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Anticipatory control of human gait 
following simulated slip exposure
Sander B. Swart ✉, Rob den Otter & Claudine J. C. Lamoth

A cautious gait (CG), marked by wider and shorter steps, is typically employed to mitigate expected 
perturbations proactively. However, it is not well understood if and how CG is informed by the task 
requirements. Therefore, we assessed how CG is adjusted to these requirements. Three groups of 
ten healthy young adults were exposed to a single uninterrupted protocol of treadmill walking that 
consisted of three distinct phases. Spatiotemporal step characteristics and margins of stability of 
the unperturbed strides were compared when participants were (i) only warned of a perturbation, (ii) 
exposed to fifty unilateral (right) slip-like perturbations and (iii) kept unaware of perturbation removal. 
Only the perturbation intensity predictability differed between groups. This was either kept consistent 
or pseudo-randomly or randomly varied. Participants walked with wider and shorter steps following the 
perturbation warning. However, this extinguished in continuing perturbation absence. Next, during 
perturbation exposure, participants shortened the step of the perturbed but increased the step of the 
unperturbed leg. This did not differ between groups. Finally, participants persisted in displaying CG on 
perturbation removal, but this extinguished over time. Collectively, we show that CG is functionally 
adjusted to the task requirements. These findings may have practical implications for fall-prevention 
training.

Bipedal gait is a challenging activity, considering that the vertical projection of the centre of mass (CoM) is out-
side the base of support (BoS) for approximately 80% of the gait cycle1. In fact, walking involves continuous falling 
motions, which are caught by a relocation of the BoS during every step. Nevertheless, walking is generally stable 
and adaptive, as healthy adults are able to adjust their gait continuously to accommodate environmental and 
task demands2. However, walking in an environment encountering unpredictable or changing events becomes 
particularly challenging when the walking performance declines due to natural ageing or pathology3. As a result, 
older adults often employ a cautious gait (CG) strategy to safeguard against potential balance loss4,5. Although this 
form of anticipatory control has been described as a generic strategy that is characterized by wider and shorter 
steps6, it is not well understood if and how CG is informed by the requirements of the task. The present study 
addressed how anticipatory control of gait is adjusted to accommodate these requirements.

Anticipatory control relies on sensory input and provides the means to identify and proactively accommo-
date environmental challenges instantaneously2. Walking on ice is a simple illustration of this, which is typi-
cally characterized by wider and shorter steps. These cautious adjustments safeguard dynamic balance and can 
reduce the need for time-critical, reactive control7. Putatively, people employ a CG by the necessity of uncertainty 
(i.e. where, when, and if a perturbation will occur). This is substantiated by empirical studies, which show that 
young adults spontaneously employ a CG pattern when they are being blindfolded8,9. In addition, experience with 
the task and its requirements may result in a reduction of uncertainty. This may alter how anticipatory control 
is implemented. For instance, the first exposure to an unexpected balance perturbation is known to generate 
exaggerated postural reactions10. However, when the same perturbation is presented repeatedly, this first trial 
reaction attenuates swiftly (i.e. the first trial effect). Although many task features may affect the degree to which 
expectation influences the response, anticipatory control generally becomes more prominent through experience 
with perturbing stimuli7. Arguably, a reduction of uncertainty through repeated exposure to perturbing stimuli 
promotes anticipatory control.

Besides blindfolding people, a CG can be induced in young adults by merely warning them of a potential slip 
hazard. Even without prior simulated slip experience young adults proactively reduce their stride length (~11%)11 
and flatten their foot at touch down (~20%)12 when they approach a pseudo-slippery floor. Similar results, such 
as a step length reduction of ~2% following a slip warning have been reported within time-confined trials (i.e. 
30 sec.) of treadmill walking at a fixed gait speed of 1.2 m/s13. Despite an actual absence of a perturbation task and 
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a marginally informed condition (i.e. warning of a perturbation), these studies show that the expectation of an 
upcoming perturbation induces anticipatory adjustments, which are considered features of a CG.

However, behavioural experience with the perturbation task might be needed to adjust anticipatory con-
trol with task requirements12,14. After exposure to a consistent slip perturbation, more pronounced anticipatory 
adjustments have been reported, e.g. ~2% smaller peak vertical forces, ~20% lower peak braking shear forces12 
and a larger inclined trunk angle13. Presenting the perturbation consistently in terms of its nature (slip or trip), 
side (left or right) or intensity (duration in sec.) may thus increase the predictability of the task requirements and 
promote anticipatory control. Yet, features of perturbation events in daily life are rarely consistent or predictable. 
Therefore, in addition to the putative role of anticipatory control for consistent gait perturbations, it is important 
to understand if and how inconsistency in perturbations can be utilized to inform anticipatory control. Since such 
inconsistency may elevate the perceived risk of balance loss, it is conceivable that unpredictable perturbations 
elicit more pronounced anticipatory adjustments.

