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A New Representative Sampling 
Method for Series Size Rock Joint 
Surfaces
Man Huang1,2 ✉, Chenjie Hong1, Chengrong Ma1, Zhanyou Luo3, Shigui Du1 & Fei Yang1

The greatest variability in both shear strength and roughness exists for joint samples with smaller size, 
which underscores the necessity of performing representative sampling. This study aims to provide a 
representative sampling method for series size joint surfaces. The progressive coverage statistical 
method is introduced to provide the sufficient sample capacity for series sampling sizes by setting 
different propulsion spaces. The statistical law of the joint surface morphology at different sampling 
sizes is measured by the 3D roughness parameter with θ +C/( 1)max

⁎ . Through an application in nine 
natural large-scale rock joints, nine consecutive sampling sizes from 100 mm × 100 mm to 900 mm × 
900 mm are selected and 121 samples are successfully acquired from each sampling size. According to 
the frequency distribution of roughness statistics, a new sampling method combining the layering 
principle and K-medoids clustering algorithm is proposed to screen representative joint samples for 
each sampling size. The sampling results that meet the test accuracy requirements suggest the 
possibility of realizing an intelligent sampling method. In addition, the representative of the interlayer 
cluster center is validated. Finally, the comparison results with the traditional stratified sampling 
method prove that the proposed method has better stability.

The shear behavior of rock joints is largely determined by size1,2. Hence, numerous shear test investigations on 
the scale effect in rock joints have been conducted3–7. Such investigations usually divide a large natural or artifi-
cially reproduced rock joint specimen into various joint models with small sizes. Direct shear tests under a given 
normal stress are then conducted on these joint surfaces of series sizes. Finally, the scale effect on the peak shear 
strength is obtained by comparing the average peak shear strength of the rock joints of each specimen size to that 
of the original specimen8. In this process, the material properties of different-sized joint specimens are the same 
in those of the original specimen. Therefore, the acquisition of each specimen size is equal to obtain the surface 
morphology (roughness) of the specimen at this size.

Roughness parameterization provides methods for quantifying the characterization of joint surface morphol-
ogy, including empirical9, statistical10,11, and fractal methods12–14. Then, the scale effects of joint roughness and 
shear strength are established15–17. However, the representativeness of different-sized specimens is often neglected 
when studying the scale dependency of the two. The mechanical test of joint models with different sizes requires 
that each specimen represents the undulating characteristics of a specific size. However, the results of scale 
effect obtained by selecting a single sample to replace all specimens for experimental studies are questionable. 
Therefore, the representativeness of all specimens should be systematically analyzed.

Recently, some scholars have put forward methods for the statistics of joint samples. Yong et al. proposed a 
method for obtaining continuously sized joint profiles with overlapping length18. Considering that the statistical 
method of joint samples around two-dimensional profile is noncomprehensive, Huang et al. proposed a pro-
gressive coverage statistical method based on the idea of overlapping sampling, which can realize the statistics of 
three-dimensional (3D) joint morphology in series size19. However, the representative sampling of joint samples 
is not involved.

To explore the most representative roughness samples on a joint surface, Huang et al. first proposed a strati-
fied sampling method for the representative sampling of joint samples20. However, a large number of probability 
calculations limit the use of this methods as the scale of joint research increases. In recent years, clustering, which 
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plays an important role in exploring data, has been used in the traditional joint roughness analysis21–23. Among 
them, the K-medoids clustering algorithm is widely recognized for its insensitivity to processing data outliers24. 
Therefore, the stratified sampling method may be optimized by the K-medoids clustering algorithm.

In this study, we investigate the traditional sampling methods in rock joints and propose an improved strati-
fied sampling method, which can be combined with K-medoids clustering algorithm to perform intelligent sam-
pling. The progressive coverage statistical method is introduced to obtain series size joint samples. Furthermore, 
the representative assessment of sampling results with the proposed method is tested with natural rock joints, and 
its feature and advantages are compared with those of the traditional stratified sampling method. In addition, the 
representative verification of a cluster center and sensitivity analysis of k-value in K-medoids sampling process 
is discussed in this paper. In doing so, the accuracy of the mechanical test is validated, and the work efficiency is 
improved.

