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The influence of postural threat on 
strategy selection in a stepping-
down paradigm
Nick Kluft  1, Sjoerd M. Bruijn  1,2, M. John Luu3, Jaap H. van Dieën  1, Mark G. carpenter3 & 
Mirjam pijnappels1 ✉

To walk safely in their environment, people need to select adequate movement strategies during gait. 
In situations that are perceived as more threatening, older adults adopt more cautious strategies. For 
individuals with excessive fear, selecting adequate strategies might be troubling. We investigated how 
a postural threat affects the selection of strategies within and between older adults by using a stepping-
down paradigm. In twenty-four older adults we determined the height at which they switched in 
stepping-down strategies from a less demanding but more balance threatening heel landing to a more 
demanding yet safer toe landing. We expected that this switching height would be lower in the high 
(0.78 m elevation) compared to low threat (floor level) condition. Furthermore, we investigated if older 
adults, for which the postural threat evoked an increase in the perceived fear, presented a different 
stepping down strategy due to the postural threat. Our results indicated that the postural threat 
changed older adults’ strategies selection towards a more conservative toe landing. Hence, despite the 
additional effort, older adults prefer more cautious strategies during a postural threat. No effects of 
perceived fear on strategy selection between individuals were observed, potentially due to relatively 
small differences in fear among participants.

Older adults may have a perception of their physical abilities that is not in agreement with their actual physical 
abilities1–3. For example, Sakurai and colleagues1 showed that about one-third of older adults were not able to step 
over an obstacle, of which they believed that it would still be within their physical limits. In daily life, such mis-
matches may lead to dangerous situations. This disparity may cause selection of inappropriate motor behaviours4, 
which might be amplified when one is exposed to a challenging situation5. Yet, little is known whether and how 
these challenging situations affect the selection of movement strategies in gait.

Standing at an elevation can be challenging and such postural threat has been shown to affect the control of 
static motor tasks in both young and older adults6. This is shown through a tightened control of postural sway, i.e., 
reducing the centre of mass excursion, when standing on an elevated platform compared to standing on ground 
level6–9. In line with the more cautious control in standing, walking at a 0.60 m elevation caused older adults to 
walk slower and adopt a more conservative gait pattern, and these changes were more pronounced in older adults 
than in young adults10–13. Moreover, older adults seemed to select more cautious strategies, in terms of higher toe 
clearance, when crossing obstacles at elevation12. However, these studies did not constrain walking speed which 
might be problematic as walking slower is an effective strategy to reduce the risk of erroneous movement and may 
explain the observed changes in strategy selection.

To study the effect of postural threat on motor behaviour during gait in older adults, a stepping-down para-
digm can be used5. When stepping down a small step height, this can be done by using a heel landing or toe land-
ing, with preference towards the latter as the step height increases14,15. Participants presumably switch from heel 
landing to toe landing with increasing step height, to dissipate the kinetic energy generated by the height differ-
ence, despite the higher muscle activity associated with toe landing16. The change in strategy might be to control 
angular momentum as suggested by van Dieën and colleagues16. However, the results of Kluft and colleagues5 
indicated that the dissipation of kinetic energy is the predominant factor as the linear and angular momen-
tum were not different between toe and heel landings, when speed and step height were controlled for. As older 
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adults can use both toe and heel landings, their strategy selection can be considered to reflect their willingness to 
trade-off increased effort (i.e., increased negative ankle muscle power) for decreased risk (i.e., increased dissipa-
tion of kinetic energy). We evaluated whether an increase in postural threat affected this trade-off in the strategy 
selection within older adults by using an elevation manipulation as described previously in studies on standing. 
Besides a shift in (sub)conciously selecting a more cautious stepping down strategy (i.e., by switching to a toe 
landing at smaller step heights), participants can alternatively also adopt safer behaviour within one strategy, for 
example with more cautious kinematic energy profiles.