The extent to which simulated perturbations affect the dynamic balance of CG can be quantified in terms of 
feasibility regions15 or margins of stability (MoS)16. These methods are based on the inverted pendulum model 
of walking. In this model, bipedal gait is conceptualized as an inverted pendulum, in which the pendulum and 
a single point mass on top, represent the stance leg and human body, respectively1. To describe its motion state, 
both the position and the velocity of the CoM must be accounted for16. This concept, known as the extrapolated 
CoM (XCoM), can be used to operationalize a condition for dynamic balance by assessing its minimal distance to 
the centre of pressure (CoP). While a positive MoS suggests a stable configuration, a negative MoS corresponds to 
an unstable configuration. Empirical findings have shown that this margin can be increased in the frontal plane 
by taking wider steps17. Similarly, in the sagittal plane, a shorter step decreases the MoS17, as the leading foot (i.e. 
BoS) is placed less anterior. This spatial adjustment has been shown to enhance stability against backward loss 
of balance18,19. Hence, by taking wider and shorter steps, people intend to prepare for – and minimize the conse-
quences of – mediolateral (ML) and backward loss of balance, respectively.

Since the properties of upcoming perturbations can be inconsistent, a better understanding of anticipatory 
control requires a detailed articulation of if and how features of CG, such as spatiotemporal step characteristics 
and dynamic balance, are adjusted to accommodate these task requirements. Therefore, the primary aim of the 
current study was to assess if and how people adjust spatiotemporal step characteristics and MoS to accommodate 
the requirements of a gait perturbation task. To this end, participants were exposed to a single uninterrupted pro-
tocol consisting of 3 distinct phases. Spatiotemporal step characteristics and the MoS of unperturbed strides were 
compared when participants were (i) only warned of a perturbation, (ii) exposed to 50 unilateral (right) slip-like 
perturbations and (iii) kept unaware of perturbation removal. Three groups were tested. Only the predictability 
of the perturbation intensity differed between groups, which was either varied pseudo-randomly or randomly or 
kept consistent. A motorized treadmill was utilized as it enables to control for potentially confounding effects of 
gait speed on spatial features of CG13,20 and to assess gait parameters over a longer period. We hypothesized that 
young adults adjust their gait purposefully to accommodate the consistent side and nature of the perturbation. 
This will result in increased stability against backward loss of balance and smaller step lengths and single support 
times compared to the baseline and warning phases. In addition, we hypothesize that anticipatory adjustments are 
more pronounced when the predictability of the perturbation intensity is random or pseudo-random compared 
to consistent.

Materials and Methods
Participants.  A convenience sample of 30 healthy young adults was recruited in this study (17 males, 13 
females, 21.6 ± 2.2 years old, body mass: 70.1 ± 9.8 kg, body height: 1.78 ± 0.085 m, leg length: 0.92 ± 0.039 m), 
based on similar studies in the field of balance control during perturbed gait21,22. Participants were excluded if 
they had any prior experience with slip-like perturbation experiments or if they had any neurological, cognitive, 
or orthopaedic impairments that could affect the outcome of the experiment. All procedures were approved 
by the Local Ethics Committee of the Department of Human Movement Sciences (LTc201800978) University 
Medical Centre Groningen (UMCG), the Netherlands (NL) and were in accordance with the principles outlined 
in the Declaration of Helsinki23. All participants gave their written informed consent prior to the experiment.

Experimental procedures.  A split-belt treadmill (M-gait, Motekforce Link, Amsterdam, NL) was used 
in this study to induce slip-like perturbations during gait (Fig. 1a). At perturbation onset (Fig. 1b), both belts 
accelerated simultaneously in the forward direction shortly after the instance of right foot strike (Supplementary 
Table S1), resulting in a forward displacement of the BoS relative to the CoM. The belts accelerated to a velocity 
of 0.35 m/s (Fig. 1b) and returned to normal walking speed (−1.0 m/s) when the perturbation intensity matched 
the imposed intensity of the particular experimental group (Fig. 1c) (i.e. consistent, pseudo-random or random).

The intensity of the slip perturbations was varied in this study. Larger slip distances have been shown to elicit 
larger postural disturbances during movable platforms slips compared to short distances24. Therefore, the pertur-
bation intensity was varied in this study by altering the duration of the slip perturbation. The maximal intensity 
was set at 0.5 sec., which was found to be sufficiently challenging without causing real falls.

To examine the effect of the perturbation consistency, the intensity of subsequent perturbations was varied in 
a consistent, pseudo-random or random fashion (Fig. 1c). The consistent group (N = 10) received perturbations 
of identical intensity (0.28 sec.). Secondly, the pseudo-random group (N = 10) received perturbations in which 
the intensity either increased or decreased with 0.02 sec. compared to its antecedent. Lastly, the random group 
(N = 10) received the same perturbations as the pseudo-random group but presented randomly. This implies 
that the intensities of subsequent perturbations were not correlated (Supplementary Table S1). The intensity of 
the first perturbation was approximately (due to randomization procedures) similar for the consistent group (i.e. 
0.28 sec.), pseudo-random group (i.e. 0.30 sec.) and random group (i.e. 0.26 sec.). Participants were exposed to 
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a total of 50 perturbations. The average intensity of these 50 perturbations was identical between experimental 
groups (i.e. 0.28 sec.). The number of strides between perturbations was randomly varied between 5–14 strides 
(Fig. 1c) and was kept the same between groups.