Methodology
Traditional sampling methods in rock joints.  The mechanical test of joint models of different sizes 
requires small-scale model specimens to be included in large-scale ones20. Four existing sampling methods follow 
the above requirements, namely, simple random sampling method, processive magnifying sampling method, 
equal-partition sampling method, and stratified sampling method.

	(1)	 Simple random sampling method. Considering the difficulty of performing roughness measurements 
in field rough joints, samples of different sizes are often arbitrarily taken from the original surface. The 
locations of different-sized samples primarily rely on the personal judgment and choice of researchers. 
Therefore, representing the corresponding size of the surface morphology with such random and irregular 
joint samples is not comprehensive.

	(2)	 Processive magnifying sampling method18. The processive magnifying sampling method refers to the sam-
pling process in which the large-sized samples are obtained through a regular amplification of small-sized 
samples from a side or middle section (Fig. 1), which can overcome the irregularity of the simple random 
sampling method. This sampling method has been widely used in scale effect research on rock joints25–28. 
However, this sampling method is still a one-sample characterization method, the number of samples in 
each sampling size is small and their representativeness are unclear.

	(3)	 Equal-partition sampling method18. To obtain different positions of the original samples, the equal-parti-
tion sampling method is applied to joint sampling3,6, which provide profile samples through equivalence 
partitioning (Fig. 2a). On the basis of this definition, the 3D surface morphology may be evenly divided, as 
shown in Fig. 2b. Here, it is found that too many samples of small size and too few at the large size would 
be provided with the equal-partition sampling method. Moreover, this sampling method cannot guarantee 
full coverage samples for each sampling size because some sampling sizes cannot be divisible.

	(4)	 Stratified sampling method. The stratified sampling method introduced by Huang et al. is used to improve 
the case of having excessive samples in the small sampling size20. This method considers two key factors: 
stratified proportions are determined through the quartile method of JRC and sampling capacity is calcu-
lated within the permissible error range. The representative joint samples are then selected in the respective 
layer with the product of the sample quantity and stratified proportions, which will minimize the sample 
size and make them reasonably distributed (Fig. 3). However, due to the insufficient acquisition of large-
sized sample sizes in current sample statistical methods, this method is limited to the application of small 
size representative samples. In addition, this method does not define the value of the interlayer samples. 

Figure 1.  Processive magnifying sampling method. (a) Side amplification; (b) middle amplification.
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Hence, the arbitrarily selected joint samples may be less representative.

In summary, there are still two major shortcomings of the conventional sampling method. The first is uneven 
sampling (i.e., too many samples of small size and too few at the large size). The second is that the representa-
tiveness of the obtained samples is not clear. Therefore, establishing a new sampling method that can ensure the 
equal number of samples for different sampling sizes and therefrom select the representative samples is necessary.

Progressive coverage statistical method.  To provide a comprehensive sampling basis for the sample 
statistics of series sample sizes, Huang et al. proposed a new progressive coverage statistical method19. Through 
this method, unit samples of different sizes are propelled in orthogonal directions along the entire rock joint 
with different propulsion spaces (see Supplementary Fig. S1). Here, with the propulsion of the unit sample, more 
complete unit samples are obtained, which can cover the partial missing area morphology, increase the sample 
capacity, and improve the accuracy of the overall samples. Therefore, this statistical method can effectively solve 
the problem of excessive or insufficient samples in different sampling sizes.

K-medoids clustering algorithm.  K-medoids clustering algorithm is a data mining tool whose aim is to 
find K representative objects from the data set in such a way that the sum of the within-cluster dissimilarities is 
minimized29. It assigns every object to the nearest centroid by calculating the Euclidean distance, and the expres-
sion is given by Park et al. as

Figure 2.  Equal-partition sampling method. (a) schematic diagram of uniform profile; (b) equal partition of 
the surface.