Furthermore, with a postural threat, the consequence of falling due to balance loss increases. Therefore, a 
postural threat can evoke an increase in emotional responses such as fear and anxiety6. These responses and their 
influence on motor behaviour may differ between individuals. Davis and colleagues8 examined the association 
between height-related changes in balance control and fear between young adults. They found that fearful indi-
viduals at high threat leaned farther away from the platform edge and their centre of pressure featured larger 
amplitudes and higher frequencies than in less fearful peers. Similarly, during our stepping-down paradigm at 
elevation, older adults with higher perceived fear might respond stronger by choosing even more cautious behav-
iour than their less fearful peers.

In this study, our main aim was to study the effect of a postural threat on stepping down strategy selection 
within older adults. We hypothesised that a postural threat during stepping down would lead to the selection of 
more conservative toe landing strategies at lower step heights. This will be evident by a shift of the step height, at 
which individuals switch from heel to toe landing, towards lower values between a low to high threat condition. 
Furthermore, we hypothesised that participants are more cautious in stepping down in a high threat environment, 
even when they select a similar strategy than they did in the low threat condition. Hence, we predicted that the 
heel landing kinematic profiles at high threat would show adaptations reflecting a more cautious behaviour than 
at low threat. Our second aim was to explore whether between-subject difference in perceived fear relates to a 
change in stepping down strategy selection. We expected fearful older adults to select even more cautious strate-
gies at lower step heights compared to their less fearful peers. A better understanding of how a postural threat and 
perceived fear affect movement strategy selection (within and between individuals) may help explain why some 
older adults fall while others with similar physical capacities do not.

This study is confirmatory and we pre-registered our hypotheses and research methods online (AsPredicted.
org); which is available on the Open Science Framework (OSF) repository at (https://osf.io/fpzea/).

Methods
Participants. Older adults (aged 65 years and older) were recruited by word of mouth and we asked employ-
ees in residential homes, gyms, and other recreational facilities for seniors to spread advertisement posters. 
Potential participants were excluded from participation in this study if they had a mini-mental state examination 
score of 23 or lower, reported any neurological, musculoskeletal, or anxiety disorders, had uncorrectable visual 
impairment, suffered from a serious injury during the last 9 months, could only walk with a walking aid, were 
unable to walk independently for 10 consecutive minutes, or took medication which could affect gait stability. 
Participants gave informed written consent prior to any experimentation. The experiment was performed in 
accordance with the relevant guidelines and regulations and approved by the University of British Columbia 
Clinical Research Ethics Board (H18-01124).

Efficacy, falls, and strength. Before the experiment, the participant’s fall concern was assessed, using the 
Falls Efficacy Scale International (FESi17). The self-reported number of falls in the last 6 months was recorded, and 
we administered the modified Gait Efficacy Scale (mGES18,19). For both hands, handgrip strength was determined 
in three assessments20 using a dynamometer (A5401-Digital Hand Grip Strength Dynamometer, Take, Niigata, 
Japan). Participants stood with their arms straight and parallel to their trunk, and the dynamometer was adjusted 
to fit their hand. To promote maximal effort, verbal encouragement was provided while participants squeezed the 
dynamometer20. The mean of the maximum value (from three attempts) recorded from each hand was used to 
determine the handgrip strength20.