Protocol.  Participants were assigned to one of the experimental groups in an unstructured fashion. Safety 
instructions were given before experimentation. Subsequently, participants were fitted in a safety harness that 
did not support their body weight during the experiment and they were instructed to walk with one foot on each 
belt. The protocol consisted of four phases: (i) the baseline phase, (ii) the warning phase, (iii) the perturbation 
phase and (iv) the wash-out phase (Fig. 1c). During the baseline phase, participants walked on the treadmill 
(v = −1 m/s) for 210 strides without getting perturbed. This phase was included to make sure that the participants 
got acquainted with walking on the split-belt treadmill and served as a control phase to which other experimental 
phases were compared. After the baseline phase, the treadmill was stopped. Participants were told that from this 
point on they could experience a slip perturbation. The instructions were delivered identically for all participants. 
Participants were informed that if they experience a slip, they should try to re-establish their balance and keep on 
walking and only use the handrail when they really thought they would fall. Next, after 205 strides, the perturba-
tion phase commenced without the participants’ knowledge. In total, 50 slip-like perturbations were presented 
unilaterally to the right leg in the perturbation phase. After this phase, participants walked for an additional 310 
strides during the wash-out phase without being informed that the perturbations exposure had ended.

Data collection.  Anthropometric characteristics, including leg length, body height, and body weight were 
measured before conducting the experiment. During the experiment, 3D ground reaction forces (GRF) (N) and 
moments (of force) (Nm) were measured using two separate force plates embedded underneath each belt and 
simultaneously recorded with D-flow software (Motekforce Link, Amsterdam, NL, high-performance mode) at 
a sampling frequency of 300 Hz.

Data analysis.  The data was analysed using custom-made Matlab (version r2016b; The Mathworks Inc., 
Natick, MA) routines. An XYZ coordinate system was used, with the x-axis in the anteroposterior (AP) direction, 
y-axis in the vertical direction and z-axis in the ML direction25. Gait events were defined as the moments where 
the vertical GRF (GRFy) on the individual force plates crossed the threshold of 50 N. This process was checked 
visually to identify missed or double gait events. GRFs and moments were filtered using a 2nd order low-pass 
Butterworth filter (cf = 15 Hz). CoP position was calculated for each force plate in the x and z direction using 
Eqs. 1 and 2.

Figure 1.  Overview of the experimental paradigm. (a) Perturbation method, participants walked on a split-
belt treadmill at a velocity of -1 m/s (black arrow), at perturbation onset both belts accelerated to a velocity of 
0.35 m/s (red arrow). (b) Perturbations were (i) induced shortly after the right foot heel strike (Supplementary 
Table S1). Perturbation profile, the intensity of the perturbation (ii) was either randomly or systematically varied 
between 0.1 and 0.5 seconds (red solid line), (iii) represents the total perturbation intensity (Supplementary 
Table S1). (c) Experimental paradigm, the experiment consisted of four phases: the baseline, perturbation 
warning, perturbation, and wash-out phase. Only the perturbation phase differed between experimental 
groups. The treadmill was only stopped after the baseline (red vertical lines), subsequently a predefined protocol 
commenced, without manual interference.
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in which M represents the moment of force (Nm) and F the force (N). CoP data of the individual belts were com-
bined to ensure continuous monitoring of both CoP and CoM position. This combined simulated CoP position 
was calculated in both the x and z direction by scaling the CoP position of each force plate to the magnitude of 
its GRFy using Eq. 3.
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The combined CoP position was used for all further analyses. Step lengths (m) were calculated using Eq. 4 
and defined as the difference in CoPx position (m) between left and right foot at heel strike, normalized for leg 
length (l/l0)26.

= | − + |Step length CoP (HS ) (TfD CoP (TO )) (4)L,R x L,R R,L x R,L

in which the travelled foot distance (TfD) (m) is the time between contralateral toe-off and heel strike, multiplied 
by the belt speed. The virtual foot position was calculated by adding the travelled foot distance (TfD) and CoPx 
position of the contralateral leg. Spatiotemporal symmetry indexes were calculated to assess whether anticipatory 
control differed between perturbed and unperturbed leg using Eqs. 5 and 6 27.
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Single support symmetry for every step i was calculated to reflect on temporal aspects of gait throughout the 
experiment, using Eq. 6 [adapted from27].
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in which the single support time (s) is defined as the time between contralateral toe-off and contralateral heel 
strike. Step width (m) was calculated for every step i throughout the experiment using Eq. 7.

= | − |i j kStep width( ) CoP( ) CoP( ) (7)z
min , max

z
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in which the absolute difference between local minimum/maximum CoPz position during ipsilateral single sup-
port phase j and the local maximum/minimum CoPz position during the consecutive contralateral single support 
phase k was determined28.

