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Analysis of the genes controlling 
three quantitative traits in three 
diverse plant species reveals the 
molecular basis of quantitative 
traits
Meiping Zhang1,2,4, Yun-Hua Liu2,4, Wenwei Xu3, C. Wayne Smith2, Seth C. Murray2 &  
Hong-Bin Zhang2 ✉

Most traits of agricultural importance are quantitative traits controlled by numerous genes. However, 
it remains unclear about the molecular mechanisms underpinning quantitative traits. Here, we report 
the molecular characteristics of the genes controlling three quantitative traits randomly selected from 
three diverse plant species, including ginsenoside biosynthesis in ginseng (Panax ginseng C.A. Meyer), 
fiber length in cotton (Gossypium hirsutum L. and G. barbadense L.) and grain yield in maize (Zea mays 
L.). We found that a vast majority of the genes controlling a quantitative trait were significantly more 
likely spliced into multiple transcripts while they expressed. Nevertheless, only one to four, but not all, 
of the transcripts spliced from each of the genes were significantly correlated with the phenotype of the 
trait. The genes controlling a quantitative trait were multiple times more likely to form a co-expression 
network than other genes expressed in an organ. The network varied substantially among genotypes of 
a species and was associated with their phenotypes. These findings indicate that the genes controlling 
a quantitative trait are more likely pleiotropic and functionally correlated, thus providing new insights 
into the molecular basis underpinning quantitative traits and knowledge necessary to develop 
technologies for efficient manipulation of quantitative traits.

Most traits or biological processes that are important to agriculture and human health and medicine are quantita-
tive traits or complex traits. These traits include, but are not limited to, crop yield, crop quality and plant response 
to biotic and abiotic stresses for crop plant species; milk, meat or egg productivity for livestock species; and 
height, weight, obesity, diabetes and cancers for humans. Classical quantitative genetics defines that quantitative 
traits are traits that can be phenotyped only quantitatively, vary continuously and present in a normal distribu-
tion. This phenomenon has been explained as a quantitative trait is controlled by numerous genes, with each gene 
having relatively small effect, and readily affected by environments. Therefore, quantitative traits are also known 
as polygenic traits.

Because of their importance in agriculture and human health and medicine, quantitative traits have been 
extensively studied through classical genetics up to the latest genome technologies, such as quantitative trait locus 
(QTL) mapping and genome-wide association study (GWAS). These studies have consistently confirmed the 
known of quantitative genetics that a quantitative trait is controlled by numerous genes, but showed that some 
of the genes controlling a quantitative trait have major effects and others have minor effects. Based on the results 
of QTL mapping and GWAS, from several to dozens of the genes controlling a quantitative trait of biological or 
economic importance have been cloned, annotated and characterized individually in the past 30 years. These 
studies showed that a quantitative trait is controlled by genes with diverse biochemical functions (for references, 
see below). However, many questions remain unknown about the molecular basis underpinning a quantitative 
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trait. These questions include, but are not limited to, what kind of genes control quantitative traits; if a quantitative 
trait or a biological process is controlled by numerous genes, whether there is any relationship among the multiple 
genes; and if there is a relationship, how they are related to shape the performance of the trait. The shortage of 
such knowledge is limiting our understanding of the molecular mechanisms underpinning a quantitative trait 
and also development of new or advanced technologies, such as gene editing, for enhanced breeding and for 
enhanced medical profession.

In the present study, we address these questions using the cloned genes controlling three quantitative traits 
that were randomly selected from three diverse plant species. These three quantitative traits included ginsenoside 
biosynthesis in ginseng, Panax ginseng C.A. Meyer; fiber length (upper-half mean length, UHML) in cotton, 
Gossypium hirsutum L. and G. babardense L., and grain yield in maize, Zea mays L. Ginseng is one of the most 
important medicinal herbs in Asia and North America, cotton is the world’s leading natural fiber crop supporting 
the world’s textile industry, and maize is the world’s leading crop for food, feed and biofuel. These three quanti-
tative traits are all economically crucial to agriculture and related industries. Importantly, use of the three quan-
titative traits in three diverse species allowed identification of molecular characteristics of quantitative traits that 
are common and applicable across quantitative traits and across species. Furthermore, use of the three species 
that were grown across three diverse environments would minimize the effect of environmental variation on the 
findings of the molecular basis underpinning a quantitative trait. Therefore, the findings of this study are also 
applicable across environments.

Gene expression, including RNA alternative splicing and transcript activity, is essential for a gene to function 
for or to control the development and phenotype of a trait. Therefore, analysis of gene expression has been widely 
used for molecular analysis of quantitative traits1, in combination with the linkage disequilibrium-based quan-
titative trait research, such as QTL mapping, GWAS and gene expression QTL (eQTL) mapping2–8, to identify 
candidate genes controlling a quantitative trait. Therefore, in this study we especially investigated the expression 
activities of the genes controlling these three quantitative traits. The findings of this study provide not only new 
insights into the molecular mechanism underpinning a quantitative trait, but also a molecular basis necessary to 
design new or advanced and efficient technologies, such as gene editing, for enhanced breeding in crops and live-
stock, and for enhanced medicine in humans. Finally, the findings of this study are also useful for genome-wide 
identification of the genes controlling a quantitative trait.

