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Super Sub-nyquist Single-
pixel imaging by total Variation 
Ascending ordering of the 
Hadamard Basis
Xiao Yu1, Rayko ivanov Stantchev2, fan Yang1 & emma pickwell-Macpherson2,3 ✉

Single pixel imaging (Spi) captures images without array detectors or raster scanning. When combined 
with compressive sensing techniques it enables novel solutions for high-speed optical imaging and 
spectroscopy. However, when it comes to the real-time capture and analysis of a fast event, the 
challenge is the inherent trade-off between frame rate and image resolution. Due to the lack of 
sufficient sparsity and the intrinsic iterative process, conventional compressed sensing techniques have 
limited improvement in capturing natural scenes and displaying the images in real time. in this work, 
we demonstrate a novel alternative compressive imaging approach employing an efficient and easy-
implementation sampling scheme based on reordering the deterministic Hadamard basis through their 
total variation. By this means, the number of measurements and acquisition are reduced significantly 
without needing complex minimization algorithms. We can recover a 128 × 128 image with a sampling 
ratio of 5% at the signal peak signal-to-noise ratio (PSNR) of 23.8 dB, achieving super sub-Nyquist 
sampling Spi. compared to other widely used sampling e.g. standard Hadamard protocols and Gaussian 
matrix methods, this approach results in a significant improvement both in the compression ratio and 
image reconstruction quality, enabling Spi for high frame rate imaging or video applications.

Single pixel imaging (SPI) is an emerging technique that captures scenes using a single point detector and then 
reconstructs the images through computational imaging approaches. It has solved many challenges where con-
ventional multipixel imaging is technologically unavailable and provided novel ideas in fast optical imaging1. 
Prospective applications include 3D imaging2,3, ghost imaging4, infrared imaging5–7, fluorescence8,9, hyper-
spectral imaging10,11 and terahertz imaging12,13. The architecture of commonly used SPI systems consists of two 
main components: a single-pixel detector and spatial light modulator (SLM). The SLM generates and displays 
encoded masks of light on the object (also called structural illumination) and the single-pixel detector measures 
the inner product of an image and the masks sequentially14. The projected sampling masks used for modulating 
the image are encoded according to sampling matrices such as random matrices and Hadamard matrices15. Then 
the reconstruction problem is just calculating the inverse of the measurement matrix. However, to obtain a high 
signal-to-noise (SNR) reconstruction of an N pixel image, N measurements must be carried out. Consequently, 
long data-acquisition times are needed which make the SPI unable to capture rapid phenomenon and real-time 
imaging.

Fortunately, compressed sensing (CS) theory can provide a novel method to shorten the acquisition time by 
reducing the number of measurements by exploiting the sparsity of natural images16. However, the reconstruction 
problem then becomes a NP-hard combinatorial problem solved by varieties of optimization algorithms such as 
the widely used solver l1-magic17 and TVAL318. Based on these methods, sub-Nyquist sampling can be achieved 
but the sampling ratio must satisfy the restricted isometry property (RIP)19,20 and is limited by the sparsity of the 
image:
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where SR is the sampling ratio, M is the number of measurements required for a good reconstruction, N is the 
total pixels of the image, α is the sparsity ratio of the image in the chosen domain. In practice, the sampling ratio 
is limited and influenced by noise, beam calibration and diffraction21. It is often not possible to obtain good 
images in practical SPI systems such as terahertz imaging systems when the sampling ratio is below 30%13,22. Also, 
without prior information of the scene the sparsity ratio of the image remains unknown. Hence, there is tradeoff 
between reconstructing high SNR images and having a low sampling ratio.