Dynamic balance was quantified using the MoS and was calculated for both legs in AP and ML direction at 
contralateral toe-off16. The fusion integration method from Schepers et al.29 was used to calculate the XCoM, sev-
eral steps were taken to achieve this. Firstly, the CoM position was calculated by integrating the CoM acceleration 
(GRFx,z divided by body weight) twice. Subsequently, the CoMx,z position was high-pass filtered using a 2nd order 
Butterworth (cf = 0.2 Hz) to prevent integration induced drift29. The absolute CoMx,z position was acquired by 
adding the low-pass filtered (2nd order Butterworth, cf = 0.2 Hz) CoPx,z signal. Finally, the XCoM position (m) 
was calculated using Eq. 8.

= +
′

√
XCoM(x,z) CoM(x,z) CoM (x,z)

(8)
g
l

in which CoM′ is the velocity of the CoM (m/s) in the x or z direction, g (9,81 m/s2) is the gravitational constant 
and l is the leg length (m), defined as greater trochanter height multiplied by 1.2 in the frontal and 1.34 in the 
sagittal plane16. Lastly, the MoS (m) was defined as the distance between CoPx,z position and XCoMx,z position at 
contralateral toe-off j for every step i using Eq. 9 16.

= −i j jMoS ( ) CoP ( ) XCoM ( ) (9)x,z x,z x,z

Since the acceleration and deceleration of the treadmill at the experiment start might impose confounding 
effects13, the first 5 strides of the baseline and warning phase and the last 5 strides of baseline and wash-out phase 
were excluded from the analysis. Thus 200 strides from the baseline and warning phase and 300 strides from the 
wash-out phase were analysed.

Next, all dependent variables were analysed and averaged over the first 20 strides of the warning and wash-out 
phase and the last 20 strides of the baseline, warning, and wash-out phase. This resulted in the following phases: 
late baseline (LB), early anticipation (EA), late anticipation (LA), early wash-out (EW), and late wash-out (LW).
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Analysis of the perturbation phase was restricted to the unperturbed strides in-between perturbations. Since 
recovery from moderate slip perturbation takes 2 to 3 steps30, perturbed steps were defined as perturbation stride 
and subsequent two recovery strides. Next, all dependent variables were averaged over the unperturbed strides 
between perturbation 1 to 5 (early perturbation; EP) and 46 to 50 (late perturbation; LP). Finally, the beginning 
of the wash-out phase was defined as the moment when 5 recovery strides were taken after the last perturbation.

Statistical analysis.  The dependent variables, step length symmetry, single support symmetry, normalized 
step lengthR,L, normalized single support timeR,L, AP MoSR,L and ML MoSR,L were analysed during LB, EA, LA, EP, 
LP, EW and LW. To test for differences between the experimental phases, repeated measures (RM) ANOVA’s were 
performed for each dependent variable. The within factor PHASE had 7 levels (LB, EA, LA, EP, LP, EW, LW) and 
the between factor GROUP had 3 levels (consistent, pseudo-random, random) in the 11 respective RM ANOVA’s. 
Main effects of the factor PHASE were further analysed with simple contrasts, which compared each experimen-
tal phase with LB. This was done to determine whether the dependent variables during the experimental phases 
differed from normal walking. Additionally, these contrast comparisons were compared between experimental 
groups, to check whether the phase interactions differed between experimental groups.

Statistical significance was set at an alpha of 5% for all analyses. Bonferroni corrections for multiple compar-
isons were applied to the p-values of the main and post-hoc analysis. Sphericity violations were corrected using 
a Greenhouse-Geisser correction. Statistical analysis was performed using SPSS (IBM Corp. Released 2015. IBM 
SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.).

Results
No significant main effects of the between factor GROUP were found (Table 1). Significant main effects of the 
within factor PHASE were found for all dependent variables (Table 1).

Significant main effects of the within factor PHASE were further analysed with simple contrasts (Table 2).

Baseline phase vs. Warning phase – The effect of a perturbation warning on anticipatory loco-
motor control.  Respective EA and LA during the warning phase were compared with LB, to assess CG with-
out prior slip experience. The averaged results of the consistent group, pseudo-random group, random group, and 