Materials and Methods
Plant materials. Three diverse plant species, ginseng, cotton and maize, with one population for each spe-
cies, were used in this study. Maize is a monocotyledonous paleopolyploid species whereas ginseng and cotton 
are dicotyledonous allotetraploid species. Maize and cotton are annual and ginseng is perennial. Therefore, these 
three species have a wide representation for economic plant species. The ginseng population consisted of 42 
cultivars and germplasm lines of a ginseng GWAS panel. The cotton population consisted of 198 recombinant 
inbred lines (RILs) and their two parents, G. hirsutum acc. TAM 94L-25 and G. barbadense acc. NMSI 1331. The 
maize population consisted of 89 intermated recombinant inbred lines (IRILs) and their inbred parents, B73 and 
Mo17. The RILs of the cotton population at F10 generation were used for this study. The maize population was a 
part of the intermated B73 x Mo17 (IBM)−302 population that is widely used for maize genome research9. The 
maize population has been grown and self-pollinated for many generations in Texas, USA. The IRILs of the maize 
population at F14 generation were used for this study.

Field trials. Considering that various environments might influence the findings of this study on the ques-
tions whether and how the genes controlling a quantitative trait are related and whether their relationship, if any, 
contributes to the performance of the trait, due to G x E interaction, we planted the three populations in three 
diverse environments. The ginseng population was grown at Jingyu, Jilin, China (42°06′N 126°30′E) located in 
the Temperate Climate Zone from 2009 to 2013. The field trial was displayed in a randomized complete block 
design (RCBD) with two replicates (Supplemental Fig. S1A). Each plot had a single row of 40 plants spaced by 
30 cm, with a distance of 100 cm between rows. The field practice, such as fertilization, weed and disease control, 
and irrigation, followed those locally used for ginseng production.

The cotton population was grown at College Station, Texas, USA (30°36′N 96°18′W) located in the Humid 
Subtropical Climate Zone in 2011. The field trial was plotted in RCBD with three replicates (Supplemental 
Fig. S1E). Each plot consisted of a single row with a length of approximately 183 cm (6 feet) and a distance of 
approximately 102 cm (40 inches) between rows. Five plants were planted in each plot guarded by one red cotton 
plant at each plot end, with a distance of approximately 30 cm (1 foot) between plants. To control the effects of 
field microenvironments on the phenotypes of the population, the parents of the population were used as checks 
and distributed in the trial, with one parent entry in every 20 entries. The field trial was guarded by two rows of 
the red cotton plants. The field practice followed those locally used for standard cotton field trials and production.

The maize population was grown at Halfway, Texas, USA (33°34′N 101°53′W) located in the Semiarid Steppe 
Climate Zone and College Station, Texas in 2010. The field trial was performed in RCBD with two replicates 
(Supplemental Fig. S11). Each plot was 610 cm (20 feet) long and 152 cm (5 feet) wide, consisting of two rows. 
Forty seeds were planted in each row and at the seedling stage, the number of plants per row were thinned into 35 
plants per row. Therefore, each plot contained 70 plants, making 33,500 plants per acre. The field trial was guarded 
with two rows of a maize purple-colored cultivar. The field practice followed those locally used for standard maize 
yield trials and production.

Target traits and phenotyping. Three quantitative traits were used for this study, including ginseng ginse-
noside biosynthesis, cotton fiber length and maize grain yield. These three traits represent three typical quantita-
tive traits showing normal distribution in plants, as described in quantitative genetics (see Supplemental Fig. S1) 
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and have been extensively studied in our laboratories. For the ginseng population, the total ginsenoside contents 
of four-year-old plant roots (Supplemental Fig. S1C), presented in mg/g (Supplemental Fig. S1D), were obtained 
from Zhao et al.10.

For the cotton population, fiber length, presented as Upper Half Mean Length (UHML) (Supplemental 
Fig. S1G), was measured from all three replicates of the field trial. When the fibers were matured, all fiber bolls 
were harvested from the entire plot and ginned in the Cotton Improvement Laboratory, Texas A&M AgriLife 
Research, College Station, Texas, USA. A sample of the fibers from each replicate of each line was used to measure 
UHML using High-Volume Instrumentation (HVI) at the Fiber and Biopolymer Research Institute, Texas Tech 
University, Lubbock, Texas, USA. The fiber length of each line was the mean fiber length of its three replicates 
(Supplemental Fig. S1H) because the fiber length was highly reproducible between replicates.

For the maize population, grain yield (Supplemental Fig. S1K), presented in grain weight (g) per plant, was 
measured from both replicates of the field trial. When the ears ripened, the number of plants and ears were 
counted per plot, 10 plants were randomly selected from the middle of each plot, with 5 plants per row, and 
the ears of the selected plants were harvested. The ears were naturally dried, and grains were threshed and 
weighed. The grain yield of each line was the mean grain yield of the 20 plants sampled from its two replicates 
(Supplemental Fig. S1L). The variation distribution of each of the three traits (Supplemental Fig. S1D,H,L) con-
firmed that they are all typical quantitative traits showing normal distributions.

