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Assessment of cerebral 
autoregulation indices – a 
modelling perspective
Xiuyun Liu1,2 ✉, Marek czosnyka1,3, Joseph Donnelly  1,4, Danilo cardim1,5, 
Manuel cabeleira1, Despina Aphroditi Lalou  1, Xiao Hu6, Peter J. Hutchinson1 & 
peter Smielewski  1

Various methodologies to assess cerebral autoregulation (CA) have been developed, including model 
- based methods (e.g. autoregulation index, ARI), correlation coefficient - based methods (e.g. mean 
flow index, Mx), and frequency domain - based methods (e.g. transfer function analysis, TF). Our 
understanding of relationships among CA indices remains limited, partly due to disagreement of 
different studies by using real physiological signals, which introduce confounding factors. The influence 
of exogenous noise on CA parameters needs further investigation. Using a set of artificial cerebral blood 
flow velocities (CBFV) generated from a well-known CA model, this study aims to cross-validate the 
relationship among CA indices in a more controlled environment. Real arterial blood pressure (ABP) 
measurements from 34 traumatic brain injury patients were applied to create artificial CBFVs. Each ABP 
recording was used to create 10 CBFVs corresponding to 10 CA levels (ARI from 0 to 9). Mx, TF phase, 
gain and coherence in low frequency (LF) and very low frequency (VLF) were calculated. The influence 
of exogenous noise was investigated by adding three levels of colored noise to the artificial CBFVs. 
The result showed a significant negative relationship between Mx and ARI (r = −0.95, p < 0.001), 
and it became almost purely linear when ARI is between 3 to 6. For transfer function parameters, ARI 
positively related with phase (r = 0.99 at VLF and 0.93 at LF, p < 0.001) and negatively related with 
gain_VLF(r = −0.98, p < 0.001). Exogenous noise changed the actual values of the CA parameters and 
increased the standard deviation. Our results show that different methods can lead to poor correlation 
between some of the autoregulation parameters even under well controlled situations, undisturbed by 
unknown confounding factors. They also highlighted the importance of exogenous noise, showing that 
even the same CA value might correspond to different CA levels under different ‘noise’ conditions.

Cerebral autoregulation (CA) refers to the active control of cerebral resistive arterioles in response to increased or 
decreased cerebral perfusion pressure (CPP) or arterial blood pressure (ABP), and is an important homeostatic 
mechanism that protects the brain against injury due to potentially insufficient or excessive cerebral blood flow 
(CBF)1–6.

In the last 20 years, a wide variety of techniques have been developed and adopted for CA assessment, include 
the autoregulation index (ARI), transfer function analysis (TF, including phase shift, gain and coherence), mean 
flow index (Mx), etc7–15. Despite advances in the application of CA assessment16,17, there still remains no consen-
sus on which approach can be considered as ‘gold standard’6,18,19. Although a few comparisons between various 
CA parameters have been published 20–27 based on real ABP and cerebral blood flow velocity (CBFV) measure-
ments, testing the integrity of CA remains a major technical challenge2. For example, some studies showed that 
TF parameters correlated with ARI, while other studies found no relationship between the two; some studies 
demonstrated negative relationship between TF gain and phase, while several studies showed fairly weak strength 
of correlations between them8,26,28,29. Other investigators have also characterized CA using several metrics, 
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leading to different outcomes30–33. In most recent work, Sanders et al. reported pool reproducibility in ARI and 
correlation method using data from 14 centers34. Whether the poor convergence between these CA metrics is due 
to fundamental differences of various algorithmic models or is caused by unknown extraneous ‘noise’14 presented 
in the real data (i.e. components in ABP and CBFV which are not related to each other), needs further study-
ing. Moreover, unknown noise makes meaningful comparisons among various CA methods difficult and further 
investigations about the influence of noise need to be done.