Stepping-down task. Participants were asked to walk barefoot over a 2 by 0.6-m platform, stepping down 
on top of a second 2 by 0.6-m platform (Fig. 1). Participants performed the walking trials on bare feet, to avoid 
an effect of footwear on stepping-down strategy between individuals. In all trials, participants wore a safety har-
ness. Walking speed was guided by a set of light-emitting diodes (LED) moving at a speed of 1.1 m per second 
alongside the platforms at eye height, and we instructed the participants to maintain a constant walking speed 
matching the LED speed. Walking speed affects the strategy selection (see van Dieën & Pijnappels15 for a detailed 
evaluation of this phenomenon). For the comparisons within and between individuals we wanted to exclude this 
effect from our results. Therefore, we controlled walking speed. Van Dieën & Pijnappels15 showed an approx-
imately 50 percent chance of a heel landing (i.e., Pheel = Ptoe = 0.5) in older adults when walking at 1.1 m/s 
(4 km/h) with a 0.05 m step height. Thus, for assessment of the critical height, varying step height around the 
Pheel = Ptoe = 0.5 is most informative when the walking speed was set at 1.1 m/s. Participants were instructed 
to continue walking after stepping down, towards a highlighted area taped on the walking surface at the same 
speed. Then, we switched the heights of the two platforms, by sliding a movable top layer to the other platform, 
so the participant did not have to return to the starting position for the next trial. Participants waited shortly 
between trials, as it took only a few seconds for the experimenters to switch heights. Participants confronted up 
to six different step heights (0.025, 0.050, 0.075, 0.100, 0.125, and 0.150 m). The first evaluated step height was at 
0.05 m. Participants performed six stepping-down trials per step height, after which this step height was changed, 
according to a protocol described previously5. The selected landing strategies (i.e., toe or heel landing) for each 
trial, within the range of step heights at which six heel landings and six toe landings occurred, was categorised by 
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the experimenter by observation of the task in real-time. This complete stepping-down procedure was performed 
at ground level (i.e., low threat condition) and elevated 0.78 m above floor level (i.e., high threat condition). 
Previous literature observed gait and emotional changes at 0.60 m elevation10–13, therefore we were confident 
that an elevation of 0.78 m would be sufficient to induce a threat. Note, that the lower platform had a thickness of 
0.025 m, meaning that participants walked at 0.025 m (low threat) and at 0.805 m (high threat), and that the top 
of the higher platform equals this elevation plus the step height. The order of the low- and high-threat conditions 
was randomised across participants. Prior to the protocol, participants completed an extensive set of familiarisa-
tion trials at ground level to minimise potential learning effects.

Kinematics. A total of 7 LED infrared cluster markers was used to measure the movement of body segments 
and placed on the skin at the feet, calves, thighs, and pelvis. Two camera arrays (Optotrak, Northern Digital Inc., 
Waterloo, Ontario) were used to capture the 3D position of the cluster markers and sampled with a rate of 100 
samples per second. Anatomical landmarks were identified and digitised using a pointer21.

Perceived fear. We monitored the fear of falling related to each step-height block of six trials using a short 
questionnaire. The participant indicated how fearful they were by encircling a number, on a scale ranging from 
1 (‘I did not feel fearful at all’) to 10 (‘I felt completely fearful’). If they felt that their fear should be placed between 
two numbers they were instructed to mark this on the line with a cross. The participants, for whom the ratings 
of perceived fear after the first block of six trials increased with threat condition, were classified as being fearful 
(i.e., fear group: Δfear > 0). As the perceived fear ratings are influenced by the time of exposure to the postural 
threat22, we only compared the perceived fear ratings after the first step down.

Physiological arousal. Physiological arousal was assessed by recording electrodermal activity (EDA)23. 
Surface electrodes were placed at the base of the palm using common electrode adhesive and a hypoallergenic 
conducting gel. All areas immediately under the electrodes were cleaned to improve conductivity. The analog 
EDA signals were sampled at 1000 samples per second. The average of the EDA was determined for the entire 
time that the condition lasted, and expressed in μS. The difference in EDA (ΔEDA) between conditions (i.e., 
high-low) was computed and used for further analysis.