Recently, some SPI methods based on CS have been proposed to seek better performance by reducing com-
putational time considerably without sacrificing SNR of reconstructed images whilst keeping a low sampling 
ratio. For sub-Nyquist sampling protocols, sampling the parts with the most amount of energy is the key to 
achieving good reconstruction, for example sampling only the Fourier coefficients with the largest amplitude. 
For that purpose, a lot of sampling techniques based on Gaussian matrix methods, discrete cosine transforms 
(DCT)23, Fourier transforms24,25, Morlet wavelets26, Hadamard matrix methods27 and binary matrices through 
deep learning28 have been proposed. From these, the Hadamard matrix sampling stands out because it has fast 
image reconstruction, its binary masks are easy to implement and it has high robustness to noise. Furthermore, 
it has been found that using a differential measurement of the Hadamard matrix enhances the SNR because it 
subtracts background noise29. Additionally, a significance-based ordering of the Hadamard basis provides a better 
reconstruction from fewer measurements30. Hence, different ordering of Hadamard matrices have been proposed. 
A “Russian Dolls” (RD) ordering Hadamard approach at 6% sampling ratio can produce similar or better image 
quality30. A “cake cutting” (CC) and “Origami pattern” (OP)31,32 sorted Hadamard approach can acquire high 
quality images of large pixel scale 1024 × 1024 with super sub-Nyquist sampling ratio even below 0.2%. Likewise, 
the CC and OP order and order performs better than the RD order. However, the RD order showed a saw tooth 
descent in the retrieved image quality and is sensitive to the environmental noise. The CC order approach needs 
to count the block numbers of each reshaped mask, while the RD order and OP order approach need to manip-
ulate the elements of the Hadamard matrix, which is complex and time-consuming for large pixel resolution 
images, and there is no specific mathematical or physical explanation for CC. Furthermore, there is no fast con-
struction method for RD order and OP order.

In this work, we present an efficient and easily-implemented sampling protocol for super sub-Nyquist SPI 
while avoiding basic presumptions that general scenes are sparse. Our approach is based on an optimized order-
ing of the Hadamard basis through total variation (TV) of each reshaped mask for general scenes. It also reveals 
the inner mathematical mechanism of this and similar ordering of Hadamard matrices. Following this idea, the 
most significant patterns, those with the lowest TV value, are always projected first. Reordering the Hadamard 
matrix proved to be more computationally efficient than the “Russian doll” and “Cake cutting” approaches. We 
numerically compare the reconstructed images obtained from four different Hadamard matrices and a Gaussian 
matrix through three image quality assessment indices. We find that, for natural images, the total variation 
ascending order produces better reconstruction quality than the other 4 approaches.

image reconstruction and assessment. The SPI with CS technique works by taking sequential measure-
ments and can be described mathematically by (2),

= +× × × ×y x eH (2)M M N N M1 1 1

where ×xN 1 is a 1D vector reshaped from a n × n pixel image; ×HM N  represents the M sampling masks each 
formed by reshaping one row of the measurement matrix H(M × N), m < N, N = n×n, ×yM 1 is the measurement 
vector of length M and ×eM 1 is the noise vector which is the same size as ×yM 1. Equation 2 is an underdetermined 
linear system of equations and the physically relevant solution is obtained by optimization methods. Here, we use 
the TVAL3 solver to reconstruct the image18. The quality of reconstruction, for thorough comparison, is evaluated 
by 3 indices: percentage root mean squared error (RMSE), Peak Signal to Noise Ratio (PSNR) and Structural 
Similarity (SSIM). All images are normalized to unity.

Hadamard basis orders. A sensible assumption is that larger measured intensities contribute more to the 
reconstruction, therefore the corresponding masks should be retained and projected sequentially30,31. However, 
which masks carry a lot of information depends on the imaging scene and for fast changing scenes and dynamic 
real-time imaging this becomes even more unfeasible. There exist many different orderings of the Hadamard 
matrix, such as sequence order and dyadic order. However, none of them arrange the most significant patterns 
to appear first automatically for arbitrary scenes. In this work, we make use of the Hadamard matrix generated 
using the built-in function in MATLAB 2018b33 (otherwise known as Sylvester’s construction), which we call the 
‘normal order’ to form other reordered Hadamard matrices. To test the sensing performance and reconstruction 
of normal order, a 128 × 128 phantom image was taken (read from the MATLAB 2018b), due to its high sparsity, 
and a natural scene34 as an example and carry out the recovery. Figure 1 shows the sensing and image reconstruc-
tions with different subsets of Hadamard masks. Our calculations were performed in MATLAB 2018b using the 
TVAL3 package18. For the sparse phantom image and natural image, we are unable to reconstruct images from 
this normal order at low sampling ratio. There are several overlaps in the reconstructed images, and the lower 
the sampling ratio is, the more overlaps and artifacts there are. Figure 1(b,c) show the measured signal intensities 
sorted in descending order according to their real values and absolute values. According to the two orders, we sort 
the normal order Hadamard rows with the new sampling masks and do the reconstructions again. Figure 1(g,h) 
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demonstrate excellent reconstruction of the phantom image at sampling ratios of 15% and 40% with the PSNR of 
30.6 dB and 47.87 dB respectively. Nevertheless, the descending order Hadamard masks do not work for the nat-
ural image (Fig. 1(i–k)) while the absolute value descending order Hadamard masks work. Figure 1(l,m) demon-
strate an excellent reconstruction of the natural image using absolute value descending order at sampling ratio 
of 15% and 40% with the PSNR of 29.06 dB and 34.29 dB respectively. This proves the order of Hadamard masks 
is significant to the measurement and reconstructions, and the most significant masks should be used to sample 
the image first. However, in practice, it is hard to know a priori which mask can generate the most significant 
intensity values; one must perform a complete sampling and then pick up the crucial masks needed according to 
the measured signal.