This pilot study aims to assess the relationship among three commonly used CA indices in a more controlled 
environment and assess the influence of noise on CA assessment35. Artificial CBFV signals were generated 
according to Tiecks’ ARI model1 by using real ABP signals as the input. Mx and TF parameters were calculated 
and compared with ARI values based on well controlled situations, undisturbed by unknown confounding fac-
tors. Stimulated by Panerai et al.36, a varying degree of ‘exogenous’ noise was imposed on the simulated data to 
estimate the influence of noise on these relationships. The analysis mainly focuses on two frequency ranges fol-
lowing the recommendations by the International Cerebral Autoregulation Research Network (CARNet) white 
paper37,38: very low frequency range (VLF, 0.02~ 0.07 Hz) and low frequency range (LF, 0.07~ 0.2 Hz). We use 
gain_VLF for the abbreviation of gain in VLF range, and gain_LF for gain in LF. Similarly, phase_VLF and phase_
LF refer to phase in the VLF and LF range, while coh_VLF and coh_LF stand for squared coherence in the VLF 
and LF range respectively. For technical details, please refer to the methodology section at the end of the paper.

Results
Simulated CBFV. The average age of this cohort was 28.8 years (standard deviation, SD, 15.9 years) with 8 
females and 26 males. Mean ABP was 82.0 ± 10.5 mm Hg (mean ± SD). One example of 10 artificially generated 
CBFVs (upper panel) from a fragment of a real ABP signal recording (lower panel) is shown in Fig. 1. In order to 
show the phase shift between different CBFVs and ABP more clearly, a moving average filter of 45 s window was 
applied to the artificial CBFVs in Fig. 1. Differences in amplitudes and phases of the ten CBFVs are clearly visible. 
To clarify, the 45-second moving average window was only applied in Fig. 1 to improve the visualization. In the 
following calculations of CA parameters, this filter was not used. This is because in Fig. 1, the original artificial 
signal created by Tickes’ model were used, which still contain the high frequency components (pulse and respira-
tory waves). Therefore in order to visualize differences in phase shift and gain of the generated CBFV signals, we 
have to strip the high frequency components by low pass filtering (the 45 sec moving average filter, to filter out the 
components above 0.2 Hz).

Relationship between ARI and Mx under no-noise condition. Mx negatively correlates with ARI 
(r = −0.95, p < 0.001, n = 34, Fig. 2A). From ARI 3 to ARI 6, the usual range of values seen in clinical practice, 
the relationship between these two indexes can be described as: Mx = −0.15×ARI + 1.329 (Fig. 2B, r = −0.94, 
n = 34, p < 0.001).

Relationship between ARI and estimated TF parameters under no-noise condition. Figure 3A, 
B describes the relationships between ARI and TF parameters in both VLF and LF ranges. There is a significantly 
negative relationship between ARI and Gain_VLF (Fig. 3A, r = −0.98, p < 0.001). In both frequency ranges, there 
is a positive and highly monotonic relationship between phase and ARI, with r = 0.99 (p < 0.001) at VLF and 
r = 0.93 at LF (p < 0.001). Furthermore, it becomes almost purely linear when ARI is between 3 to 6 at VLF 
(phase = 13.97 × ARI – 17.06, r = 0.998, p < 0.001, Fig. 3B).

Relationship between Mx and TF parameters under no-noise condition. A nearly linear, nega-
tive relationship exists between Mx and Phase_VLF (Phase_VLF = 117.4 – 110.6 × Mx; r = −0.97, p < 0.001, 
Fig. 3D), which is not quite the case for Mx and phase_LF (r = −0.86, p < 0.001, Fig. 3D). Gain at VLF was also 

Figure 1. An example of ten artificial flow velocities (upper panel) created according to the real mean ABP 
(lower panel) using Tiecks’ ARI model. CBFV0 refers to the CBFV generated according to the model using 
dysfunctional autoregulation indices (ARI 0). CBFV9 refers to the flow velocity generated according to the 
model of hyperactive autoregulation (ARI 9). In order to show the phase shift much clearer, the CBFVs shown 
in the picture has been filtered using a moving average filter of 45 s window. ARI: autoregulation index.
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monotonically related to Mx (r = 0.93, p < 0.001, Fig. 3C), while gain at LF did not show a monotonous relation-
ship with Mx (p = 0.066, Fig. 3C).