Figure 1. Experimental set-up of the postural threat condition. Participants were instructed to walk over 
a 4 m × 0.6 m walkway at an imposed walking speed indicated by LEDs that ran parallel to the walkway. 
Participants stepped down a height difference that was constructed in the middle of the walkway, and which was 
adjustable to multiple step-heights (ranging from 0.025 to 0.15 m). The walkway was secured by a small railing 
around the edge of the platform that assured foot placements within the platform boundaries. The low threat 
condition deviated solely from the high threat condition in terms of the height of the walkway (at floor level). 
Participants wore a safety harness during both experimental conditions.
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Data analysis. A psychometric curve was fitted to the individual’s landing strategy data, the height at which 
both strategies were equally likely to occur was defined as the critical switching height (hcrit)5. In the unlikely situ-
ation that all evaluated heights resulted in either toe or heel landings, hcrit was respectively set to 0.015 or 0.165 m.

A 3-D linked segment model was fitted to the kinematic data24, and gait events were detected automatically25, 
and visually verified afterward (i.e., we corrected the timing visually if the algorithm’s detection was off). Time series 
between the heel strike preceding the step-down, until the heel strike of the step following the step down were analysed. 
Missing data were interpolated using spherical linear interpolation26,27 thereby predicting segmental orientation, and 
when a complete cluster marker was not visible, one of the cluster markers was interpolated using a spline function.

Outcome measures were calculated from the resulting trajectories: (I) step length was determined by the 
distance between the feet during the double support phase in the forward direction, and (II) knee and ankle joint 
angles and angular velocities were calculated by a decomposition of the relative rotation matrices and their deriv-
atives using Euler angles. Joint angles and angular velocities were time-normalised to the gait cycle.

Furthermore, investigation of the motor strategy requires constraining walking speed, as this could affect 
strategy selection15. To validate our experimental paradigm, walking speed was calculated as the mean of the first 
derivative of pelvis marker displacement along the travel path, which should not statistically differ between threat 
conditions.

Sampling plan and statistical analysis. A Bayesian approach was used to test our alternative hypothesis 
that hcrit decreases in the high-threat condition, compared to the null hypothesis that there is no difference between 
the high- and low-threat conditions. To test this hypothesis, we used a Bayesian equivalent of a one-sided paired 
t-test, with a weakly informed prior distribution (i.e., a Cauchy distribution with an interquartile range of r = 1 
centred around an effect size of 028). We used a one-sided test, as a decrease in hcrit with an increase in threat level 
was expected. We monitored the Bayes factor during data collection until a threshold of meaningful evidence was 
reached29–32. We set this threshold to a Bayes factor (BF10) of 10, as this is generally considered as being ‘strong’ 
evidence in favour of H1 (or similarly a BF10 of 0.1 in favour of H0). First, twenty healthy older adults (age 65–85 
years) were included, and this sample was extended until the BF10 exceeded the selected threshold, or a maxi-
mum of fifty participants was reached. In comparison with a frequentist approach, with a sample size of n = 50 
subjects, an effect size of Cohen’s δ = 0.4 can be acquired with an 85% statistical power and a 5% Type I error rate. 
Finally, Bayesian statistical parametric testing (SPM33–35) was used to identify the kinematic differences between 
threat conditions. For this analysis, we solely used the kinematic trajectories in which a heel landing was observed. 
However, as the protocol was tailored per condition to the participant, there might be no overlap in strategy selec-
tion between conditions. To test whether older adults that reported an increased fear responded differently from 
their non-fearful peers, participants were categorised in groups, based on whether the postural threat affected 
their perceived fear of falling (fear group). A Bayesian repeated-measures analysis of variance (ANOVA) with 
threat-group interaction was used to evaluate whether fearful older adults respond differently to elevated walking 
– in terms of the strategy selection (hcrit) – than their less concerned peers. For this analysis, JASP36 default priors 
were used (r = 0.5 for the fixed effects = 0.5 and r = 1 for the random effects) and Bayes factors were reported. A 
Bayesian linear regression was performed to explore whether the change in physiological arousal (ΔEDA) and 
the strategy selection in the low threat condition (hcrit[low]) could explain the hcrit in the high threat condition 
(hcrit[high]). For this analysis a default Jeffreys-Zellner-Siow prior with scaling factor 0.354 was used36. To evaluate 
the effectiveness of the postural threat and thus the validity of our manipulation, measures of perceived fear at 
the 0.05 m step height, physiological arousal averaged over the entire condition, and walking speed at 0.05 m step 
height were compared between threat conditions using Bayesian paired t-tests with one-sided Cauchy distributed 
priors (interquartile range r = 1, centred around an effect size of 0). We assumed our protocol to be effective when 
it increased the perceived fear and physiological arousal, and walking speed did not statistically differ under differ-
ent threat conditions. To ensure that our findings did not mainly rely on the selected priors we assessed the robust-
ness of the Bayes factor for all Bayesian tests28,37 (these results are reported in the OSF repository). Non-parametric 
alternatives were used, if the assumptions of a statistical test were violated, hence a Bayesian signed-rank test38 
was applied for the tests that compared fear, anxiety, and walking speed across threat conditions. The Bayesian 
parametric hypothesis testing was performed in JASP36, and the SPM analysis (code adapted from https://osf.io/
q5b72/ 35) and the non-parametric tests (code adapted from https://osf.io/gny35/ 38) were performed in R39.