Variable Factor ε F (d.f.) P ηp2

Step Length Right
PHASE 0.54 23.08 (3.21,86.68) <0.001* 0.46

GROUP * 
PHASE 0.54 1.00 (6.42,86.68) 0.99 0.07

Step Length Left
PHASE 0.51 23.40 (3.08,83.02) <0.001* 0.46

GROUP * 
PHASE 0.51 1.05 (6.15,83.02) 0.99 0.07

Single Support Right
PHASE 0.65 9.16 (3.89,104.95) <0.001* 0.25

GROUP * 
PHASE 0.65 1.72 (7.77,104.95) 0.99 0.11

Single Support Left
PHASE 0.46 18.41 (2.77,74.86) <0.001* 0.41

GROUP * 
PHASE 0.46 0.69 (5.55,74.86) 0.99 0.05

Step Length Symmetry
PHASE 0.54 18.63 (3.25,87.68) <0.001* 0.41

GROUP * 
PHASE 0.54 1.13 (6.50,87.68) 0.99 0.08

Single Support Symmetry
PHASE 0.58 27.17 (3.46,93.38) <0.001* 0.50

GROUP * 
PHASE 0.58 1.47 (6.92,93.38) 0.99 0.10

Step Width
PHASE 0.65 40.020 (3.90,105.38) <0.001* 0.60

GROUP * 
PHASE 0.65 0.93 (7.81,105.38) 0.99 0.064

Margin of Stability Right (AP)
PHASE 0.57 38.57 (3.44,92.95) <0.001* 0.59

GROUP * 
PHASE 0.57 1.52 (6.89,92.95) 0.99 0.10

Margin of Stability Left (AP)
PHASE 0.54 19.91 (3.24,87.53) <0.001* 0.42

GROUP * 
PHASE 0.54 1.06 (6.48,87.53) 0.99 0.07

Margin of Stability Right (ML)
PHASE 0.70 26.29 (4.18,112.84) <0.001* 0.49

GROUP * 
PHASE 0.70 0.58 (8.36,112.84) 0.99 0.04

Margin of Stability Left (ML)
PHASE 0.53 41.76 (3.18,85.87) <0.001* 0.61

GROUP * 
PHASE 0.53 0.67 (6.36,85.87) 0.99 0.047

Table 1.  Main and interaction effects. *Indicates significance at an alpha of 5% for Bonferroni corrected 
p-value. Violations of sphericity were corrected using Greenhous-Geisser estimate (ε). ML – mediolateral, AP – 
anteroposterior.
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the combined sample for step length are shown in Fig. 2. Detailed statistics are presented in Table 2. Participants 
significantly decreased their step lengthR,L during EA compared to LB (Fig. 2b). Similarly, participants signif-
icantly reduced their left and right single support times during EA compared to LB. Accordingly, step length 
and single support symmetry were not significantly different from LB during EA. Gait during EA was further 
characterized by significantly increased step width compared to LB. In the continuing absence of a perturbation, 
participants increased their step length (Fig. 2a) and single support time. As such, bilateral step length, single 
support time, and its symmetry indices were not significantly different from LB during LA. During the warning 
phase, step width decreased and was significantly lower during LA compared to LB. These results indicate that 
participants temporarily adopt a CG following a warning.

The MoS was assessed in the frontal and sagittal planes, to quantify the dynamic balance of gait during the 
warning phase. The averaged results of the consistent group, pseudo-random group, random group, and the 
combined sample for AP MoS and ML MoS are shown in Figs. 3 and 4, respectively; statistics are presented in 
Table 2. The AP MoSR,L was significantly decreased during EA compared to LB. In the frontal plane, the ML 
MoSR,L increased during the EA compared to LB (Fig. 4b), but only significantly for ML MoSL. Over the course of 
the warning phase, AP MoSR,L increased (Fig. 3a), as it was no longer significantly different from LB during LA 
(Fig. 3b). The ML MoSR,L decreased throughout the warning phase (Fig. 4a). While ML MoSR was significantly 
lower, ML MoSL was not significantly different from LB during LA (Fig. 4b). Collectively, these findings show that 
participants temporarily increase their stability against backward loss of balance following a slip perturbation 
warning.

Baseline phase vs. Perturbation phase – The effect of unilaterally presented slip-like pertur-
bations on anticipatory control of gait.  CG after perturbation exposure was assessed by comparing 
the unperturbed strides during EP and LP with LB. Table 2 presents detailed statistics. The participants signifi-
cantly decreased their step lengthR,L during EP compared to LB (Fig. 2b). Similarly, initial perturbation exposure 
resulted in reduced single support timeR,L during EP compared to LB. Furthermore, the step width was higher 
during EP compared to LB, but not significantly. Although the initial decrease in step length during EP gradu-
ally increased throughout the perturbation phase (Fig. 2a), this was evidently different between the left and the 
right step length. That is, step lengthL was significantly higher, while step lengthR was significantly lower during 
LP compared to LB (Fig. 2b). Similarly, single support timeL was significantly higher and single support timeR 
was considerably lower during LP compared to LB. Since the step length and single support time were different 
between perturbed and unperturbed leg during LP, spatiotemporal asymmetry occurred during LP compared to 
LB. Additionally, participants decreased their step width throughout the perturbation phase. As such, step width 
was significantly lower during LP compared to LB. Conjointly, the results show that participants adjust their gait 

Variable

Post hoc comparison

LB vs EA LB vs LA LB vs EP LB vs LP LB vs EW LB vs LW

F(1,27);
p-value ES

F(1,27);
p-value ES

F(1,27);
p-value ES

F(1,27);
p-value ES

F(1,27);
p-value ES

F(1,27);
p-value ES

SLR
48.40;
<0.001* 0.74 0.045;

0.99 0.02 76.42;
<0.001* 0.97 11.00;

0.018* 0.44 7.73;
0.060 0.43 7.66;

0.060 0.32

SLL
13.21;
0.006* 0.50 0.98;

0.99 0.11 8.46;
0.042* 0.50 24.11;

<0.001* 0.66 18.41;
<0.001* 0.57 26.21;

<0.001* 0.53

SSTR
11.84;
0.012* 0.32 0.24;

0.99 0.05 12.71;
0.006* 0.45 5.86;

0.14 0.31 2.096;
0.96 0.21 3.40;