Relationship among TF parameters under no-noise condition. This cohort of simulated data shows 
a strong relationship among transfer function gain and phase. TF gain negatively correlates with phase both in 
VLF and LF (r = −0.96, p < 0.001 between gain_VLF and phase_VLF, r = −0.52, p < 0.001 between gain_LF and 
phase_LF). Coherence showed significant relationship with gain and phase at VLF (r = 0.82, p < 0.001 between 
gain_VLF and coh_VLF, r = −0.90, p < 0.001 between phase_VLF and coh_VLF). However, the relationship 
between coherence and gain in LF is extremely weak (r = 0.13, p = 0.016) as well as coherence and phase in LF 
(r = −0.13, p = 0.020).

Analysis of the effects of exogenous noise. Figure 4 displays the relationship between ARI and other 
CA parameters using CBFV without noise as well as CBFV with artificial noise at three signal-to-noise ratio 
(SNR) levels: high SNR (5 dB), medium SNR (−0.5 dB) and high SNR (−5 dB) power noise. Despite a general 
preservation of the overall character of the relationship between Mx and ARI, the actual value changes with the 
different levels of noise. With increased noise, Gain was increased, and coherence was decreased in general. The 
character of the relationship between TF phase and ARI was kept almost the same. We also tested the relationship 
between estimated TF gain and ARI under different levels of artificial noise (Table 1).

Figure 2. The relationship between mean Mx and ARI under no-noise condition. (A) Mean value of Mx for 
different groups of artificial flow velocities generated from ARI0 to ARI9. (B) Mean value of Mx from ARI3 to 
ARI6, we can see a linear relationship between these two parameters. Mx: mean flow index using arterial blood 
pressure as input; ARI: autoregulation index. Error bar: standard error.

Figure 3. (A,B) The relationship between ARI and the estimated transfer function parameters under no-noise 
condition. (C,D) Relationship between Mx with transfer function parameters under no-noise condition. ARI: 
autoregulation index; Mx: mean flow index; VLF: very low frequency range, 0.02–0.07 Hz; LF: low frequency 
range, 0.07-0.2 Hz. Gain_VLF: transfer function gain in VLF; Gain_LF: gain in LF; Phase_VLF: phase in VLF; 
Phase_LF: phase in LF.

https://doi.org/10.1038/s41598-020-66346-6


4Scientific RepoRtS |         (2020) 10:9600  | https://doi.org/10.1038/s41598-020-66346-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 5 shows that, as expected, the standard deviations of the studied parameters were increased with added 
noise, especially while high power noise was added. Furthermore, in the presence of noise, a monotonic relation-
ship between the estimated coherence and ARI was revealed in the VLF range (Fig. 4).

Figure 4. The relationships between Mx, TF parameters and ARI with different intensities of added noise. 
In the panel grid rows (from up to bottom) represent different indices: Mx, Gain, Phase and Coherence, and 
columns (from left to right) represent increasing intensity of noise. SNR: signal to noise ratio; Mx: mean flow 
index; ARI: autoregulation index; TF: transfer function. Error bar: standard error.