Figure 3.  Stratified sampling method.
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where m is the total objects, p is the number of variables, and Xia and Xja are the ath variable of objects i and j, 
respectively24. Figure 4 depicts the basic operation process of this clustering algorithm. The flowchart shows that 
the K-medoids clustering algorithm has a classification function similar to that of the stratified sampling method. 
Moreover, all the obtained cluster centers are real data and the most representative sample in each cluster, which 
means that the defect of random selection in interlayer samples is overcome. Therefore, the K-medoids clustering 
algorithm can be combined with the stratified sampling method for the representative sampling of joint surface 
morphology.

New combined sampling method.  The progressive coverage statistical method can provide enough sam-
ple size for series sampling sizes and the stratified sampling method with K-medoids clustering algorithm has 
great advantage in representative sampling. Therefore, we combine the two methods for the representative sam-
pling of rock joints. To characterize the surface morphology of the joint samples, the quantitative parameters need 
to be determined first. In the current study of roughness parameters, Grasselli et al. established a relationship 
between total potential contact area ratio θ⁎A  and apparent dip angle θ⁎ as follows3:
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where A0 is the maximum potential contact area ratio, θ⁎
max is the maximum apparent dip angle in the shear direc-

tion, and C is the roughness fitting coefficient. Then, Tatone and Grasselli11 proposed a 3D roughness parameter 
θ +⁎ C/( 1)max  to evaluate the rock joint roughness, which is widely recognized4. Therefore, we take θ +⁎ C/( 1)max  
as the quantitative parameters of the sample for the combined sampling method. The specific process is composed 
of the following steps:

Step 1: Sample statistics. The corresponding propulsion space ∆d for different sampling sizes is determined, 
and then the square sampling unit is progressively advanced along the surface morphology of the joints to derive 
the appropriate sample capacity. The sample capacity N  is calculated as

Figure 4.  K-medoids clustering algorithm flowchart.
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where L is the side length of the original square joint and l is the side length of the target sample size, such that 
≤l L. Then, the 3D roughness parameters θ +⁎ C/( 1)max  of each joint sample at a given shear direction are 

calculated.
Step 2: Sample stratification. In accordance with the definition of the stratified sampling method, θ +⁎ C/( 1)max  

of each sampling size is arranged from small to large, and the sample layer division is defined by the relative range 
into two cases. When the relative range is greater than 10%, the quartile is used as the boundary to divided all the 
statistical values into three intervals, that is, 0–25%, 25–75%, and 75–100%, in which the distribution proportion 
W of samples in each layer is 1/4, 1/2, and 1/4, respectively; and when the relative range is less than 10%, an inter-
val of 0%–100% is defined for the statistical values because of the small variation in the sample roughness, and its 
distribution proportion W is 1. The sampling quantity n is calculated through the stratified sampling equation as 
follows:
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where h is the layer number, S2 is the variance, V is the mean variance, t is the upper quantile of the standard 
normal distribution, γ is the permissible error, Y  is the population mean, and N is the total sample number.

Step 3: Representative sampling with the K-medoids clustering algorithm. For one sampling size, the eigen-
value P of the K-medoids clustering algorithm for the stratified samples is determined as follows:

= …P x l x l x l{( , ), ( , ), , ( , )}, (6)h h1 h2 ht

where xht represents the θ +⁎ C/( 1)max  values of the tth joint sample in h layer. The k-value in the K-medoids clus-
tering algorithm is determined based on the results of the sample distribution of each layer as

= × .⌈ ⌉K n W (7)h h

Then, the K-medoids clustering algorithm is run to obtain the K cluster centers from the data of the eigen-
value. The joint samples corresponding to these center points are the representative samples of the corresponding 
sampling size.