Our goal is to produce a new order Hadamard basis based on the normal-order Hadamard matrix so that 
any truncation of these mask sequences will provide an optimal reconstruction. However, knowing which masks 
are most significant without knowledge of the imaging scene is a near impossible task. Fortunately, we can draw 
inspiration from the Fourier spectra of natural images: namely that low frequencies have larger amplitudes than 
high frequencies. Therefore, the masks with low frequencies should be measured first. Hadamard masks do not 
have a frequency associated with them however we can measure which masks have more sign changes. The pro-
posed strategy is called total variation ascending Hadamard basis (TV order), and its formation rule is very 
simple as explained in the following. We define the sum of total variation of each row of a Hadamard matrix as:

∑= +TV h D h D( ) ( ) (3)i i x i y
2 2

where Dx and Dy is the discretized gradient operators, which are N × N sparse diagonal matrices, for the variation 
in x direction and y direction respectively; hi is the i-th row of normal Hamdard matrix; TV is the sum of varia-
tion. Afterwards, we can get the new complete Hadamard basis by sorting the normal order Hadamard basis in 
the ascending order of the total variation. The most important patterns come out first by using our method with-
out prior knowledge of the object and also without complicated sorting algorithms. During the sorting process, 
we do not need to manipulate the elements or count the number of connected regions (also called blocks, white or 
black) of each reshaped row of the N × N Hadamard matrix. Here, we sort the total variation in ascending order 
because we hypothesize that the smaller the TV is, the more probable this mask contributes more information 
for the reconstruction as it can be thought of having a lower frequency. Consequently, it only takes a little more 

Figure 1. Image reconstructions with different subsets of normal Hadamard masks. (a) The measured signal 
intensity distribution of the image using normal order Hadamard. (b,c) are the measured signal intensity 
distribution in real value (y) descending order and absolute value (|y|) descending order. (d,i) are the ground 
truth of the phantom image and natural image. (e,f,j,k) give the reconstructed images at sampling ratio of 15% 
and 40% based on normal order Hadamard. (g,h,l–m) give the reconstructed images of the sparse image and 
natural image at sampling ratios of 15% and 40% based on absolute value descending order Hadamard.
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(negligible) time to reorder the normal Hadamard matrix by generating a diagonal sparse matrix and implement-
ing matrix multiplication.

To study the inherent relation and regularity we compare 5 different Hadamard matrices: Normal order, 
TV order, total gradient ascending order (TG order), “Cake-cutting” order (CC order) and Paley ordering with 
Fig. 2(a–e) showing the different 16 × 16 Hadamard matrices that have been sorted by these methods respec-
tively (see Methods for construction rules). Moreover, the Paley type-I Hadamard matrix is proposed to join the 
comparison because it has been used in single pixel imaging27 due to its flexibility in image size. The Paley type I 
Hadamard matrix is created by cyclic permutation, which in turn creates masks that are vertically, or horizontally, 
shifted from one another. Whilst this will not create masks that have large and small ‘frequencies’, it can still be 
used in under sampling by simply shifting the masks by two or three pixels each time instead of just shifting them 
by one pixel each time. This is what we call the Paley order. By reshaping each row of these matrices into 4 × 4 
2D arrays, a complete set of the 16 masks to be projected is obtained. According to Fig. 2(b,d), the TV ordered 
set of 4 × 4 masks is very similar with the CC order Hadamard matrix31. Figure 3 shows the total variation of a 
4096 × 4096 reordered Hadamard matrix (H64) in the four orders. The total variation of CC order and TV order 
has a rising trend between 16 and 180, but the CC order has some fluctuations during the rising process. The total 
variation of Paley order oscillates in a small range and the TG order exhibits a tendency to swing violently.