No Noise Low Noise
Middle 
Noise High Noise

Mx r = −0.95, 
p < 0.001

r = −0.93, 
p < 0.001

r = −0.87, 
p < 0.001

r = −0.71, 
p < 0.001

Gain_VLF r = −0.98, 
p < 0.001

r = −0.98, 
p < 0.001

r = −0.94, 
p < 0.001

r = −0.45, 
p < 0.001

Gain_LF r = −0.22, 
p < 0.001

r = −0.23, 
p < 0.001

r = −0.20, 
p < 0.001 p = 0.49

Phase_VLF r = 0.99, 
p < 0.001

r = 0.98, 
p < 0.001

r = 0.95, 
p < 0.001

r = 0.81, 
p < 0.001

Phase_LF r = 0.93, 
p < 0.001

r = 0.92, 
p < 0.001

r = 0.88, 
p < 0.001

r = 0.71, 
p < 0.001

Coh_VLF r = −0.86, 
p < 0.001

r = −0.87, 
p < 0.001

r = −0.90, 
p < 0.001

r = −0.44, 
p < 0.001

Coh_LF p = 0.73 r = −0.42, 
p < 0.001

r = −0.36, 
p < 0.001

r = −0.11, 
p=0.04

Table 1. The Pearson’s correlation coefficient (r) between ARI and other cerebral autoregulation parameters. 
ARI: autoregulation index. TF: transfer function; Mx: mean flow index using arterial blood pressure as input; 
VLF: very low frequency, 0.02~ 0.07 Hz; LF: low frequency, 0.07~ 0.2 Hz. Black: TF parameters in very low 
frequency; p value for all the parameters in this form is below 0.01. Gain_VLF, Phase_VLF, Coh_VLF refers to 
gain, phase and squared coherence in VLF range; Gain_LF, Phase_LF, Coh_LF refers to gain, phase and squared 
coherence in LF range. P < 0.05 was considered to be significant.
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Discussion
In the past two decades, quite a few studies analyzed the relationships among CA parameters in different cir-
cumstances8,26,28–32, however, the results vary. Whether the poor convergence between CA metrics is due to fun-
damental differences of various algorithmic models or is caused by unknown extraneous ‘noise’14 presented in 
the real data needs further studying. In their study, Simpson and his colleagues confirmed that even within a 
given recording of the same patient, ARI estimates can be inconsistent6, probably due to short-term variations in 
autoregulatory activity, nonlinear system characteristics39, as well as the influence of other physiological variables 
(e.g., CO2 and O2 levels and intracranial pressure variations40) on CBFV. In order to exclude these uncertain 
elements in CA calculations, this study explored the interrelationships among three commonly used CA metrics: 
1) transfer function analysis, 2) a second-order linear model (ARI), and 3) time-based correlation (Mx), by using 
a cohort of artificial CBFVs. We demonstrate strong but non-linear relationships between ARI and Mx, ARI 
and phase as well as between phase and Mx. In addition, our study also showed that the intensity of noise had a 
profound influence on all CA parameters. These analyses add insight to both the interpretation of our previously 
published literature and the design of future cerebral haemodynamics investigations.

Using the simulated CBFVs, we artificially made ‘ARI’ as a reference to compare with other method. The 
character of the relationship between Mx and ARI confirmed the metric convergence and general interchangea-
bility of the two indices from a mathematical level. However, considering the shape of the relationship follows an 
inverted ‘S’ - shaped curve (Fig. 2), Mx may only be used to grade CA levels in the middle range (corresponding to 
ARI 3 to 6), beyond which the shape saturates. For noise-free simulation, the range that Mx can be used as a scale 
is between 0.38 to 0.90 (corresponding to ARI 3 to 6). However, in practice, as shown by our noise simulations, 
one should expect this range to be shorter and shifted down towards lower values of Mx (Fig. 4A).

A linear system is always a priori assumption while using TF for CA assessment. This cohort of artificial data 
met the criteria, and the consistent relationships among TF phase with ARI or Mx supported the theoretical 
interchangeability of these metrics. In terms of grading different CA levels, the roughly ‘S’ - shaped relationship 
between phase and ARI indicates that for a noise-free situation, a phase from 0 to 70 degrees can be used to grade 
CA (corresponding to ARI 1 to 7, Fig. 3B). With ‘noise’ added, the relationship is slightly flattened (Fig. 4). Gain 
in the LF band did not show a monotonous relationship with either ARI or Mx, and therefore its use in LF for 
CA analysis cannot be recommended. This might be explained by the pre-processing procedure: normalization. 
In this study, the ABP and CBFV were normalized into Z scores (mean subtracted, and divided by the standard 
deviation) prior to TF analysis. According to the white paper (recommendation 8)37, removing mean values prior 
to TF analysis is useful to minimise spectral leakage. However, arguments against normalizing ABP (or CBFV) 
as % (relative to the mean) rather than in absolute units (mmHg or cm/s) have been raised. Since a 10% change 
for example, would be physiologically very distinct for a patient with a baseline mean ABP of 90 mmHg, com-
pared to an individual with a baseline mean of 150 mmHg37. The normalization by the mean value would reduce 
intersubject variability of CBFV amplitude and also affect the gain estimates directly37, thus influencing the shape 
of the relationship between Gain and ARI. This maybe the main reason why LF gain comes out so poorly (poor 

Figure 5. Mean standard deviation of Mx (A), transfer function gain (B), phase (C) and coherence (D) 
at different nose levels. SNR: signal to noise ratio; Mx: mean flow index; VLF: very low frequency; LF: low 
frequency. ** indicates p value was smaller than 0.001, and * indicates p value was smaller than 0.05.
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correlation with ARI) in the analysis of this paper and it also tells us that we need to be very careful while we use 
gain for CA assessment. Therefore more studies to investigate the effect of normalization are needed.