Deviations from the preregistration document. Three aspects that deviate from the registered document 
should be noted. First, we planned to determine the slope of the psychometric curve at hcrit to reflect the consistency 
of the strategy selection. In contrast to earlier studies5,40, we found an overall lower critical height in the present 
study. This led to a shift of the psychometric curve towards zero, which makes the slope of the curve less reliable as 
there were fewer data available to fit the lower end of the curve (due to the inability to evaluate stepping down at 
negative step heights). Hence, we omitted the consistency of strategy selection from further analysis. Second, for 
the handling of missing data, visual evaluation of the interpolated data demonstrated that the resulting trajectories 
were adequate, and there was no need to continue fitting linked-segment models, as suggested in the preregistered 
document. Third, for the between participant comparison, we planned to categorise fear group on the basis of the 
physiological arousal data. However, the grouping cutoffs appeared arbitrary. Instead we performed a linear regres-
sion, since no cutoffs are needed in a linear regression model and this analysis is analogous to the planned analysis.

Results
Twenty-four healthy older adults were measured (see Table 1 for participants’ descriptives), of which 14 partici-
pants started in the low threat condition and 10 participants started in the high threat condition. When exposed 
to the high-threat condition, participants lowered hcrit (mean hcrit low = 0.043 ± 0.018 m, mean hcrit 

https://doi.org/10.1038/s41598-020-66352-8
https://osf.io/q5b72/
https://osf.io/q5b72/
https://osf.io/gny35/


5Scientific RepoRtS |        (2020) 10:10815  | https://doi.org/10.1038/s41598-020-66352-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

high = 0.033 ± 0.020 m, Cohen’s δ = −0.59 with 95%CI [−1.03, −0.19], and BF10 = 13.7). Figure 2 presents hcrit 
under low and high-threat conditions and the probability density distributions of the effect size δ. Furthermore, 
step length during the step down was slightly longer in the high-threat condition compared to the low-threat 
condition (mean low = 0.54 ± 0.06 m, mean high = 0.57 ± 0.06 m, Cohen’s δ = 0.59, BF10 = 5.0). However, this 
finding was probably due to the change in landing strategy, resulting in relatively more toe landings, as this effect 
did not remain when only heel landings were compared (mean low = 0.58 ± 0.06 m, mean high = 0.57 ± 0.06 m, 
Cohen’s δ = −0.15, BF10 = 0.3). Note that the evaluated step heights and their order of appearance depended on 
participant’s behaviour and could vary between conditions. Therefore, the analysis of comparing heel-landing 
strategies was only possible for a subset of participants (n = 13), who selected heel landings in both conditions at 
comparable step heights. Normalised ankle joint and knee joint angles and velocities are depicted in Figs. 3 and 4. 