Published genes. The genes that were previously cloned from different genetic sources by different research-
ers and that were shown to control ginseng total ginsenoside content or ginsenoside biosynthesis, cotton fiber 
length or maize grain yield were used in this study. To have the genes controlling these three traits, an extensive 
literature search was conducted as of December 2014. In addition, we also searched for the published genes that 
control trichrome in the plant model species, Arabidopsis [Arabidopsis thaliana (L.) Heynh.], because cotton 
fiber is developed from trichome11, and the published genes that control grain yield in the monocot plant model 
species, rice (Oryza sativa L.), because some rice grain yield genes were shown to have equivalent biological func-
tions in maize12–15. Therefore, the Arabidopsis trichrome genes as the orthologues of cotton fiber length genes 
were used with the cotton fiber length genes, and the rice grain yield genes as the orthologues of maize grain yield 
genes were used with the maize grain yield genes in this study.

The homologues of the ginseng ginsenoside biosynthesis genes were identified by BLAST from the transcrip-
tome of a four-year-old ginseng plant16 using the sequences of the published genes as queries, with query cover 
≥300 bp, identity ≥90%, and E-value ≤ 1.0E-06. The homologues of the cotton fiber length genes and the cotton 
orthologues of the Arabidopsis trichrome genes were identified from the 10-dpa (days post-anthesis) developing 
fiber transcriptome of the cotton population’s parent, TAM 94L-25 (ref. 17), using the sequences of the published 
genes as queries, with query cover ≥300 bp, identity ≥90%, and E-value ≤ 1.0E-06. The homologues of the maize 
grain yield genes and the maize orthologues of the rice grain yield genes were identified from the 13-leaf devel-
oping top ear shoot transcriptome of the maize population’s parent, B73 (ref. 17), using the sequences of the pub-
lished genes as queries, with query cover ≥300 bp, identity ≥90%, and E-value ≤ 1.0E-06. The sequence identities 
lower than 100% were used for identification of the homologous or orthologous genes controlling the traits from 
the databases because genetic diversity may exist between the sources from which the genes were cloned and 
those of the databases. To validate the BLAST search results and further characterize the homologues or ortho-
logues of the cloned genes, they were annotated and subjected to gene ontology (GO) analysis using Blast2GO18. 
The annotation confirmed the BLAST search results.

Gene expression profiling. The expressions of the ginsenoside biosynthesis gene transcripts in 
four-year-old ginseng plant roots (Supplemental Fig. S1B) were extracted from a transcriptome database of 
four-year-old plant roots of the ginseng GWAS panel generated by shotgun RNA-seq.19. Supplemental Fig. S2A 
shows the expression variation of the gene transcripts among the germplasm lines of the ginseng GWAS panel. The 
expressions of the fiber length gene transcripts and those of the cotton orthologues of the Arabidopsis trichrome 
genes in cotton 10-dpa developing fibers (Supplemental Fig. S1F) were extracted from a transcriptome database 
of the 10-dpa developing fibers of the cotton population generated by shotgun RNA-seq.17. Supplemental Fig. S2B 
shows the expression variation of the gene transcripts among the RILs of the cotton population. The expressions 
of the maize grain yield gene transcripts and those of the maize orthologues of the rice grain yield genes in maize 
13-leaf developing top ears (Supplemental Fig. S1J) were extracted from a transcriptome database of the maize 
13-leaf developing top ears of the maize population generated by shotgun RNA-seq.17. Supplemental Fig. S2C 
and D show the expression variation of the gene transcripts among the lines of the maize population. Zhang 
et al.17 showed that the expressions of individual transcripts quantified by the shotgun RNA-seq method were 
highly reproducible, with a Spearman’s correlation coefficient varying from r = 0.90 to r = 0.98 (P = 0.00E + 00), 
between plants (biological replicates) grown within the same field trial replicate and different field trial replicates. 
Shot-gun or full-length RNA-seq was the method of choice that was the most proper to quantify the expressions 
of genes and their individual transcripts, while other methods, including real-time quantitative PCR, could not 
properly quantify the expressions of individual transcripts and genes17.

Gene co-expression network construction. The co-expression networks of the genes were constructed 
using the BioLayout Expression3D software20.