In this study, the TF phase was unwrapped in degrees to [−180°, 180°]. As mentioned in the white paper37, 
for phase unwrapping, distorted estimates of mean phase will result from averaging positive and negative values 
while the latter results from phase ‘wrap-around’ in the VLF or LF frequency bands. Therefore, in this study we 
upwrapped the phase to [−180°, 1800] degrees and the negative values was removed for later analysis following 
the guidelines in the white paper37.

Previous studies using real data showed conflicting results on the relationships among CA parameters8,26,28. 
This disagreement might be due to various reasons: 1) different basic analytic constructs; therefore they may not 
reflect the same aspect of the underlying physiological response4; 2) unrelated and unknown noise in the real data 
that influence the results;34,41–43 3) low reproducibility of CA parameters that might differ in different groups of 
subjects30,32, or 4) inappropriate hypothesis, for example the TF analysis assumes CA as a stationary system, while 
this is not true in reality27,44. This study shows that different methods can lead to poor correlation between some 
of the autoregulation parameters (e.g. the non-significant ones found here) even in well controlled simulated 
data, with a simple linear model. This provides an additional explanation for why clinical measures can be poorly 
correlated.

By generating artificial CBFV data, the original analyses necessarily excluded all external noise from the CA 
estimates. In order to simulate a more realistic scenario and investigate the influences of the noise on CA assess-
ment, we used three levels of intensity of additive artificial noise (SNR: 5 dB, −0.5 dB, −5 dB). Katsogridakis et 
al. found that the distribution of SNR of real CBFV measurement was mainly between 4–6 dB in a study of 60 
volunteers45. Therefore, we chose artificial noise of SNR = 5 dB to approximates the real-world scenario of clinical 
CA assessment. The comparison with previously published data indicates that such artificial noise may be rele-
vant29. The relationship between ARI and Mx using the simulated data with artificial noise in the current analysis 
is qualitatively similar to the relationship between ARI and Mx derived from our previous study using real data 
of 288 TBI patients (Fig. 6)29. This reasonably good match indicates that our rather simplistic approach might 
provide an acceptable approximation to the exogenous noise seen in real data.

As expected, the intensity of noise has a significant influence on all CA parameters, particularly on the rela-
tionship between (TF) coherence and ARI. With the linear model used in this work, in the absence of noise, one 
would expect coherence to be high (almost 1 in the estimates), regardless of ARI (the coherence does not care 
about what the relationship between input and output is, just that the relationship is strong and linear - as is the 
case for these filters and no noise). However, with different noise intensities, the character of the coherence-ARI 
relationship changes dramatically. Coherence is useful in detecting strongly non-linear relationships as expected 
when autoregulation is strong (but not modelled with the ARI filters) or noise in the data. The other TF param-
eters (i.e. phase and gain) together with Mx, and their relationships to ARI were affected by the noise to various 
extents. Interestingly, although the shape of the relationship curve between the parameters and ARI remained 
largely unchanged, the scaling was significantly affected. With increasing noise, Mx tends to decrease due to 
unrelated components introduced by noise. As small Mx refers to good autoregulation, with increasing noise, Mx 
would overestimate autoregulation (Mx tends to be low). Therefore, in different ‘noise’ conditions (any exogenous 
process), the same TF parameter value or Mx value will correspond to different autoregulation (i.e. strengths 
of CA) levels. This can potentially explain the poor reproducibility of CA parameters across different patient 
cohorts.