Figure 2. Different Hadamard ordering example. (a–e) are the normal order, TV order, TG order, CC order and 
Paley order of 16 × 16 Hadamard matrices and their mask sequence orders respectively, each mask is one row of 
Hadamard matrix which are reshaped into a 4 × 4 2D matrix.

Figure 3. Total variation of the proposed four reordered Hadamard matrices comparison. The blue, orange, red 
and black dots are the total variation value distribution of CC order, TG order, TV order and Paley Hadamard 
matrices.
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Results
In order to test the four approaches for image reconstruction, simulations are carried out both on sparse and 
natural images. One original 512 × 512 sparse image is resized to the resolution of 128 × 128 pixels as the ground 
truth. In this image, all values of the white letters and geometries are 0.3, while all values of the black background 
are 0. The sampling ratio for sub-Nyquist sampling is set to be 12.5%, hence the dimension of Hadamard matrix 
for this measurement is 2048 × 16384. Figure 4 gives the results of measured signal intensities and reconstructed 
images.

With the normal order approach, the measured signal intensities (Fig. 4(a)) distributed from 1–2048 are the 
most significant of intensity values. The sampled signal intensities of the Paley order approach are concentrated 
on the zero zone and oscillate periodically because this Hadamard is constructed from a cyclical permutation. 
Compared with the descending order and other four approaches, larger intensities can be seen through the dense-
ness of the curves (Fig. 4(c–e)), especially for the CC order and TV order approaches. For the reconstruction 
performance, the RMSE (in percent) of the resulting images is calculated using Eqs. (5–6). Figure 4(g–j) show 
the RMSE of the reconstructed images at a sampling ratio of 12.5%. CC order and TV order approaches perform 
much better than the Paley and TG orders with the RMSE of 59.5% and 49.6% respectively. Hence, for spatially 
sparse images, TV order and CC order approaches both can provide excellent results.

However, imaging spatially sparse objects is not always possible or interesting, therefore we need to test the 
TV order approach for natural images. Due to the aim of sub-Nyquist sampling, we focus on sampling ratios 
between 1% and 30%. Figure 5 shows the reconstructions at different ratios. As expected, all four approaches 
show a similar trend with the reconstruction quality increasing with sampling ratio. The TV order approach 
gives significantly more details than other approaches even at the low sampling ratio of 5%. A Gaussian sampling 
matrix was added as it is widely used in normal compressed sensing for comparison. At a low sampling ratio, all 
the Hadamard matrices perform better than the Gaussian matrix.

Figure 4. Image reconstruction with different fractions of four Hadamard basis. (a) is the 12.5% of full 
measured signal intensity sorted in descending order according to its absolute value. (b–e) are the measured 
signals intensity using subset of natural order, Paley order, CC order, TG order and TV order Hadamard basis 
respectively. (f) is the ground truth image. (g–j) are the reconstructed images using subset of Paley order, CC 
order, TG order and TV order Hadamard basis respectively.
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Noise is unavoidable in real imaging systems especially when the signals are weak. We further compare the 
four techniques in terms of robustness to noise to emulate a real imaging system. We add white Gaussian noise 
to change the SNRs of the measured signal. This operation is implemented by using the built-in function awgn of 
MATLAB which the noise is the unit of dB using the measured signal as a reference. In other words, the smaller 
the noise level number is, the more noise is in the measured signal. The comparison is shown in Fig. 6 where we 
use a 10% sampling ratio. According to the results, all four approaches are robust to noise. Here, TV order per-
forms better than the other three.