Statistical analysis. The analysis of variance (ANOVA), followed by least significant difference (LSD), 
Student’s t-test and Chi-square test were performed using Excel, the customized R scripts (R 3.0.1) or the statisti-
cal package IBM SPSS Statistics 22. The two-tailed significance level was applied for all statistical analyses.
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Results
Molecular characteristics of the genes controlling quantitative traits. Literature search found 10 
genes that were shown to be involved in ginsenoside biosynthesis in ginseng (Supplemental Table S1)23–34, 18 genes 
controlling cotton fiber length and two genes controlling Arabidopsis trichrome (Supplemental Table S2)23–34 and 
eight genes controlling maize grain yield and 18 genes controlling rice grain yield (Supplemental Table S3)13–15,54–77.  
These genes were cloned totally independently by different researchers from different genetic sources using dif-
ferent gene cloning methods, including map-based cloning, T-DNA or transposon insertional mutagenesis, RNA 
interference (RNAi), antisense gene expression repression, gene overexpression, and/or gene regulation analy-
sis. Sequence analysis showed that the genes controlling the same quantitative trait are different in nucleotide 
sequence and have very different annotations (Supplemental Tables S1–S3). BLASTing the transcriptome of a 
four-year-old ginseng plant10,16 using the sequences of the ten ginseng ginsenoside biosynthesis genes as queries 
revealed that nine (90%) of the 10 genes were alternatively spliced into multiple transcripts and one had a single 
transcript, with a range of 1–19 transcripts and an average of 6.7 transcripts per gene (Supplemental Table S4). 
BLASTing the transcriptome of cotton developing fibers17 using the sequences of the 18 cotton fiber length genes 
and two Arabidopsis trichrome genes as queries identified that 17 (85%) of the 20 genes were alternatively spliced 
into multiple transcripts and three each had a single transcript, with a range of 1–69 transcripts and an average of 
14.8 transcripts per gene (Supplemental Table S5). BLASTing the transcriptome of maize developing ear shoots17 
using the sequences of 8 maize grain yield genes and 18 rice grain yield genes as queries identified that six (75%) 
of the eight maize grain yield genes were alternatively spliced into multiple transcripts and two each had a single 
transcript, with a range of 1–13 transcripts and an average of 2.4 transcripts per gene (Supplemental Table S6). 
Fourteen (78%) of the maize orthologues of the 18 rice grain yield genes were alternatively spliced into multiple 
transcripts and four each had a single transcript, with a range of 1–32 transcripts and an average of 5.3 transcripts 
per gene. These results together indicated that 75% or more of the genes controlling a quantitative trait, ginseng 
ginsenoside biosynthesis, cotton fiber length or maize grain yield, are pleiotropic, having multiple functions, if 
each of their transcripts has a different function. Chi-square test showed that the numbers of the genes that were 
alternatively spliced into multiple transcripts were significantly enriched (P ≤ 0.01), relative to the number of 
transcripts per gene for all genes expressed in these tissues17 (Fig. 1). Moreover, we categorized the transcripts 
of the genes or orthologues controlling ginseng ginsenoside biosynthesis, cotton fiber length, and maize grain 
yield, respectively, using gene ontology (GO). The results showed that the transcripts of the genes controlling 
these traits were categorized into 4 (Supplemental Fig. S3A), 26 (Supplemental Fig. S3B), and 23 (Supplemental 
Fig. S3C,D) GO subcategories at Level 2, respectively, suggesting that the genes controlling a quantitative trait 
have very diverged biochemical functions.

Correlation of the expressions of genes controlling a quantitative trait with the phenotype of 
the trait. Since the vast majority of the genes controlling the three quantitative traits were alternatively spliced 
into multiple transcripts, the question was whether all the transcripts spliced from each of the genes contributed 
to the phenotype of the targeted trait. To answer this question, we conducted correlation analysis between expres-
sion variations of individual gene transcripts (Supplemental Fig. S2) and phenotype variation of the three traits 
(Supplemental Fig. S1D,H,L), respectively, in a GWAS panel (ginseng) or a bi-parental population (cotton and 
maize). We hypothesized that if the expression of a gene transcript was correlated with the phenotype variation 
of a trait, the transcript was considered to be likely involved in the phenotype development of the targeted trait. 
This is because expression is essential for a gene to function and contribute to the performance of a trait. The 
results showed that all 10 ginseng ginsenoside biosynthesis genes each had 1–3 transcripts and an average of 2.2 
transcripts (33% of the total number of transcripts alternatively spliced from a gene) whose expressions were 

Figure 1. Up- and down-enrichment of the genes controlling a quantitative trait that are subjected to RNA 
alternative splicing. Of the genes controlling ginseng ginsenoside biosynthesis (GSB), cotton fiber length 
(UHML), maize grain yield (GY), those spliced into two or more transcripts were up-enriched, while those 
spliced into single transcripts were down-enriched, relative to those of all genes expressed in the tissue. The 
asterisks “**” indicate the significance of P ≤ 0.01 determined by Chi-square test for which the percentages 
of the genes out of all genes expressed in the tissue with two or more transcripts and the genes with single 
transcripts were used to calculate the expected ones (see ref. 17).
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significantly correlated with the ginsenoside contents in ginseng roots (Supplemental Table S4). Of the 18 cot-
ton fiber length genes, 17 each had 1–4 transcripts and an average of 1.8 transcripts (12% of the total number of 
transcripts per gene) whose expressions were significantly correlated with cotton fiber length. No transcript was 
identified for the cotton GhDET2 gene whose expression was correlated with cotton fiber length (Supplemental 
Table S5). The cotton orthologues of the Arabidopsis trichome genes, TTG1 and TTG2, each had 1 or 2 transcripts 
(14% of the total number of transcripts per gene) whose expressions were significantly correlated with cotton 
fiber length (Supplemental Table S5). Together, 19 of the 20 cotton fiber length genes and cotton orthologues of 
the Arabidopsis trichrome genes each had 1–4 transcripts and an average of 1.8 transcripts whose expressions 
were significantly correlated with cotton fiber length. Similarly, all eight maize grain yield genes each had 1 or 4 
transcripts and an average of 1.4 transcripts (30% of the total number of transcripts per gene) whose expressions 
were significantly correlated with maize grain yield (Supplemental Table S6). Of the maize orthologues of the 18 
rice grain yield genes, 7 each had 1 or 2 transcripts and an average of 1.1 transcripts (13% of the total number of 
transcripts per gene) whose expressions were significantly correlated with maize grain yield, while no transcript 
was identified for the maize orthologues of the remaining 11 rice grain yield genes whose expressions were cor-
related with maize grain yield. The correlation analysis result was expected because some of the rice grain yield 
gene transcripts may not contribute to an equivalent phenotype, i.e., grain yield in maize. Together, these analysis 
results confirmed the functions of the published genes in the performance of the targeted traits, thus indicating 
that at least seven of the 18 rice grain yield genes are the candidate genes for maize grain yield.