Recalibration of the various CA indices according to the ‘background’ exogenous ‘noise’ for a particular 
patient population may therefore be necessary for consistent CA grading. This may of course not be a practical 
solution, as the level of ‘background noise’ will be in reality unknown, possibly variable and generally unmeas-
urable. Katsogridakis et al. provided a reasonable way for noise calculation45. If one, for example, compares the 

Figure 6. Comparison of Mx-ARI relationship between real data and modelled data. The real curve measured 
in a cohort of TBI patients (solid black) is plotted against curve obtained using modelled data under low-power 
noise conditions (red dotted line), and against modelled data without noise (solid blue line). The Mx value of 
real data were shown on left y axis; and the Mx value of modelled data were shown on right y axis. SNR: signal to 
noise ratio; ARI: autoregulation index; Mx: Mean flow index.
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real Mx-ARI characteristics measured in TBI patients29, with a theoretical Mx-ARI relationship curve using the 
simulated data (Fig. 6), the two curves have similar shapes and match well with each other.

Limitations
In this study we used a time-invariant model, a second-order linear model (Tiecks’ model), to generate CBFV 
signals, and it assumes the relationship between input and output to be linear. While in reality, the impact of many 
other variables and confounding factors (such as CO2), make the relationship complex. We need to bear in mind 
that the conclusion about the relationship between the CA parameters in this study is predominantly held for the 
artificial data and is from a mathematical point of view. The result may not accurately reflect the actual relation-
ships of realistic recordings, as discussed by Panerai et al.44. It is important to note that the confounding effects of 
noise on these CA parameters might be helpful, but the relationship between the parameters using simulated data 
with no noise is too ideal and can not be considered to be true in real situation. Moreover, the data we used for 
modeling was taken from TBI patients, other cohorts of patients need to be tested for further studies.

Moreover, we fully acknowledge that our representation of confounding exogenous processes and non-linear 
effects as an additive colored Gaussian noise signal is a gross simplification. As we have no clear grounds to 
shape the noise to simulate the real situation, due to the reason that the spectral distribution of the real noise 
varies between individual recordings, we have to choose the most generic type of noise assuming that it will 
highlight the effects of noise on CA parameters. Although the noise simulation provided us with a possible way 
of investigating the effects of noise on the performance and interrelationships of these CA indices, we did not 
take individual differences of noise into account. Finally, given that the SNR was calculated over the whole signal 
frequency band, but then the noise was filtered, removing much of its power, the true (relevant) SNR for the signal 
(frequency band of interest) is much higher.

conclusions
This study explored the relationships between the most commonly used indices of CA: ARI, Mx and TF parame-
ters under well controlled situations, undisturbed by unknown confounding factors. The results show that under 
no-noise condition, ARI, Mx and TF phase (but not gain) were interchangeable while ARI is between 3 to 6. 
Coherence should be only used with full understanding of its interpretation and significance. The study also 
highlighted the importance of the influence of exogenous noise. Even the same CA value might correspond to 
different autoregulation levels in different ‘noise’ conditions.

Methods
Ethical approval. The data in this study was gathered during a retrospective analysis of data collected pro-
spectively from 1146 head-injured patients admitted to the Addenbrooke’s Hospital Neurocritical Care Unit 
between 1992 and 201713,46. 138 recordings from 34 randomly selected traumatic brain injured (TBI) patients 
with a clinical need for intracranial pressure monitoring and computerized signal recordings were included for 
this analysis. The anonymised computerized data storage protocol was reviewed and approved by the local ethics 
committee of Addenbrooke’s Hospital, Cambridge University and the neuro critical care unit User’s Group. The 
study was approved by the institutional ethics committee (30 REC 97/291). Inclusion criteria were: traumatic 
brain injury as diagnosis on admission; invasive monitoring of arterial blood pressure, monitoring of flow velocity 
through transcranial Doppler (TCD) for at least 30 min and mortality and GCS data available. All patients were 
sedated, ventilated and managed according to a CPP protocol for management of head injury with CPP main-
tained at> 60 mm Hg47.