To quantitatively evaluate the quality of a reconstructed image, we calculate the RMSE, PSNR and SSIM as a 
function of sampling ratio from 1%~100% at the sampling step of 2%, which is shown in Fig. 7(a–c). The three 
indices are computed with the ground truth as a reference. According to the results, it is clearly seen that our TV 
order and CC order are much better than the Paley and TG orders with an overwhelming advantage for super 
sub-Nyquist sampling ratio, and the TV order is better than the CC order. It should be noted that the SSIM 
is smaller than 1 at the sampling ratio of 100% because some information of the image is lost during the fast 
Hadamard transform in the TVAL3 package. As for the robustness to noise, the reconstructed images show the 
same falling characteristic along with increasing noise (Fig. 7(d–f)). It should be noted that the smaller the noise 
level (in dB), the more noise are added to the measured results. Nonetheless, the TV order is still better than other 
orders even the Gaussian matrix. Consequently, we can form an optimized reconstruction with any lower resolu-
tion using the TV ordered Hadamard basis.

As illustrated in Fig. 7(a) the RMSE of TV order across all sampling ratios is lower than the CC order which 
has hitherto been reported to be the best Hadamard matrix sorting method31.

Discussion
To verify the universality of the proposed method, we used 30 images from the dataset of standard 512 × 512 
grayscale test natural images34 to test our method. In this simulation, the image set containing 30 images aims to 
simulate imaging of natural images which have a lot of variation in pixels. Figure 8(a–d) illustrates the compari-
son results and some examples for a 10% sampling ratio. Natural images degrade the reconstruction quality, but 
TV order still out-performs other methods, especially at a low sampling ratio.

We used the TVAL3 algorithm which is a computationally efficient reconstruction algorithm with high 
reconstruction quality. It is widely used in practical single pixel imaging systems, for example it was used in the 
“Russian doll” order paper30, the “Cake-cutting” order paper31 and the “origami pattern” paper32. For a fair 
comparison and to verify the universality of our method, we also used the l1-magic algorithm to reconstruct the 

Figure 5. Natural scene reconstruction comparison for five approaches. From left to right, the images are 
reconstructed at sampling ratio of 1%, 5%, 15%, 20%, 30%.
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images using the TV order approach. Figure 9 shows the PSNR, RMSE and SSIM reconstructed by the l1-magic 
of the compared 4 measurement matrixes: TV order, CC order, TG order and Paley order. It is clear that the TV 
order outperforms the other Hadamard matrices at low sampling ratios. For the SSIM, TV order is better than CC 
order because the TV variation can keep more edge information.

To further analyze the inherent mechanism of reordering the Hadamard matrix, we compare the core ideas of 
the RD order, CC order and TV order, we find that the key point is the connected regions in the Hadamard basis 
pattern. From a mathematical and physical viewpoint, the total variation is the sum of the vertical variation and 
horizontal variation, since the Hadamard matrix only consists of 1 s and −1 s. If adjacent elements have different 
values, it will contribute to the increase of the total variation and the number of connected regions. From Fig. 3, 
the CC order method, which is an empirical method, has the most similar rising trend with the TV order apart 
from some saw tooth oscillations.

In a practical SPI system, the DMD projects the Hadamard basis patterns on the spatial light modulation 
(SLM) sequentially. For one specific pattern, the areas which have the same value (1 s or 0 s) are called connected 
regions in mathematical topology and will reflect the same modulation light, resulting in a coherence area. Hence, 
the pattern which has the smallest total variation, has the least number of connected regions as well as the biggest 
coherent area. Consequently, this pattern will rank in front of the ensemble of Hadamard basis patterns. For a 
specific object, the signal to noise ratio (SNR) of a reconstruction is correlated with the coherence light area. The 
relation is described as follows35:

∝
⋅SNR m A

A (4)
coh

beam

where the m is measurement times, Abeam is the area of illumination beam, Acoh is the coherence area. Hence, the 
bigger the total coherence area is, the more it will contribute to the measured signals and reconstruction. This 
mathematically explains the inherent nature of reordering the Hadamard matrix. The proposed feasibility of our 
method is that it can be deterministically described in mathematics and easy to calculate and implement in a 
practical single pixel imaging system.

