This behavior has never been 
mentioned in the existing theory, in which the strain-glass transition is proposed to arise from the growth of the 
strain field in the matrix based on the assumption of a uniformly unchanged distribution of Ni point defects2,4,8.

As mentioned above, the model constructed from the combination of the ASAXS profiles measured at 8000 eV 
and 8226 eV, and that constructed directly from the difference in ASAXS profiles measured with different energies, 
can both substantially reflect the characteristics of the highly Ni-rich part. According to Fig. 7(a), the structure peaks 
revealing the lamellar stacks and the spatially ordered arrangement with equal spacing in the as-quenched sample 
could be divided into three groups, denoted by A, B, and C. The spots in the streaks of the 2D ASAXS patterns show 
that they originate from differently-oriented grains. The Q1 values of groups A, B and C are 0.007 Å−1, 0.009 Å−1 
and 0.01 Å−1, respectively. The corresponding spacing D for groups A, B and C (D = 2π/Q1) can be determined to 
be 897 Å, 698 Å and 628 Å, respectively. As shown in Fig. 7, each group has several structure peaks, e.g., A1, A2, …, 
demonstrating the characteristic of the highly ordered packing of the nanodomains. The observed first-order peaks 
(in logarithm scale) are not sharp because they are located in the high background contributed by the form factor. 
The spatially ordered lamellar arrangement of nanodomains may be formed during the quenching process and 
could be closely related to the critical Ni composition. More interestingly, when the temperature is cooled to Tg, as 
shown in Fig. 7(b), the intensities of the first- and second-order structure peaks of each group largely increase and 
become sharp in shape, which can be attributed in theory to the increase in the scattering length density contrast 
Δρ of the core domain as well as the number of the ordered lamellae. The increase in Δρ of the core domain may be 
caused by the short-range movement of Ni atoms into the core domain, which is consistent with the morphological 
growth of the core domain at Tg (determined by the form factor in the previous sections). This local action may 
enhance the number of the “seen” (by contrast) nanodomains in the ordering arrangement based on the assumption 
that the total number of nanodomains during the thermal cycle is not changed. This kind of local Ni movement 
and ordering arrangement of nanodomains occurs quickly in the in-situ ASAXS measurement during the thermal 
cycle. Therefore, the kinetics of Ni movement and the core-domain growth at Tg are fast. It can be speculated that the 
driving force of structural transition is not classical thermal diffusion. The driving force may be the free energy and 
could be similar to that of the formation of the spinodal decomposition, which has the characteristic of fast move-
ment from a low concentration to a high concentration47,48. The mechanistic origin and the driving force are still not 
known and need to be further investigated.

Figure 7. ASAXS profiles at 8000 and 8226 eV in comparison with the difference between ASAXA profiles at 
(a) initial 30 °C, (b) −50 °C, (c) 30 °C again and (d) 250 °C in order during the thermal cycle. Each structure 
peak is marked (For example, A2 represents the second-order peak of group A).
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When the temperature returns from −50 °C (~Tg) to 30 °C, except for in group B, the structure peaks of the 
other groups become weak in intensity and less in number (Fig. 7(c)), showing the phenomenon that Ni atoms 
move out of the nanodomains and the number of the “seen” (by contrast) nanodomains in the ordered arrange-
ment decreases. The structural evolution of the strain glass transition appears be possibly reversible with heating 
to 30 °C, but the material cannot return to its original state. The thermal effect on nanodomains at a higher tem-
perature of 250 °C causes almost all of the structure factor peaks to disappear (Fig. 7(d)), signifying that a large 
number of Ni atoms move out from the nanodomains and thus cause the loss of ordering arrangement or lamellar 
stacks. The large amount of Ni atoms thermally diffusing in the matrix could serve as the source of the precipita-
tion at high temperature, according to the classical mechanism of nucleation and growth. The form factor analysis 
in the previous sections consistently shows that the nanodomain rapidly grows in radius and thickness, as shown 
in Table 1. The precipitation of Ti48.7Ni51.3 SMA at the annealing temperature of 250 °C was quantitatively reported 
in our previous study17. From this study, one can find that, for as-quenched Ti48.7Ni51.3 SMA, the structural evo-
lution mechanism (ordering array of nanodomains) between 30 °C and −50 °C (Tg) is entirely different from the 
precipitation mechanism exhibited at 250 °C.