To verify the feasibility of the new sampling method, we will use it to perform the sampling in natural rock 
joints. In this method, the different propulsion spaces will be selected to obtain a sufficient sample size for series 
sampling sizes and the k-values in different layers for each sampling size will be determined to carry out repre-
sentative sampling. Finally, the method evaluates the representativeness of the sampling results to show good 
applicability of the combined sampling method in the rock joints.

Application
Acquisition of a large-scale joint.  A large-scale and well-preserved natural rock joint should be prepared 
before conducting the statistics of the joint samples. After many field investigations, we found three sets of differ-
ent lithological joints (tuff, sandstone, and limestone), whose width and height are all more than 1 m (Fig. 5). To 
collect the 3D surface information, a portable laser scanner (MetraSCAN 3D, Creaform, Canada) with a scanning 
accuracy of 0.5 mm is used to scan the field site. Three 1000 mm × 1000 mm digitized surfaces are selected for 
each lithology as the original joints, labeled as T1, T2, T3, S1, S2, S3, L1, L2, and L3 (see Supplementary Fig. S2).

Figure 5.  Large-scale natural rock joint. (a) tuff; (b) sandstone; (c) limestone.
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Progressive coverage statistical procedure.  To make a comprehensive division of rock joints, nine con-
secutive sampling sizes with a dimension of 100 mm × 100 mm to 900 mm × 900 mm are selected in this work. 
Then, the progressive coverage statistical method is used to set the propulsion spacing to 90, 80, 70, 60, 50, 40, 
30, 20, and 10 mm, which can achieve 121 samples per sampling size. Hence, the progressive coverage statistical 
method can create conditions for the representative sampling of large-sized samples.

Results
Joint sample roughness distribution.  Roughness measurement is performed on the obtained joint sam-
ples by means of roughness parameter θ +⁎ C/( 1)max  along shear direction at 0°, in which the roughness statistics 
of T1, S1, and L1 joints are given in the form of histograms, as shown in Supplementary Fig. S3. It shows that the 
distribution in roughness is quite wide at small sample sizes, but quite narrow at the larger sample sizes. This 
means that the smaller the sampling size, the greater dispersion of joint sample roughness. Therefore, the repre-
sentativeness of the joint samples is very important. In addition, from the perspective of frequency distribution of 
the joint sample roughness, although the normal, skewed distribution, and irregular distributions appeared, the 
roughness is still distributed throughout the different intervals. This finding indicates that such data sets are suit-
able for screening representative samples with the stratified sampling method.

Determination of the sampling quantity.  According to the sample stratification (step 2) in Section 2, the 
permissible error γ is set as 0.15, and the upper standard quantile t in the corresponding standard normal distri-
bution table is 1.96 when the confidence level is 95%. The interlayer variance ( −S0 25

2 , −S25 75
2 , −S75 100

2 , or −S0 100
2 ) of 

each sample size is calculated and the calculated data is substituted into Eq. (4) to obtain the sampling quantity n 
and the k-values in accordance with Eq. (7). The calculation results of the T1, S1, and L1 joints can be found as 
Supplementary Table S1. The sample capacity of different sampling sizes gradually decreases due to the decrease 
in the difference between the joint sample surface morphology as the sampling size increases.

Sampling with the K-medoids clustering algorithm.  The sampling work starts by determining the 
k-value for the interlayer sample in each sampling size. After acquiring the eigenvalue of the samples for each 
sampling size, we sequentially input the eigenvalue and corresponding k-value into the K-medoids clustering 
algorithm. The clustering results under different sampling sizes are shown in Supplementary Fig. S4, where the 
cluster centers are distributed in different sampling intervals.