Descriptive variables (N = 24 older adults)

Age 73.8 (4.9) M(SD) years

Females 14 (58.3%) n(%) persons

Fallers 8 (33.3%) n(%) persons

Fall history 0 [1] Mdn[IQR] falls

MMSE 29 [1] Mdn[IQR] points

Body weight 66 [26.7] Mdn[IQR[ kg

Body height 1.66 (0.1) M(SD) m

Grip strength 23.7 [12.6] Mdn[IQR] kg

FESi 19 [6.5] Mdn[IQR] points

mGES 97.5 [7.5] Mdn[IQR] points

Low threat High threat (High-Low)

Within variables M ± SD M ± SD Cohen’s δ BF10

Physiological arousal [S] 16.8 ± 10.0 18.6 ± 8.9 0.85 212.2

hcrit [m] 0.043 ± 0.018 0.033 ± 0.020 −0.59 13.7

Walking speed [m/s] 1.07 ± 0.13 1.03 ± 0.14 −0.48 4.4

Step length* [m] 0.58 ± 0.06 0.57 ± 0.06 −0.16 0.3

Mdn [IQR] Mdn [IQR] BF10

Perceived fear [points] 1[0] 1[0.5] 0.7

Table 1. Participant descriptives, response, and explanatory variables. When the variable was normally 
distributed the mean with standard deviation M(SD) was reported, otherwise, the median with interquartile 
range Mdn[IQR] was reported. Solely for count data, the number and percentage n(%) of the total sample size 
was reported. *Considering only stepping downs that considered heel landing strategies.

Figure 2. (A) Probability density distributions of effect size of hcrit between low and high threat conditions. The 
one-sided prior distribution is indicated by the dashed line. The posterior distribution, indicated by the solid 
line, equals the prior distribution updated by our observed data. The posterior density distribution indicates 
the likelihood of certain effect size (Cohen’s δ) on the horizontal axis. The 95% credible interval (95%CI) is 
indicated by the horizontal bar. Given the BF10, the alternative hypothesis that hcrit differs with threat condition 
is 13.7 times more likely than the null hypothesis that there is no difference between condition. (B) Violin plots 
of hcrit, with jittered individual data points superimposed. Figures adjusted from JASP, jasp-stats.org.
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The SPM analyses of the heel-landing profiles showed that knee and ankle joint angles and angular velocities did 
not differ between conditions. For the between-subject comparison, we found in seven participants the postural 
threat affected their self-reported fear. This fear group had a median increase of 1 (IQR = 0.75) on the 
perceived-fear scale. Repeated measures Bayesian ANOVA revealed that the (threat × group) interaction effect 
model was not preferred over the main effect models (fear group model: η < .0 001p

2 , BF10 = 0.41). Hence, the data 
are uninformative and provide no evidence that could support our hypothesis that fearful individuals would or 
would not respond differently – in terms of hcrit – on threat condition than their peers. Note, that despite the 
between-group sample size differences, the ANOVA’s assumptions were not violated. The change in physiological 
arousal between conditions (ΔEDA) in the Bayesian linear regression did not improve the fit of the model 
(R2 = 0.45, BF10 = 0.33). Hence, the change in physiological arousal did not explain differences in hcrit between the 
low and high-threat conditions. Walking in the high-threat condition increased physiological arousal (mean 
low = 16.8 ± 10.0 μS, mean high = 18.6 ± 8.9 μS, Cohen’s δ = 0.85, and BF10 = 212.2). Perceived fear was margin-
ally affected by threat condition (median low = 1 IQR 1 point, median high = 1 IQR 0.5 point, and BF10 = 0.7). 

Figure 3. (A) Sagittal plane ankle joint angle (negative values indicate plantar flexion) and (B) angular velocity 
of the leading leg during stepping down under high (red) and low (blue) threat conditions. The shaded area 
displays ±1 standard deviation. Only heel landing profiles were selected for this comparison, and the average 
heel-landing trajectories within one condition and step height were averaged over participants. Time series are 
normalised from the heel strike before stepping down to the first step at the lower level (0–50%), and up to the 
next heel strike (51–100%).