0.46 0.23

SSTL
23.89;
<0.001* 0.49 0.31;

0.99 0.06 12.52;
0.006* 0.36 10.29;

0.018* 0.38 5.78;
0.14 0.36 8.96;

0.036* 0.40

SLS 3.81;
0.37 0.32 2.09;

0.96 0.24 8.04;
0.054 0.70 42.59;

<0.001* 1.62 38.34;
<0.001* 1.60 5.28;

0.18 0.44

SSS 4.54;
0.25 0.44 0.003;

0.99 0.01 4.051;
0.32 0.50 36.94;

<0.001* 1.40 31.18;
<0.001* 1.29 3.25;

0.50 0.43

SW 10.08;
0.024* 0.19 11.05;

0.018* 0.23 4.93;
0.21 0.18 24.66;

<0.001* 0.38 27.20;
<0.001* 0.41 80.96;

<0.001* 0.59

AP MoSR
10.41;
0.018* 0.40 0.63;

0.99 0.09 68.07;
<0.001* 1.23 39.92;

<0.001* 1.13 28.08;
<0.001* 1.01 5.73;

0.14 0.31

AP MoSL
9.69;
0.024* 0.48 5.44;

0.16 0.28 0.088;
0.99 0.06 48.42;

<0.001* 0.80 23.29;
<0.001* 0.68 30.15;

<0.001* 0.61

ML MoSR
1.11;
0.99 0.08 14.33;

0.006* 0.24 16.32;
<0.001* 0.41 6.14;

0.12 0.21 5.42
0.17 0.21 65.96;

<0.001* 0.57

ML MoSL
13.42;
0.006* 0.25 6.32;

0.11 0.17 17.29;
<0.001* 0.44 35.73;

<0.001* 0.44 23.85;
<0.001* 0.39 53.45;

<0.001* 0.53

Table 2.  Post hoc analysis of the PHASE comparison. Simple contrasts between late baseline (LB) vs early 
anticipation (EA), LB vs late anticipation (LA), LB vs early perturbation (EP), LB vs late perturbation (LP), LB 
vs early wash-out (EW) and LB vs late wash-out (LW) were performed for all dependent variables. *Indicates 
significance at an alpha of 5% for Bonferroni corrected p-value. ES – effect size (Cohen’s d). SLR,L – step length, 
SSTR,L – single support time, SLS – step length symmetry, SSS – single support symmetry, SW – step width, AP 
MoSR,L – anteroposterior margin of stability, ML MoSR,L – mediolateral margin of stability.

https://doi.org/10.1038/s41598-020-66305-1


7Scientific Reports |         (2020) 10:9599  | https://doi.org/10.1038/s41598-020-66305-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 2.  Step length during the experiment. (a) Normalized step length26 during the experiment is shown for 
the consistent (top) (N = 10), the pseudo-random (middle) (N = 10) and the random group (bottom) (N = 10). 
Left and right step lengths were averaged in bins of 5 strides during the baseline, warning, and wash-out 
phase. During the perturbation phase, the left and right step lengths of the unperturbed strides between two 
consecutive perturbations were averaged. Shaded areas and whiskers around the mean represent the standard 
error. Grey shaded blocks represent the different phases throughout the experiment: late baseline (LB), early 
anticipation (EA), late anticipation (LA), early perturbation (EP), late perturbation (LP), early wash-out (EW) 
and late wash-out (LW). (b) Individual data points of all participants (N = 30) during the experimental phases. 
Black and red horizontal lines, respectively, represent the group mean. Significant post hoc comparisons for the 
within factor PHASE are shown with the asterisk.

Figure 3.  Anteroposterior (AP) margin of stability (MoS) at contralateral toe-off during the experiment. (a) AP 
MoS during the experiment is shown for the consistent (top) (N = 10), the pseudo-random (middle) (N = 10) 
and the random group (bottom) (N = 10). Left and right AP MoS were averaged within bins of 5 strides during 
the baseline, the warning, and the wash-out phase. During the perturbation phase, the left and right AP MoS 
of the unperturbed strides between two consecutive perturbations were averaged. Shaded areas and whiskers 
around the mean represent the standard error. Grey shaded blocks represent the different phases throughout 
the experiment: late baseline (LB), early anticipation (EA), late anticipation (LA), early perturbation (EP), late 
perturbation (LP), early wash-out (EW) and late wash-out (LW). (b) Individual data points of all participants 
(N = 30) during the experimental phases. Black and red horizontal lines, respectively, represent the group mean. 
Significant post hoc comparisons for the within factor PHASE are shown with the asterisk.

https://doi.org/10.1038/s41598-020-66305-1


8Scientific Reports |         (2020) 10:9599  | https://doi.org/10.1038/s41598-020-66305-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

to accommodate the perturbation requirements through reducing the step length and single support time of the 
perturbed leg and increasing the step length and single support time of the unperturbed leg.