Representative assessment of the sampling results.  Sampling of the joint model requires that the 
selected sample be representative of the undulating surface morphology under a specimen size. Considering that 
the proposed sampling method is based on the roughness statistics, Fig. 6 shows the variation of mean 
θ +⁎ C/( 1)max  of the cluster centers (Lc) and the mean θ +⁎ C/( 1)max  of population (Lp). The relative error δ is cal-
culated as follows:

δ =
−

× .
L L

L
100%

(8)

p c

p

The obtained results have good coherence, in which the maximum error is 6.78% (see Supplementary 
Table S2). Therefore, the sampling results obtained by the K-medoids clustering algorithm can meet the test 
accuracy requirements.

Comparison and Discussion
Representative verification of interlayer cluster centers.  From the process of K-medoids stratified 
sampling, the whole representativeness of the sample depends on the representativeness of the interlayer cluster 
centers. To demonstrate the representativeness of the cluster centers in each layer, we take the T1 joint as the 
research object and compare the mean θ +⁎ C/( 1)max  of the cluster samples of three layers and the mean 
θ +⁎ C/( 1)max  of the cluster centers (Fig. 7). The results show that each interlayer cluster center is almost identical 
to the average of the cluster samples. This finding indicates that the K-medoids clustering algorithm can ensure 
the consistency of the cluster results, which is the biggest feature and advantage of this method in representative 
sampling.

Comparison with different sampling method.  To compare with the different sampling methods, we 
take the sampling size at 100 mm × 100 mm of the T1 joint as an example. First, the progressive coverage statisti-
cal method is used to get population samples, and then the roughness θ +⁎ C/( 1)max  of all samples are calculated 
to obtain population mean. Second, five repeated samplings are performed with Simple random sampling, 
Processive magnifying sampling, Equal partition sampling, Stratified sampling and K-medoids sampling meth-
ods, and then the roughness θ +⁎ C/( 1)max  of samples are calculated to obtain sample mean. Finally, the relative 
error between the sample mean of different sampling times and the population mean is calculated, as shown in 
Fig. 8. Although the results show that the relative error using the Equal partition sampling method is more con-
stant and smaller, the large sample capacity will increase the burden for successive test. Therefore, the K-medoids 
sampling method with relative errors basically stabilized below 5% and appropriate sample capacity is the best 
choice for the representative sampling of joint surface morphology.

Conclusions
A new representative sampling method for rock joint surfaces presented in this paper, the major summaries and 
conclusions are as follows:
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The performance of four traditional sampling methods that are frequently used in the joint model test, 
namely, the simple random sampling method, processive magnifying sampling method, equal-partition sampling 
method, and stratified sampling method, are investigated in representative sampling. The results show that the 
conventional sampling methods have different drawbacks in the sampling of series size joint samples, and their 
performances do not involve the representative characterization of large-sized ones.

A new sampling method that combines the progressive coverage statistical and K-medoids stratified sampling 
methods is proposed to achieve an intelligent representative sampling for rock joints. The reasonably allocated 
samples of each sampling size are selected, and the roughness representativeness of the samples is quantitatively 

Figure 6.  Evaluation of the cluster results. (a) tuff; (b) sandstone; (c) limestone.
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evaluated on the basis of the statistical analysis of the θ +⁎ C/( 1)max  values. The relative errors between the mean 
θ +⁎ C/( 1)max  of the samples and the mean θ +⁎ C/( 1)max  of the population are almost entirely below 5%. This 
finding indicates that the new sampling method can effectively provide representative joint samples for the joint 
model tests.

The representative verification of the interlayer cluster centers is carried out. The results show that the 
K-medoids clustering algorithm can effectively achieve a reasonable allocation of cluster centers and ensures the 
representativeness of the sampled samples. In addition, in accordance with the comparison with the traditional 
stratified sampling method, the K-medoids clustering algorithm enables a stable representative sampling of joint 
samples.

Figure 7.  Evaluation of the interlayer cluster results.
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To verify the mechanical reliability of the selected samples, the comparative analysis of the mechanics need 
be further studied. Furthermore, the scale effect of shear behavior based on the representative samples will be 
investigated via direct shear tests in the future.
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