Finally, Table 1 is a table of merit to highlight the improved performance by our TV order method compared 
to the other four approaches. The merits of all the metrics (RMSE, PSNR and SSIM) are given without noise and 
with 15 dB noise for sampling ratios under 20%. In this table, 1–5 are the marks for the performance of each 
matrix, and 5(*****) means the best. As for the Paley order and the Gaussian matrix, it is hard to say which is 
better because oscillations in the Paley order with increasing sampling ratio are observed while Gaussian matrix 
should be binarized in the practical SPI system. Hence, we ranked them only according to the reconstruction 
results. Generally, TV order ranks best in total and for each aspect evaluated. It should be noted that for RMSE, 

Figure 6. Natural scene reconstruction comparison for 5 approaches with different noise level. From left to 
right, the images are reconstructed at sampling ratio of 10% at the noise level of 20 dB, 15 dB, 10 dB, 5 dB.
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SSIM and implementation, the TV order is marginally better than the CC order, but for PSNR and noise robust-
ness, the TV order approach is significantly better than the CC order.

Summary. In this work, we proposed an optimized order of the Hadamard basis based on total variation 
ascending order for super sub-Nyquist sampling SPI. This approach utilizes a normal Hadamard basis to form 

Figure 7. Comparison of recovered image quality of the 5 approaches without noise (a–c) and with noise (d–f).

Figure 8. Reconstruction comparison of the 30 images. (a) Examples of the reconstructed images using TV 
order, CC order and Gaussian matrix at the sampling ratio of 10%. (b–d) Is the comparison of the quality of 
reconstructed images as a function of sampling ratio.
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an optimal Hadamard basis for any super low sampling, and it can be deterministically described by mathemat-
ics. Numerical simulations demonstrate that the TV ordered Hadamard basis outperforms the CC order and 
other optimized Hadamard basis matrices as well as the Gaussian matrix in image reconstruction at super low 
sampling both for sparse images and natural images with regards to RMSE, PSNR and SSIM. Therefore, for rela-
tively low-resolution applications, this method is easy to experimentally implement and applicable for achieving 
real-time SPI.

Methods
TVAL3 reconstruction. TVAL3 is the acronym of Total Variation minimization by Augmented Lagrangian 
and Alternating Direction Algorithms18. The algorithm effectively combines an alternating direction technique 
with a nonmonotone line search to minimize the augmented Lagrangian function at each iteration. It is widely 
used for image reconstructions in SPI with compressed sensing techniques. We used these different Hadamard 
matrices as the sampling matrix. For each reordered Hadamard matrix, we take the first M rows as the sub-
Nyquist sampling matrix, where the M = N × N × SR, SR is the sampling ratio in percentage. Each row of the 
sampling matrix multiplies the image which is reshaped into 1D vector to form one measured signal intensity. 
After all the M measurements, reconstructions are carried out in MATLAB 2018b on a laptop with 16 GB memory 
and 2.8 GHz CPU.

paley order. Paley order is formed by Paley-I type construction which is a method for constructing 
Hadamard matrices using finite fields13.

“cake cutting” order Hadamard basis. This strategy is to generate an optimized sort of the Hadamard 
basis31. Firstly, each row of the Hadamard matrix H is reshaped into a mask of N = n × n pixels; secondly, count 
the number of connected regions; finally, sort the Hadamard matrix in ascending order of their number of con-
nected regions. In this paper, we also call the sorted Hadamard matrix the CC order.

total gradient ascending order. In TV order, the total variation is the variation of each row of Hadamard 
matrix. To further investigate the regularity of variation, we calculate the gradient of each 2D mask (n × n) 
reshaped from one row of a normal Hadamard matrix (N × N, N = n × n) and then sum all the gradient in x and 
y directions.

∑= +
=

TG G G
(5)i

N

x y
1

2 2

The built-in function gradient in MATLAB is used to calculate the gradient of each 2D mask. The results from 
the gradient function are Gx and Gy which both are 2D n × n matrix. Finally, the normal Hamdard matrix is reor-
dered in the ascending order total gradient which is called the TG order. Different from the TV order, TG order 
is based on the gradient of each mask while the TV order is based on the variation of each row of the H(N × N) 
matrix.

Figure 9. Reconstruction comparison by l1-magic algorithm as a function of sampling ratio. (a–c) is the RMSE, 
PSNR and SSIM respectively.