Relationships among the genes controlling a quantitative trait. Because the genes controlling each 
of the three quantitative traits were cloned by different researchers from different genetic sources and differed in 
nucleotide sequence and biochemical functions (Supplemental Tables S1–S3), the third question was whether 
they were somehow related. Since expression is essential for a gene to perform its function(s) and to shape the 
phenotype of a quantitative trait, we used gene transcript expressions in a tissue of different genotypes or different 
tissues of a single plant sampled at a developmental stage to examine whether there is any relationship among 
the genes controlling each of the ginseng ginsenoside biosynthesis, cotton fiber length and maize grain yield. We 
selected one or two transcripts per gene that were identical or the most similar to the cDNA sequences of the 
genes present at GenBank (Supplemental Tables S7–S9) and conducted the co-expression network analysis of the 
genes controlling each of these three traits. As a result, 14 transcripts were selected for the 10 ginseng ginsenoside 
biosynthesis genes because β-AS, CAS, DS and SE2 each had two transcripts having very close identities to the 
cDNA sequences of the genes present at GenBank, 18 transcripts for 18 cotton fiber length genes and 2 transcripts 
for the cotton orthologues of the 2 Arabidopsis trichrome genes, 8 transcripts for the 8 maize grain yield genes, 
and 18 transcripts for the maize orthologues of the 18 rice grain yield genes. For the 10 ginseng ginsenoside bio-
synthesis genes, all 14 selected transcripts, with 1 or 2 transcripts per gene, were significantly correlated with the 
contents of ginsenosides (Supplemental Table S4). For the 18 cotton fiber length genes and the cotton orthologues 
of the 2 Arabidopsis trichrome genes, 15 of the 20 selected transcripts, with one transcript per gene, were signifi-
cantly correlated with cotton fiber length (Supplemental Table S5), indicating that the transcript similarity to the 
cDNA sequences of five of the 20 genes at GenBank was inconsistent with their correlations with fiber length. For 
the 8 maize grain yield genes, all 8 selected transcripts, with one transcript per gene, were significantly correlated 
with maize grain yield, while for the 18 rice grain yield genes, 7 of the selected transcripts, with one transcript 
per gene, were significantly correlated with maize grain yield (Supplemental Table S6). Moreover, because any 
gene expressed in a cell highly likely co-expresses with one or more other genes, we randomly selected unknown 
gene transcripts from the corresponding transcriptomes and used as controls to check the background noise. The 
networks for the genes controlling each of these traits were constructed using the ginseng GWAS, cotton RIL or 
maize IRIL populations, respectively. Analyzed were three major components of the gene networks: the nodes 
representing genes, the edges representing gene-gene co-expression, and connectivity representing the robustness 
of a network or the number of gene nodes needed to be removed to disconnect part of a network.