During EP, the AP MoSR was significantly decreased compared to LB, whereas AP MoSL showed no significant 
difference with LB during EP (Fig. 3b). A significant increase for ML MoSR,L was found during EP compared to 
LB (Fig. 4b). While the AP MoSL increased, the AP MoSR decreased throughout the perturbation phase (Fig. 3a). 
The AP MoSL was significantly higher, and the AP MoSR was significantly lower during LP than LB (Fig. 3b). The 
ML MoS decreased throughout the perturbation phase, with the ML MoSR remaining slightly, but consistently, 
higher than the ML MoSL (Fig. 4a). The ML MoSL was significantly lower during LP than LB, whereas ML MoSR 
was not significantly different compared to LB (Fig. 4b). Taken together, these findings further illustrate that CG 
is adjusted to accommodate the perturbation properties as AP MoS becomes asymmetric and ML MoS attenuates.

Baseline phase vs. Wash-out phase – The effect of unannounced perturbation removal on antic-
ipatory locomotor control.  The persistence of CG was determined by comparing EW and LW with LB. 
Following the announced removal of the perturbation, participants walked with considerably lower step lengthR 
and significantly higher step lengthL compared to LB (Fig. 2b). Single support timeR,L, were not significantly 
different from LB during EW (Table 2 for statistics). Nevertheless, the gait pattern was still characterized by spa-
tiotemporal asymmetry during EW compared to LB. Furthermore, the step width was significantly decreased to 
a level lower than LB during EW. Throughout the wash-out phase participants increased step lengthR (Fig. 2a), 
whereas step lengthL remained relatively unchanged. Therefore, step lengthL was still significantly higher whereas 
step lengthR was not significantly different during LW than LB (Fig. 2b). Like step length, participants increased 
their single support time during the wash-out phase. Single support timeL was significantly higher during LW 
than LB, whereas single support timeR was not significantly different during LW compared to LB. Both step length 
and single support symmetry returned to LB level during LW, whereas step width remained significantly lower 
compared to LB. Overall, these results show that participants temporarily persist in displaying CG following the 
unannounced removal of the perturbation.

During the EW, AP MoSR was significantly lower and AP MoSL higher than LB (Fig. 3b). The ML MoSR,L were 
lower during EW than LB (Fig. 4b), but only significantly for ML MoSR. Throughout the wash-out phase, AP 
MoSR increased, and AP MoSL remained relatively unchanged (Fig. 3a). Therefore, AP MoSL was still significantly 
higher during LW compared to LB, whereas AP MoSR was not significantly different from LB during LW (Fig. 3b). 
Furthermore, ML MoSR,L decreased further during the wash-out phase (Fig. 4a) and was significantly lower dur-
ing LW compared to LB (Fig. 4b).

Figure 4.  Mediolateral (ML) margin of stability (MoS) at contralateral toe-off during the experiment. (a) ML 
MoS during the experiment is shown for the consistent (top) (N = 10), the pseudo-random (middle) (N = 10) 
and the random group (bottom) (N = 10). Left and right ML MoS were averaged within bins of 5 strides during 
the baseline, the warning, and the wash-out phase. During the perturbation phase, the left and right ML MoS 
of the unperturbed strides between two consecutive perturbations were averaged. Shaded areas and whiskers 
around the mean represent the standard error. Grey shaded blocks represent the different phases throughout 
the experiment: late baseline (LB), early anticipation (EA), late anticipation (LA), early perturbation (EP), late 
perturbation (LP), early wash-out (EW) and late wash-out (LW). (b) Individual data points of all participants 
(N = 30) during the experimental phases. Black and red horizontal lines, respectively, represent the group mean. 
Significant post hoc comparisons for the within factor PHASE are shown with the asterisk.
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Discussion
In the present study, we addressed if and how anticipatory control of gait is adjusted to accommodate the require-
ments of a gait perturbation task. Warning participants about an upcoming perturbation initially resulted in a CG 
pattern that spontaneously extinguished over time. This temporary gait pattern was characterized by wider and 
shorter bilateral steps. Upon perturbation exposure, participants altered this generic strategy by taking shorter 
steps only with the perturbed leg and increasing the step length of the unperturbed leg. These were functional 
adjustments for the specific nature (slip) and side (right) of the perturbation. However, the (in)consistency of 
the perturbation sequence did not significantly affect the CG pattern. Following the unannounced removal of 
the perturbations, participants persisted in displaying CG temporarily, but this extinguished spontaneously over 
time. Overall, the present study shows that anticipatory control is functionally adjusted to accommodate the 
requirements of the task.

The expectation of an upcoming perturbation hazard was sufficient to trigger anticipatory responses. Previous 
studies have shown that young adults reduce their stride and step lengths when they are warned of a perturba-
tion11,13. In line with this, we found that participants reduced their step lengths following a warning. In addition, 
participants increased their step width and reduced their single support times. Such anticipatory changes affect 
dynamic balance, in the sense that a shorter step enhances the stability against AP slips13,17,18, and a wider step 
or reduced single support times improves the stability against ML perturbations17. Accordingly, we found that 
anticipatory changes to enhance dynamic balance in the AP and ML direction were reflected in reduced AP MoS 
and increased ML MoS, respectively. Here, the dynamic balance was likely safeguarded in multiple planes as the 
features of potential perturbation were still uncertain to the participant. These anticipatory adjustments did not 
persist throughout the warning phase. This suggests that CG spontaneously extinguishes when the instruction 
(i.e. the warning) is not reinforced through exposure to the expected perturbation stimuli.