No noise With noise (15 dB) Total 
rankingRMSE PSNR SSIM RMSE PSNR SSIM

TV order 5 5 5 5 5 5 *****

CC order 4 4 4 4 4 4 ****

TG order 2 2 2 1 1 1 *

Paley order 2 2 2 3 3 3 **

Gaussian 3 3 3 2 2 3 ***

Table 1. Table of Merit to compare the five approaches.
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RMSe. RMSE is the root-mean-square error between the contaminated reconstruction image and the original 
image. Assuming I is the original image and K is the reconstructed image, the RMSE is defined as follow:

∑∑=
×

−
= =

MSE
N N

I i j K i j1 ( , ) ( , )
(6)i

N

j

N

1 1

2

=
∑ ∑×

RMSE MSE
I i j( , ) (7)N N i

N
j
N1

where N is the width of the images in number of pixels. I (i, j) is the value of the pixel in ith row and jth column in 
the original distribution, and K (i, j) is the value of the corresponding pixel in the reconstructed image.

pSnR. PSNR is a full-reference image quality assessment criterion. It is the ratio between the maximum signal 
power and the noise power. The greater the PSNR value is, the less distorted the reconstruction images will be. In 
a 2-D imaging process, the PSNR is defined as follow:

= ×






PSNR Max I

MSE
10 log ( )

(8)10

SSiM. Structure similarity index (SSIM) is calculated through mean value, square deviation and covariance of 
original image and recovered image. Here, we used the built-in function ssim in MATLAB.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding author 
on reasonable request.

Received: 9 October 2019; Accepted: 6 February 2020;
Published: xx xx xxxx

References
 1. Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects for single-pixel imaging. Nat. Photonics 13, 13–20 (2018).
 2. Sun, B. et al. 3D computational imaging with single-pixel detectors. Science 340, 844–847 (2013).
 3. Sun, M.-J. et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 7, 12010 (2016).
 4. Liu, H. C. et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci. Adv. 3, e1701477 

(2017).
 5. Edgar, M. P. et al. Simultaneous real-time visible and infrared video with single-pixel detectors. Sci. Rep. 5, 10669 (2015).
 6. Miao, J. et al. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging. Small 14, 1702082 (2018).
 7. Zeng, B et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 

7(1) (2018).
 8. Pian, Q., Yao, R., Sinsuebphon, N. & Intes, X. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging. 

Nat. Photonics 11, 411–414 (2017).
 9. Guo, K., Jiang, S. & Zheng, G. Multilayer fluorescence imaging on a single-pixel detector. Biomed. Opt. Express 7(7), 2425–2431 

(2016).
 10. Jin, S. et al. Hyperspectral imaging using the single-pixel Fourier transform technique. Sci. Rep. 7, 45209 (2017).
 11. Li, Z. et al. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation. Sci. Rep. 7, 41435 (2017).
 12. Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon. 8, 605–609 (2014).
 13. Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2, e1600190 

(2016).
 14. Zhang, Z., Wang, X., Zheng, G. & Zhong, J. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt. Express 25, 

19619–19639 (2017).
 15. Zhang, Z., Ma, X. & Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 6, 6225 (2015).
 16. Rani, M., Dhok, S. B. & Deshmukh, R. B. A Systematic Review of Compressive Sensing: Concepts, Implementations and 

Applications. IEEE Access 6, 4875–4894, https://doi.org/10.1109/ACCESS.2018.2793851 (2018).
 17. Candes, E. & Romberg, J. l1-magic: Recovery of sparse signals via convex programming, https://statweb.stanford.edu/candes/

l1magic/.
 18. Li, C., Yin, W., Jiang, H. & Zhang, Y. An efficient augmented Lagrangian method with applications to total variation minimization. 

Comput. Optim. Appl. 56, 507–530 (2013).
 19. Duarte, M. F. et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83 (2008).
 20. Candes, E. The restricted isometry property and its implications for compressed sensing. Comp. Rendus Acad. des Sci. I 346, 589–592 

(2008).
 21. Burger, M et al. Reconstruction Methods in THz Single-pixel Imaging. Preprint at, https://arxiv.org/abs/1903.08893 (2019).
 22. Streeter L. et al. Comparison of Hadamard imaging and compressed sensing for low resolution hyperspectral imaging. 23rd 