We first tested the tendency that the gene transcripts controlling a quantitative trait formed a co-expression 
network in a tissue sampled at a developmental stage in a bi-parental population or a GWAS panel. For ginseng 
ginsenoside biosynthesis, the 14 selected transcripts of the 10 genes controlling this biological process formed a 
single co-expression network that consisted of two clusters, when a cutoff of P ≤ 0.05 was applied (Fig. 2A). The 
network consisted of all 14 ginsenoside biosynthesis gene transcripts selected for the network construction and 
77 gene transcript-gene transcript co-expression edges. In comparison, the numbers of both nodes and edges 
constituting the networks of the ginsenoside biosynthesis gene transcripts were higher than those of the randomly 
selected unknown ginseng gene transcripts (P ≤ 0.01), no matter what P-values, from P = 5.0E-02 to P = 1.0E-
08, were used for network construction (Fig. 2B-E). For cotton fiber length, the selected transcripts of the 20 
fiber length or trichome genes also formed a single co-expression network consisting of three clusters, when a 
cutoff of P ≤ 0.01 was applied (Fig. 3A). The network consisted of all the 20 gene transcripts used for the network 
construction and 61 gene transcript-gene transcript co-expression edges. The numbers of both nodes and edges 
of the network were higher than those of the randomly-selected unknown cotton gene transcripts (P ≤ 0.01), 
no matter what P-values, from P = 5.0E-02 to P = 1.0E-08, were used for network construction (Fig. 3B-E). 
For maize grain yield, similar results were achieved, even though 18 of the 26 genes used for the analysis were 
known to control grain yield in rice. The functions of 14 of the 18 rice grain yield genes in maize were unknown 
and four were shown to also contribute to grain yield in maize12–15. Again, all the 26 grain yield genes used for 
the network construction formed a single co-expression network consisting of a single cluster, when a cutoff 
of P ≤ 0.05 was applied (Fig. 4A). The network consisted of all the 26 grain yield gene transcripts used for the 
network construction and 123 gene transcript-gene transcript co-expression edges. The numbers of both nodes 
and edges of the network were higher than those of the randomly-selected unknown maize genes (P ≤ 0.01), no 
matter what P-values, from P = 5.0E-02 to P = 1.0E-08, were used for network construction (Fig. 4B-E). These 
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Figure 2. Tendency that the genes controlling ginseng ginsenoside biosynthesis form a co-expression network 
in the four-year-old ginseng plant roots. (A) The network of the 14 ginsenoside biosynthesis gene transcripts 
formed in the ginseng four-year-old plant roots. Nodes, gene transcripts indicated by balls; edges, gene 
transcript - gene transcript co-expression indicated by lines. The genes labelled in different colors indicate 
different Markov clusters of the network. (B) Tendency of the gene network formation at different p-values: 
nodes. (C) Tendency of the gene network formation at different p-values: edges. (D) Statistics of the gene 
network formation tendency: nodes. (E) Statistics of the gene network formation tendency: edges. The 10 
ginsenoside biosynthesis gene transcripts used for the statistical analysis were randomly selected from the 14 
ginsenoside biosynthesis gene transcripts used in this study, while the 10 unknown ginseng gene transcripts 
were randomly selected from a ginseng four-old-year plant database16 using bootstrap sampling with 100 
replications. Error bar, standard deviation for the 100 replications; different capital letters, significant at P ≤ 0.01 
determined by Student’s t-test.
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results consistently indicated that the genes controlling a quantitative trait were much more likely to form a 
co-expression network than the randomly-selected unknown genes, no matter which trait was tested, which 
species the trait was from and where the plants were grown.

Figure 3. Tendency that the genes controlling cotton fiber length form a co-expression network in developing 
fibers on the 10th day after flowering (10-dpa fiber). Each gene is presented by one of its transcripts. (A) The 
network of the 20 cotton fiber length gene transcripts formed in 10-dpa fibers. Nodes, gene transcripts indicated 
by balls; edges, gene transcript-gene transcript co-expressions indicated by lines. The genes labelled in different 
colors indicate different Markov clusters of the network. (B) Tendency of the gene network formation at 
different p-values: nodes. (C) Tendency of the gene network formation at different p-values: edges. (D) Statistics 
of the gene network formation tendency: nodes. (E) Statistics of the gene network formation tendency: edges. 
The 10 fiber length gene transcripts used for the statistical analysis were randomly selected from the 20 fiber 
gene transcripts used in this study while the 10 unknown cotton gene transcripts were randomly selected from a 
cotton 10-dpa fiber database17 using bootstrap sampling with 100 replications. Error bar, standard deviation for 
the 100 replications; different capital letters, significant at P ≤ 0.01 determined by Student’s t-test.
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Figure 4. Tendency that the genes controlling maize grain yield form a single co-expression network in 13-
leaf top ear shoots. Each gene is presented by one of its transcripts. (A) The network of the 8 maize and 18 
rice grain yield gene transcripts formed in developing top ear shoots of maize at the 13-leaf stage. Nodes, gene 
transcripts indicated by balls; edges, gene transcript-gene transcript co-expressions indicated by lines. The 
network consists of only one Markov cluster. (B) Tendency of the gene network formation at different p-values: 
nodes. (C) Tendency of the gene network formation at different p-values: edges. (D) Statistics of the gene 
network formation tendency: nodes. (E) Statistics of the gene network formation tendency: edges. The 18 grain 
yield genes used for the statistical analysis were randomly selected from the 26 grain yield genes used in this 
study while the 18 unknown maize genes were randomly selected from a 13-leaf top ear shoot database17 using 
bootstrap sampling with 100 replications. Error bar, standard deviation for the 100 replications; different capital 
letters, significant at P ≤ 0.01 determined by Student’s t-test.
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Then, we further confirmed the significantly higher tendency that the genes controlling a quantitative trait 
formed a co-expression network than the randomly selected unknown genes using 14 tissues of a four-year-old 
ginseng plant sampled at the fruiting stage. Since only 13 of the 14 selected transcripts of the 10 ginsenoside bio-
synthesis genes expressed in two or more of the tissues of the plant that are necessary for proper calculation of 
correlation coefficient for network construction, the 13 transcripts were used for this experiment. When a cutoff 
of P ≤ 0.05 was applied, all the 13 transcripts again formed a single co-expression network (Fig. 5A). The net-
work consisted of all 13 ginsenoside biosynthesis gene transcripts used for the network construction and 39 gene 
transcript-gene transcript co-expression edges. In comparison, the numbers of both nodes and edges constituting 
the networks of the ginsenoside biosynthesis gene transcripts were higher than those of the randomly selected 
unknown ginseng gene transcripts (P ≤ 0.01), no matter what P-values, from P = 5.0E-02 to P = 1.0E-08, were 
used for network construction (Fig. 5B-E).