conclusions
Synchrotron in-situ ASAXS study provides new mechanistic and structural knowledge about the strain glass 
transition exhibited in as-quenched Ti48.7Ni51.3 SMA. Past simulations and phenomenological models proposed 
that the induced SRO strain in the glass state was due to the statically-disordered strain domains in the bulk 
material, based on the assumption that randomly-distributed Ni point defects were fixed in position during strain 
glass transition. Our ASAXS study provides evidence that Ni point defects concentrate in well-defined nanodo-
mains, with a disk-like core–shell structure consisting of a highly Ni-rich core and a Ni-rich shell in as-quenched 
Ti48.7Ni51.3 SMA. In addition, at 30 °C, these disk-like nanodomains are locally ordered with a spatially lamellar 
arrangement. When the temperature decreases to Tg, some Ni point defects in the matrix move a short distance 
into the nanodomains to enlarge the size of the highly Ni-rich core and enhance the ordered structure of the local 
lamellar arrangement with increased numbers. When the temperature rises back to 30 °C, the morphological 
evolution of the highly Ni-rich core domains with temperature reveals reversible growth and shrinkage. At 250 °C, 
the nanodomains grow but lose the corresponding lamellar structure, and precipitation occurs. For as-quenched 
Ti48.7Ni51.3 SMA, the phase separation mechanism in the range of 30 °C to −50 °C (Tg) is entirely different from 
the precipitation mechanism exhibited at 250 °C. The ASAXS patterns measured with the near Ni adsorption edge 
energy demonstrate the structure peaks, signifying the local order arrangement between nanodomains and the 
associated variation with Tg during thermal cycle. This new finding can be regarded to be an experimental break-
through compared to the current SAXS, SANS and microscopic tools. Therefore, the similar hindrance effect on 
LRO or the formation of SRO at Tg proposed by simulation works may be closely related to the enhancement of 
the local lamellar or ordering array as well as the morphological variation of the nanodomains.

experimental procedures
A Ti48.7Ni51.3 ingot was prepared in a vacuum arc remelter. The raw materials, titanium (99.99 wt.%) and nickel 
(99.99 wt.%), were melted six times in high-purity argon atmosphere. The ingot was then hot rolled at 900 °C 
into a plate of ~2 mm thickness. The plate was subsequently solid-solution treated at 900 °C for 1 h, followed by 
water-quenching. The grain size in as-quenched Ti48.7Ni51.3 specimens is measured by ASTM E112–88 standard 
to be 80 ± 15 μm. The specimens for the following ASAXS measurements were cut to a size of 10 × 10 × 0.5 mm3 
and ground to a thickness of ~40 μm so that two or more grains would be contained in the thickness direction. 
The detailed information on the sample preparations and the experiment conditions can be seen in our previous 
study17.

In-situ ASAXS measurements were conducted at the BL23A beamline, National Synchrotron Radiation Research  
Center, Taiwan, with a high-flux collimated X-ray beam of ~500 μm in diameter. The temperature-dependent 
ASAXS measurement was performed with two incident energies of 8000 eV and 8226 eV, which are the far and 
near absorption K-edge energies of Ni, respectively, for each temperature. The measurements were carried out to 
investigate the evolution of the Ni-rich nanodomains with temperature and the spatial distribution of Ni atoms 
in the corresponding Ni-rich nanodomains. The ASAXS measurement of the as-quenched Ti48.7Ni51.3 SMA was 
performed in-situ first at 30 °C, then at the cooled temperature of −50 °C, and finally at the heated temperature of 
30 °C again to complete one cyclic test. According to the results of the physical properties and the DMA tests in 
our previous study17, a sample at −50 °C demonstrates the signs of strain glass transition. Moreover, a subsequent 
ASAXS measurement was performed at 250 °C after the specimen was aged at 250 °C for 20 min. Each 2D ASAXS 
pattern was collected for a period of 20 min. According to standard procedures of data reduction, calibration, 
and background correction, each pattern was azimuthally averaged into a 1D ASAXS profile as a function of the 
scattering vector Q = 4πsin(θ/2)/λ, in which θ is the scattering angle and λ is the X-ray wavelength.
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