International Conference Image and Vision Computing, New Zealand. IEEE (2008).
 23. Rousset, F. et al. Adaptive basis scan by wavelet prediction for single-pixel imaging. IEEE Trans. Comput. Imaging 3, 36–46 (2017).
 24. Jauregui-Sánchez et al. Single-pixel imaging with Fourier filtering: application to vision through scattering media. Opt. Express 44, 

679–682 (2019).
 25. Deng, H. et al. Fourier single-pixel imaging using fewer illumination patterns. Appl. Phys. Lett. 114, 221906 (2019).
 26. Czajkowski, K. M., Pastuszczak, A. & Kotyński, R. Single-pixel imaging with Morlet wavelet correlated random patterns. Sci. Rep. 8, 

466 (2018).
 27. Saqueb, S. A. N. & Sertel, K. Compressive sensing terahertz imaging using single-bit sensor. IEEE Trans. THz Sci. Technol. 8(6), 

757–764 (2018).
 28. Higham, C. F., Murray-Smith, R., Padgett, M. J. & Edgar, M. P. Deep learning for real-time single-pixel video. Sci. Rep. 8, 2369 

(2018).
 29. Yu, W.-K. et al. Complementary compressive imaging for the telescopic system. Sci. Rep. 4, 5834 (2014).

https://doi.org/10.1038/s41598-020-66371-5
https://doi.org/10.1109/ACCESS.2018.2793851
https://statweb.stanford.edu/candes/l1magic/
https://statweb.stanford.edu/candes/l1magic/
https://arxiv.org/abs/1903.08893


1 1Scientific RepoRtS |         (2020) 10:9338  | https://doi.org/10.1038/s41598-020-66371-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

 30. Sun, M. J., Meng, L. T., Edgar, M. P., Padgett, M. J. & Radwell, N. A Russian Dolls ordering of the Hadamard basis for compressive 
single-pixel imaging. Sci. Rep. 7, 3464 (2017).

 31. Yu, W. K. Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort. Sensors 19, 4122 (2019).
 32. Yu, W.-K., Liu and Y.-M. Single-Pixel Imaging with Origami Pattern Construction[J]. Sensors 23, 5135 (2019).
 33. MATLAB 2018b, https://www.mathworks.com/.
 34. http://decsai.ugr.es/cvg/CG/base.htm.
 35. Ferri, F. et al. Differential ghost imaging. Phys. Rev. Lett. 104(25), 253603 (2010).

Acknowledgements
The authors would like to acknowledge the financial support of the National Natural Science Foundation of China 
(project number 51777023), Chongqing postgraduate scientific research and innovation project (project number 
CYB17010), the Research Grants Council of Hong Kong (project numbers 14206717 and 14201415) and the 
Royal Society Wolfson Merit Award (E.P.M).

Author contributions
X.Y. and R.I.S. conceived the idea; X.Y. performed the simulation and wrote the manuscript; E.P.M. and F.Y. 
supervised the project. All authors contributed to analyze the results and review the manuscript.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to E.P.-M.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-66371-5
https://www.mathworks.com/
http://decsai.ugr.es/cvg/CG/base.htm
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Super Sub-Nyquist Single-Pixel Imaging by Total Variation Ascending Ordering of the Hadamard Basis
	Image reconstruction and assessment. 
	Hadamard basis orders. 
	Results
	Discussion
	Summary. 

	Methods
	TVAL3 reconstruction. 
	Paley order. 
	“Cake cutting” order Hadamard basis. 
	Total gradient ascending order. 
	RMSE. 
	PSNR. 
	SSIM. 

	Acknowledgements
	Figure 1 Image reconstructions with different subsets of normal Hadamard masks.
	Figure 2 Different Hadamard ordering example.
	Figure 3 Total variation of the proposed four reordered Hadamard matrices comparison.
	Figure 4 Image reconstruction with different fractions of four Hadamard basis.
	Figure 5 Natural scene reconstruction comparison for five approaches.
	Figure 6 Natural scene reconstruction comparison for 5 approaches with different noise level.
	Figure 7 Comparison of recovered image quality of the 5 approaches without noise (a–c) and with noise (d–f).
	Figure 8 Reconstruction comparison of the 30 images.
	Figure 9 Reconstruction comparison by l1-magic algorithm as a function of sampling ratio.
	Table 1 Table of Merit to compare the five approaches.