Anticipatory control was functionally adjusted to accommodate the perturbation properties through expe-
rience. Participants adjusted their gait to accommodate the nature of the task, by decreasing the step of the per-
turbed leg and increasing the step of the unperturbed leg. Since these slip-like perturbations accelerate the BoS 
relative to the CoM, a backward loss of balance needs to be arrested to ensure safe locomotion. Biomechanically, 
this can be effectuated by reducing the AP MoS16 through foot placement17,31 and reductions in gait speed31. As 
the gait speed was fixed, participants safeguarded their stability against AP slips by taking a shorter step with the 
perturbed leg. The reduced step length of the perturbed leg is consistent with findings reported previously22,32. 
In addition, we found that participants increased the step length of the unperturbed leg. This shows that the con-
sistent side and nature of the perturbation became evident with experience and that this promoted task-specific 
adjustments. Such specificity is further substantiated by adjustments in the frontal plane. Initially, participants 
increased the ML MoS to safeguard against ML perturbations. However, as previous findings have shown that ML 
motion of the slipping foot is absent in simulated slip perturbations33, ML balance may not have been profoundly 
challenged. Therefore, the task-irrelevant increase in ML MoS strongly attenuated throughout the perturbation 
phase. Conjointly, these results show that CG is an adaptable and dynamic strategy. Anticipatory adjustments that 
are relevant for the present task requirements become dominant, whereas irrelevant adjustments are abandoned.

Inconsistency in the perturbation intensity did not affect anticipatory control as CG was not significantly 
different between groups. Previous work has shown that participants make anticipatory adjustments based 
on the condition or trial previously experienced34. In a study by Pavol & Pai34 participants were exposed to 
slip-perturbations during a sit-to-stand transition. By randomly alternating slip and non-slip trials, they showed 
that participants proactively improved stability against backward loss of balance following a slip trial while they 
improved stability against forward loss balance following a non-slip trial. In the present study, the intensity of 
consecutive perturbations was either slightly varied or kept consistent, but this did not yield different anticipatory 
control. The task requirements of consecutive perturbations may not have been distinctive enough due to mod-
erate differences in perturbation intensity (i.e. 0.02 sec.) and high consistency in perturbation nature, side, and 
timing (i.e. shortly after foot strike). Hence, the employed strategy may have been sufficient to accommodate the 
imposed range of perturbation intensities. Alternatively, participants may simply have not been able to detect the 
moderate changes within the perturbation intensity, and as such did not display a different CG.

When the perturbations were removed, participants initially persisted in displaying CG. However, as the 
presence of the simulated slip was no longer reinforced through behavioural experience, swift and spontane-
ous extinction of CG occurred. The rate at which people learn this new context (i.e. extinction) may be related 
to the inter-perturbation interval during exposure. In conditioning studies, it has been shown that condi-
tioned responses extinguish more slowly when the time between reinforcements with the conditioned stimulus 
is larger35. In the present study, the number of steps between consecutive perturbations was randomly varied 
between 5 and 14 strides. This relatively small inter-perturbation interval may have induced the swift rate of 
extinction during the wash-out phase. When the inter-perturbation interval is increased, people may learn to 
expect the perturbation longer and persist in displaying CG longer when the perturbations are removed. In addi-
tion, the persistence of CG may also depend on the self-perceived ability to maintain dynamic balance. As such, 
the extinction rate of CG may have the potential to provide an objective, behavioral measure to assess falls effi-
cacy, a predictor of future fall risk36, in fall-prone populations.

Although the present study involves young adults these findings may have implications for fall-prevention train-
ing. This is an emerging paradigm that utilizes simulated perturbation exposure to improve reactive control of sta-
bility7. It has been shown that a combination of blocked and randomized block practice with simulated slips yields 
improved retention of proactive and reactive gait stability37. When motor learning principles like random practice 
and over-learning are not incorporated in slip training, only improvements in proactive stability are retained38. 
In the present study, we show that young adults almost instantaneously make perturbation specific, anticipatory 
adjustments to unburden the reactive control. However, this may reduce the effectiveness of the training and reduce 
the generalizability of trained reactive responses to daily life conditions. Arguably, a larger variety in perturbation 
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properties may reduce the predominant reliance on anticipatory control and emphasize reactive control more. This 
may improve the retention of trained responses and increase its generalizability to daily life situations.

The present study addressed if and how anticipatory control is adjusted to accommodate the requirements of 
a gait perturbation task. Overall, the results indicate that both a slip warning and initial perturbation exposure 
induced a generic CG. However, this anticipatory gait strategy was recalibrated through experience with the 
requirements of the task. This led to the extinction of CG during the warning and wash-out phases but induced 
an increasingly more specific CG during the perturbation phase. The present results give insight into how antic-
ipatory control of gait is recalibrated through behavioural experience with the task. These findings may aid in 
the development of targeted perturbation-based interventions and emphasize that CG in young adults does not 
allude to a one size fits all principle.
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