Data acquisition. Arterial blood pressure was monitored in the radial or femoral artery (Baxter Healthcare 
CA, USA; Sidcup, UK) with a zero calibration at the level of the right atrium (1992–2015) and at the foreamen of 
Monroe (2015–2017). Cerebral blood velocity was monitored from the middle cerebral arteries (MCA) via the 
transtemporal windows bilaterally using Doppler Box (DWL Compumedics, Singen, Germany) or Neuroguard 
(Medasonic, Fremont, CA, USA).The insonation depth was from 4 to 6 cm and the examinations were performed 
during the first 3 days after head injury48.

Between 1992 and 1996 data trends (1-minute time averages) were collected at 50 Hz with non- propriety 
software developed in house. From 1996–2002 Data were sampled at 100 Hz with proprietary data acquisition 
software and one minute trends were stored (ICM, Cambridge Enterprise, Cambridge, UK) and from 2002–2017 
data were collected using ICM + , (Cambridge Enterprise, Cambridge, UK, http://icmplus.neurosurg.cam.ac.uk). 
Artefacts introduced by tracheal suctioning, arterial line flushing or transducer malfunction were removed man-
ually. Data were recorded and analyzed anonymously as a part of standard audit approved by Neurocritical Care 
Users Group Committee.

Data analysis. Generation of artificial CBFV waveforms. Artificial mean CBFV waveforms were generated 
according to the mathematical model proposed by Tiecks et al.1 using real ABP recordings (Supplementary S1 
Equation 1–4). The model provides a second order high pass filter representation of the relationship between 
ABP and CBFV that can be adjusted for different ‘strengths’ of CA (graded by the autoregulation index - ARI). 
The strength of CA is divided into 10 levels, through a set of parameters: the time constant (tau), damping factor 
(D), and the autoregulatory dynamic gain (K), (Supplementary Table S1)1,49. Higher ARI denotes good CA, while 
ARI = 0 indicates completely abolished CA. Each ABP recording was used to generate ten simulated CBFVs 
according to those 10 levels of CA1,50.

Transfer Function phase, gain and coherence calculation. TF phase, gain and coherence between the real ABP 
and the generated flow velocities were calculated through Fourier Transform (FFT) algorithm9,37,51. Choice 
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of parameter settings followed the recommendations of the International Cerebral Autoregulation Research 
Network (CARNet)37,38. The analysis mainly focuses on two frequency ranges: very low frequency range (VLF, 
0.02~ 0.07 Hz) and low frequency range (LF, 0.07~ 0.2 Hz). A 300-s window was used to generate TF parameters, 
and was updated every 10 s to produce continuous TF parameters. Generated CBFV and ABP were first normal-
ized into z scores (mean subtracted, and divided by the standard deviation), which can transform all the data into 
the same scale and handle outliers very well. Then the normalized CBFV and ABP were divided into four data 
segments of 120-second duration (amounting to 50% segment overlap) and transformed with the FFT algorithm 
(Welch method)23,52. The cross-spectra and auto-spectra of ABP and CBFV, the TF squared coherence were esti-
mated using the average value of the four segments through the method described below29.

The auto- and cross-spectra of input (real ABP) and output (simulated CBFV)9,53,54 were calculated by averag-
ing (denoted by the ‘expectation’ operator E) over repeated windows of the complex product of the signals using 
Eqs. 1 to 3. Spp and Svv represent auto-spectrum of blood pressure (P(t)) and flow velocity (V(t)) respectively. 
Spv(f) is the cross spectrum which represents a common variability in the two signals as a function of frequency.

= ∗Spp(f) E[P(f) P(f)] (1)

= ∗Svv(f) E[V(f) V(f)] (2)

= ∗Spv(f) E[P(f) V(f)] (3)

A 300-s moving window was used to generate continuous TF parameters. The time series were divided into 4 seg-
ments with 120 s recording each and transformed with the FFT algorithm using 50% overlap of segments (Welch 
method). The mean Spp, Svv and Spv of the four segments were then used for TF calculation (Eq. 4). HR and HI 
are the real part and imaginary part of H(f)55.