Figure 4. (A) Sagittal plane knee joint angle (negative values indicate knee flexion) and (B) angular velocity 
of the leading leg during stepping down under high (red) and low (blue) threat conditions. Only heel landing 
profiles were selected for this comparison, and the average heel-landing trajectories within one condition and 
step height were averaged over participants. The shaded area displays ±1 standard deviation. Time series are 
normalised from the heel strike before stepping down to the first step at the lower level (0–50%), and up to the 
next heel strike (51–100%).
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Walking speed was slightly lower than indicated by the set of LEDs in the high-threat condition (mean 
low = 1.08 ± 0.13 m/s, mean high = 1.04 ± 0.14 m/s, Cohen’s δ = −0.49, and BF10 = 4.6).

Discussion
Our results confirmed our initial hypothesis that older adults adjusted their stepping-down behaviour when 
under threatening conditions. This is in line with our expectation that postural threat causes older adults to 
behave more cautiously, and therefore switch to toe landings at lower heights. Changing stepping-down behav-
iour under threat may contribute to an increased sense of safety, and may be protective in daily-life situations, 
despite the increased effort in terms of muscle force production16. Whereas a postural threat due to elevation 
increases the potential consequence of inadequate strategy selection, do other circumstances, such as blurred 
vision, fatigue or weather conditions increase the probability of an inadequate execution of the selected strategy 
and may therefore also lead to the selection of more cautious or more robust movement strategies. Moreover, the 
increased arousal that our participants experienced at elevation may replicate that experienced by individuals 
who suffer from increased fear of falling during daily-life activities. This implies that older adults with excessive 
concern of falling may select overly cautious movement strategies during daily-life tasks.

Previous work on stepping-down behaviour suggested that strategies are selected based on a trade-off between 
safety and efficiency15,41. This study adds evidence for this trade-off as older adults preferred the safer strategy 
when walking on elevation. Between individuals, we found no evidence for an interaction effect of threat with 
perceived fear on the change in strategy selection of stepping down across threat conditions. The absence of 
such an interaction effect might be due to the threat of our experimental manipulation; the variability on the 
self-reported perceived fear was only marginal, which might be due to our modest platform elevation of 0.78 m. 
For comparison, Davis and colleagues8 evaluated standing at heights of 0.8 m, 1.6 m and 3.2 m and found robust 
fear responses only at the 3.2 m height. Even though walking is more challenging than standing at an elevated 
height, it is recommended for future research to study gait at higher elevations (>0.78 m) to distinguish how dif-
ferent psychological conditions contribute to altered strategy selection in older adults. Delbaere and colleagues13 
found in their study, in which they compared walking at floor level and at 0.6 m elevation, mean values of 16.29 μS 
and 16.32 μS respectively (which is comparable with our findings of 16.8 μS and 18.6 μS). However, like comparing 
EMG between individuals, comparing EDA values between individuals is often not informative. Values largely 
depend on room temperature, skin composition, electrode placement, and the type of electrode gel. However, the 
within participant comparison is valid as these factors are not altered.

We evaluated the knee and ankle joint kinematics to detect differences in control between threat conditions 
within either toe landing or heel landing strategies. The mechanical challenge of stepping down is to keep control 
of the angular momentum and kinetic energy induced by the height difference5,16. Even though some participants 
still selected heel-landing strategies when walking under high threat, the threat-related adjustment could have 
been governed by adaptations, reflected in different kinematic trajectories. However, we did not observe any 
difference in the joint kinematics between heel landings across conditions. Another effective strategy is to adjust 
the foot placement to increase the step length42. We had expected the step length to increase with the postural 
threat to allow more reduction of angular momentum at landing; however, our data do not provide the evidence 
to support this hypothesis. These findings confirm that older adults adjusted to the postural threat by making a 
discrete switch in stepping-down strategy.