Furthermore, we examined the connectivity of the co-expression networks of the genes controlling ginseng 
ginsenoside biosynthesis, cotton fiber length, and maize grain yield against those of the gene transcripts ran-
domly selected from corresponding transcriptome databases at three p-values for network construction, respec-
tively. In the four-year-old plant roots of the 42 ginseng lines, the connectivity of the network formation of the 
14 ginsenoside biosynthesis gene transcripts was 6.6-, 6.8-, and 6.9-fold at a p-value of 0.05, 0.01, and 0.001, 
respectively, as those of the 14 randomly-selected unknown ginseng gene transcripts (Fig. 6A). In the 14 tissues 
of the four-year-old ginseng plant, the connectivity of the network formation of the 13 ginsenoside biosynthesis 
gene transcripts was 3.6-, 4.7-, and 15.5-fold at a p-value of 0.05, 0.01, and 0.001, respectively, as those of the 13 
randomly-selected unknown ginseng gene transcripts (Fig. 6B). Similarly, the connectivity of the 18 cotton fiber 
length gene transcripts and those of the cotton orthologues of the 2 Arabidopsis trichrome gene transcripts form-
ing co-expression networks in cotton 10-dpa developing fibers were 3.6-, 4.3-, and 5.5-fold at a p-value of 0.05, 
0.01, and 0.001, respectively, as those of the 20 randomly-selected unknown cotton gene transcripts (Fig. 6C). 
The connectivity of the 8 maize grain gene transcripts and those of the maize orthologues of the 18 rice grain 
yield gene transcripts forming co-expression networks in maize developing top ear shoots were 2.5-, 2.9-, and 
2.9-fold at a p-value of 0.05, 0.01, and 0.001, respectively, as those of the 26 randomly-selected unknown maize 
gene transcripts (Fig. 6D).

The co-expression network of the genes controlling a quantitative trait and its phenotype.  
Since the genes controlling a quantitative trait were coordinated in functional activity, the fourth question was 
whether this relationship is consistent across genotypes and if it is not, whether variation in the gene network is 
somehow related with the performance of the targeted trait that the genes control. We grouped the 42 ginseng 
GWAS lines into three groups, with each group consisting of 14 lines, according to their ginsenoside contents 
in four-year-old plant roots. Group 1 (G1) had the lowest ginsenoside content, G2 had the middle ginsenoside 
content, and G3 had the highest ginsenoside content. The ginsenoside contents of these three groups differed by 
26–61% (P ≤ 0.01 determined by ANOVA followed by LSD) (Fig. 7A). We grouped the 198 cotton RILs and their 
two parents into ten groups according to their fiber lengths, from G1 to G10 having an ascending fiber length and 
with each group consisting of 20 lines. G1, G5, and G10 were used for this experiment and their fiber lengths dif-
fered by 9–27% (P ≤ 0.01) (Fig. 7D). We grouped 88 of the 89 maize IRILs and their two parents into nine groups 
according to their grain yields, from G1 to G9 having an ascending grain yield and with each group consisting 
of 10 lines. G1, G5, and G9 were used for this experiment and their grain yields differed by 63–172% (P ≤ 0.01) 
(Fig. 7G). We separately constructed the networks of the genes controlling the traits for each group and compared 
the networks of the genes controlling each trait among the groups, specifically in number of nodes, number of 
edges and structure of the network including which of the genes were in the network and with which genes a gene 
co-expressed (Fig. 7B,C,E,F,H,I). The network of the genes controlling each trait was found to substantially vary 
in the number of nodes, number of edges and network structure, in association with the variation in phenotype 
of the targeted trait that they control. This result suggested that the variation in the network of genes controlling 
a quantitative trait was associated with the performance of the targeted trait. The nodes of the gene networks 
were much more stable across genotypes or groups differing in phenotype than their co-expression edges. The 
nodes had a consistence of 71% across genotypes with significantly different phenotypes for ginseng ginsenoside 
biosynthesis, 80% for cotton fiber length, and 88% for maize grain yield, whereas the edges had a consistency of 
only 11% across genotypes with significantly different phenotypes for ginseng ginsenoside biosynthesis, 19% 
for cotton fiber length, and 7% for maize grain yield. Therefore, the phenotype of a quantitative trait might be 
determined not only by the node members of its gene network, but also by its gene collaboration or interaction 
in functional activity.