H(f) Spv(f)
Spp(f) (4)

=

= + ⋅ = × ϕeH H H j H(f) (5)j
f R I

(f)

j refers to imaginary unit, |H(f)| refers to TF gain and ϕ(f) refers to TF phase, which are descried below. The TF 
gain (|H(f)|) indicates the magnitude of change in CBFV that is caused by a change in ABP. The TF phase (ϕ(f)) 
describes the phase shift from input to output at a specific frequency23,56. They can be obtained through 6 and 7. 
Following reviewers’ comments and feedback, phase shift was unwrapped and limited to a range of [−1800,1800], 
and negative values were deleted.

= +H(f) [H H ] (6)I
2

R
2 1/2

ϕ =












−(f) tan H (f)
H (f) (7)

1 I

R

We use gain_VLF for abbreviation of gain in VLF range, and gain_LF for gain in LF. Similarly, phase_VLF and 
phase_LF refer to phase in VLF and LF range, while coh_VLF and coh_LF stand for squared coherence in VLF 
and LF range respectively.

Coherence reflects the degree of the linear relationship between the complex values of input and output signals 
at different frequencies. The squared coherence is defined as squared modulus of the cross spectrum normalised 
by the product of the two autospectra (8), its value ranges from 0 to 1.

Spv(f)
Spp(f)Svv(f) (8)

2
γ =

If the output is a purely linear transformation of the input process, the numerator is identical to the denominator 
and so the coherence is 1 at all frequencies. Any deviation from linearity in the relationship between input and 
output or a presence of any exogenous ‘noise‘ will act to decrease the numerator, and so the coherence, toward 
zero.

Mx calculation. Mx, time correlation coefficient between 10 s averages of ABP and the artificial mean CBFV, 
was calculated using a 300 s data window. Positive Mx indicates passive relationship between ABP and CBFV, 
while Mx close to 0 or negative implies good autoregulation.

All the parameters were averaged over all recordings for each patient for further analysis. Therefore, each 
patient finally only had one Mx, one TF phase_VLF, phase _LF, gain_VLF, gain _LF, Coh_VLF, Coh_LF at each 
ARI level57.

Adding noise to the artificial data and testing the robustness of CA parameters. In order to 
investigate robustness of the examined parameters and their relationships in a more ‘real-life’ scenario, we simu-
lated exogenous noise by adding colored noise to the generated CBFV signals. In brief, each generated CBFV 
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signal was used to create Gaussian white noise at three SNR (10 ( )log
P

P10
signal

noise
) levels: −5 dB, −0.5 dB and 5 dB, 

representing high, medium and low noise signals. The highest SNR of 5 dB was selected according to the study by 
Katsogridakis et al.45. Then the Gaussian noise was filtered through a 6th-order Butterworth filter with the cut-off 
frequency of 0.2 Hz. The colored Gaussian noise signals were finally added to each simulated CBFV.

Effect of noise. In order to analyze the effect of noise on the CA parameters, the standard deviation of mean 
Mx (or TF parameters) across all the patients at each ARI level was calculated. Thus, under each noise situation, 
9 SD values of Mx (or TF parameters) were obtained corresponding to 9 ARI levels. Then the mean value of the 
9 SD values was calculated at each noise level and was compared to evaluate the influence of noise on different 
CA parameters.

Statistics. SPSS software (version 19, IBM, Armonk, NK, USA) was used for statistical analysis. The param-
eters were averaged across all the recordings for each patient before we analyzed the relationship among different 
CA parameters. Pearson’s correlation coefficient (r) was used to examine the linear correlation between different 
CA parameters. The significance of the correlation coefficient was tested using student t-test, with p < 0.05 repre-
senting statistical significance. A One Way ANOVA was used to tell whether there is significant difference among 
different levels of noise on standard deviation of each CA parameter. If the p value of One Way ANOVA was 
smaller than 0.05, an additional multiple comparison test (Bonferroni) was used to find out where the significant 
difference was located. A linear regression was performed to describe the relationship between Mx and ARI as 
well as Mx and phase.

Data availability
We have uploaded all the data set using in this study for the readers who want to try the method. The data can be 
downloaded by clicking the link below: ‘ Liu, Xiuyun (2019), Assessment of cerebral autoregulation indices – a 
modelling perspective, figshare, https://figshare.com/s/59f6e84c29e9479d19d4’.
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