The small effect sizes of the ANOVA’s threat × group interaction and linear regression suggest that the postural 
threat does not alter the stepping-down strategy of the more aroused or fearful older adult relative to their peers. 
In this study, we assumed that the strategy selection is the variable through which the safety during stepping down 
is controlled. This seems to be an acceptable assumption, given that the postural threat decreased hcrit. So, why is 
the strategy selection not different between our fear groups? This is probably due to the relatively small effect of 
the postural threat on the emotional state of the participant. Although we measured an increased physiological 
arousal at elevation, there was only a slight increase in reported fear in a few participants. Hence, the instrument 
used to measure the perceived fear was not sensitive enough to indicate the small differences caused by our 
manipulation.

This study aimed to understand how a postural threat, induced by a height manipulation, affects movement 
strategy selection in older adults. The validity of our threat manipulation was assessed by evaluation of the per-
ceived fear, physiological arousal, and walking speed. The increase in physiological arousal suggests the manip-
ulation imposed a postural threat and provoked a physiological arousal response6. However, the ratings of the 
perceived fear, were unaffected by the imposed threat, suggesting that the elevation in the high threat condition 
was not sufficient to induce a significant change in the perceived fear. Moreover, the seven participants for whom 
the perceived fear increased had only a slight change in score, which was not practically relevant.

Different from previous studies described in the introduction10–13, we imposed the walking speed using a LED 
strip. Despite the imposed walking speed, the postural threat drove participants to walk slightly slower compared 
to walking at ground level. A previous study on strategy selection during stepping down showed that the strategy 
selection is a function of walking speed15. As walking speed differed between threat conditions, this may have 
affected switching heights. However, the observed difference in walking speed was relatively small (<0.05 m/s), 
implying that the magnitude of this difference is not sufficient to explain changes in stepping-down strategy. 
Interestingly, no differences in step length between conditions were observed; therefore, we believe that the pre-
viously reported differences in step length can be (mainly) explained by the major change in walking speed over 
conditions. Future research studying effects of a postural threat on human gait, should consider controlling for 
walking speed.

This study had some limitations to be considered. In this experiment, participants walked barefoot, which 
most likely reduced the probability of stepping down with a heel-landing strategy. Indeed, we observed lower 
hcrit

5,40, compared to earlier work on stepping-down strategies in which participants wore footwear. We controlled 
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for walking speed with a LED strip, but this required participants to adapt their walking speed to that of a moving 
light beam. Participants could have been distracted by the light beam. However, we did not expect great devi-
ations due to such distraction, as participants were well acquainted with the walking speed and the light beam 
(i.e., they performed an extensive familiarisation trial). Although, we tried to constrain walking speed, our results 
showed a minor difference in walking speed between conditions, which might have affected the results as sug-
gested above. Our participants were required to be able to walk for at least 10 consecutive minutes independently. 
This may have caused a selection bias as solely fit older adults (mean grip strength = 23.7 kg) with a low fear of 
falling experienced during daily life activities were recruited (median FES-i = 1943 established cutoffs of 16–19 for 
low concern and 20–27 for moderate concern). These individuals may have been less susceptible to the postural 
threat as they have higher confidence in their gait ability. Furthermore, participants wore a safety harness, which 
likely reduced the response – in terms of strategy selection, joint kinematics, perceived fear, and physiological 
arousal – to the postural threat.

In accordance with the initial and preregistered hypothesis, our findings indicate that older adults change their 
motor behaviour, in terms of strategy selection in a stepping-down paradigm, due to a postural threat imposed 
by walking at elevation. Despite the additional effort of the selected landing strategy, older adults adjusted their 
motor strategy selection in response to the imposed threat towards using a toe landing.

Data availability
The datasets analysed for this study and all figures can be found in an Open Science Framework repository 
(https://osf.io/eu2d6/).
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