Discussion
The previous cloning of multiple genes controlling each of ginseng ginsenoside biosynthesis, cotton fiber length, 
and maize grain yield has confirmed classical quantitative genetics that a trait showing quantitative inheritance, 
i.e., a quantitative trait, is controlled by numerous genes. This study has further made several new insights into 
the molecular basis of quantitative genetics. First, this study reveals that a vast majority of the genes controlling 
a quantitative trait (cotton fiber length and maize grain) or a polygenic biological process (ginseng ginsenoside 
biosynthesis) are alternatively spliced into multiple transcripts, thus likely having multiple functions or being 
pleiotropic, because each transcript may code a different protein having a different biological function. Second, 
the genes controlling a quantitative trait express correlatively, forming a multiple-time stronger co-expression 
network than other genes in an organ, regardless of their sequence identity, annotations, and/or GO categoriza-
tion. Third, the network of the genes controlling a quantitative trait varies substantially among genotypes differing 
in phenotype of the trait that they control, suggesting the roles of gene network in trait performance. These three 
conclusions are held for all three traits studied using all three species, no matter where the plants were grown, 
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Figure 5. Tendency that the genes controlling ginseng ginsenoside biosynthesis form a single co-expression 
network in a four-year-old ginseng plant at the fruiting stage. (A) The network of the 13 ginsenoside 
biosynthesis gene transcripts formed in 14 tissues of a four-year-old ginseng plant. Nodes, gene transcripts 
indicated by balls; edges, gene transcript - gene transcript co-expressions indicated by lines. One of the 14 
ginsenoside biosynthesis gene transcripts, CAS_23, was excluded from the analysis because it did not express in 
the 14 tissues of the plant. The network consists of only one Markov cluster. (B) Tendency of the gene network 
formation at different p-values: nodes. (C) Tendency of the gene network formation at different p-values: edges. 
(D) Statistics of the gene network formation tendency: nodes. (E) Statistics of the gene network formation 
tendency: edges. The 10 ginsenoside biosynthesis gene transcripts used for the statistical analysis were randomly 
selected from the 13 ginsenoside biosynthesis gene transcripts used in this study, while the 10 unknown ginseng 
gene transcripts were randomly selected from a ginseng four-old-year plant database16 using bootstrap sampling 
with 100 replications. Error bar, standard deviation for the 100 replications; different capital letters, significant at 
P ≤ 0.01determined by Student’s t-test.
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suggesting that they is stable across traits, across species and across environments. Furthermore, the molecular 
characteristics of the genes controlling maize grain yield and cotton fiber length have been further validated by 
analysis of the 1,501 maize grain yield genes21 and the 474 cotton fiber length genes22 that we recently cloned 
genome-wide (in preparation). Therefore, we conclude that a quantitative trait is a consequence of collaboration 
among its controlling genes, not only the gene members of its gene network, but also the gene relationships 
in the network, such as whether they collaborate or not in activity and with which gene(s) a gene of the net-
work co-expresses. This finding suggests that it is essential to decipher the molecular mechanism underlying 

Figure 6. Connectivity of the genes controlling a quantitative trait forming a co-expression network. The 
network connectivity is a measure of network robustness, presented by the number of gene nodes needed to be 
removed to disconnect part of a network. (A) The network of ginsenoside biosynthesis genes in four-year-old 
plant roots of different ginseng cultivars. (B) The network of ginsenoside biosynthesis genes in 14 tissues of a 
four-year-old ginseng plant. One of the 14 ginsenoside biosynthesis gene transcripts, CAS_23, was excluded 
from this analysis because it did not express in the 14 tissues of the plant. (C) The network of cotton fiber length 
genes in developing fibers of different cotton lines sampled on the 10th day post-anthesis (10-dpa). (D) The 
network of maize grain yield genes in 13-leaf top ear shoots.
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a quantitative trait, and to develop new or advanced methods efficient for the trait manipulation, such as gene 
editing, by genome-wide analysis of the genes controlling that trait.

Genes are the keys to developing new or advanced technologies for enhanced breeding in plants and live-
stock, and for enhanced medicine in humans. Nevertheless, only a limited number of genes controlling each 
quantitative trait has been so far cloned. It is apparent that many more genes remain to be identified in order to 
comprehensively decipher their underlying molecular mechanisms and to develop new or advanced technolo-
gies for their efficient manipulation for enhanced breeding and enhanced medicine. The significant correlation 
between transcript expression of the genes and phenotypic variation of the trait that they control in a population 
and their multiple-fold higher tendency in formation of a co-expression network revealed in this study provide 
useful information for genome-wide identification of the genes controlling a quantitative trait, not only the genes 
controlling quantitative traits in these three species, but also those controlling quantitative traits in other species 

Figure 7. Relationship between variation in the network of the genes controlling a quantitative trait and 
phenotype variation in the trait that they control. The networks were constructed at a cutoff of P ≤ 0.01. (A to 
C) Ginseng. Fourteen lines that had similar ginsenoside contents were included in each of the groups, G1, G2, 
and G3, for the analysis. (D to F) Cotton. twenty RILs that had similar fiber lengths were included in each of the 
groups, G1, G5, and G10, for the analysis. (G to I) Maize. Ten IRILs that had similar grain yields were included 
in each of the groups, G1, G5, and G9, for the analysis. Error bar, standard deviation for the lines of each group; 
different capital letters, significant at P ≤ 0.01 determined by ANOVA, followed by LSD.
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using a cloned gene controlling the trait as a start point. In this study, we have, using this information, identified 
seven candidate genes controlling grain yield in maize (Fig. 4; Supplemental Table S6).

Finally, this study reveals that most of the genes controlling a quantitative trait are subjected to RNA alterna-
tive splicing and spliced into multiple transcripts. It is apparent that only one or a limited number, but not all, of 
the transcripts alternatively spliced from a multiple transcript gene is involved in phenotype development of the 
trait. These results raise an extremely significant question about gene research and characterization: whether gene 
or its individual transcripts are used as basic functional units for gene research, characterization and application, 
such as gene annotation, pathway construction, functional categorization, gene editing, and genetic engineering. 
This finding supports for our previous proposal that individual gene transcripts should be used for these purposes 
of gene research17.
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