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BacEffluxPred: A two-tier system 
to predict and categorize bacterial 
efflux mediated antibiotic 
resistance proteins
Deeksha Pandey, Bandana Kumari, Neelja Singhal & Manish Kumar✉

Efflux proteins are transport proteins, which are involved in transporting different substrates from 
the cell to the external environment, including antibiotics. The efflux mechanism and efflux pumps 
are a major reason underlying emerging rampant antibiotic resistance (AR) in microbes. To reduce the 
resources required and time of identification, characterization and classification of bacterial efflux 
proteins, we have developed a fast and accurate support vector machine based two-tier prediction 
system, BacEffluxPred, which can predict bacterial efflux proteins responsible for AR and identify 
their corresponding families. A leave-one-out cross-validation also called jackknife procedure was 
used for performance evaluation. The accuracy to discriminate bacterial AR efflux from non-AR efflux 
was obtained as 85.81% (at tier-I) while accuracies for prediction of efflux pump families like ABC, 
MFS, RND and MATE family were found 92.13%, 85.39%, 91.01% and 99.44%, respectively (at tier-II). 
Benchmarking on an independent dataset also showed that BacEffluxPred had comparable accuracy 
for prediction of bacterial AR efflux pumps and their families. This is the first in-silico tool for predicting 
bacterial AR efflux proteins and their families and is freely available as both web-server and standalone 
versions at http://proteininformatics.org/mkumar/baceffluxpred/.

Antibiotics are considered as one of the most important discoveries of the nineteenth century. However, 
with the passage of time, the efficacy of antibiotics has been gradually compromised by the emergence of 
antibiotic-resistant pathogens1,2. Due to the emergence of antibiotic-resistant microbial pathogens, diseases, 
which were earlier easy to treat, have become difficult to cure. In bacteria several mechanisms contribute to 
development of antibiotic resistance (AR) for example, (a) evolving mutations in the antibiotic targets, (b) modi-
fications in the bacterial cell surface which prevents antibiotics from penetrating inside the cell, (c) efflux pumps 
which pump out the antibiotics from the cell even before they reach their target, and (d) producing enzymes 
which inactivate the antibiotics.

Efflux proteins are ubiquitous in nature and are present in eukaryotic as well as prokaryotic (both 
Gram-positive and Gram-negative bacteria) organisms. The normal function of bacterial efflux pumps is to pre-
vent intracellular accumulation of toxic compounds by an energy-dependent system. The molecules that are 
effluxed out of the cell do not undergo any modification or degradation. Estimation on the basis of genomic 
analyses indicated efflux protein pumps constitute between 6–18% of all the transporters present in any bacterial 
species3. Efflux pumps might be specific for one substrate or may transport a range of structurally dissimilar com-
pounds (including antibiotics of multiple classes). Several studies reported that efflux pumps were associated with 
multiple drug resistance (MDR) in bacteria4,5.

On the basis of sequence similarity pattern, specificity towards different substrates, number of components, 
number of trans-membrane spanning regions, energy sources and structural features, efflux pumps can be 
divided in two major families (i) primary transporters, which use ATP as the energy source, hence also called 
ATP-binding cassette (ABC) transporter6, and (ii) secondary transporters, which employ proton (or sodium) 
gradient as a source of energy. On the basis of sequence conservation and functional similarities, second-
ary transporters are further divided into four families namely, the major facilitator superfamily (MFS)7, the 
resistance-nodulation and cell division (RND) family8, the small multidrug resistance (SMR) family9 and the 
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multidrug and toxic compound extrusion (MATE) family10. It is well established that efflux pumps have played a 
key role in the emergence of antibiotic resistance in several bacterial pathogens2,11–14.

In the past, several attempts were made to use machine learning tools for prediction of antimicrobial resist-
ance (AMR) genes/proteins in the whole genome as well as at genes/proteins level. A support vector machine 
(SVM) and pseudo-amino acid composition based two-tier prediction method was developed in our labora-
tory to predict and classify β-lactamases into four Ambler classes15. Later, it was extended to further classify the 
Metallo-β-lactamases (class B) into three subclasses16. An artificial neural network based classifier, DeepARG 
was developed to identify novel antimicrobial resistance genes in the metagenomic data17. Pesesky et al.18 com-
pared the rules-based and machine-learning predictions with standard phenotypic diagnostic test for twelve 
antibiotic agents of six major antibiotic classes and, found that the rules-based prediction showed an agreement 
of 89%, while the machine-learning predictions showed 90.3% agreement with the standard phenotypic tests. 
Recently, Chowdhury et al.19 used game theory to reduce the number of features from the bacterial protein 
sequences and used these features as an input in SVM to identify putative AMR genes encoding, acetyltrans-
ferases, β-lactamases, and dihydrofolate reductase in several genera of Gram-negative bacteria like, Acinetobacter, 
Klebsiella, Campylobacter, Salmonella and Escherichia. Their method showed 93–99% accuracy in prediction. 
Recently Kim et al.20 have utilized the antibiotic resistant bacterial genomic sequences to characterize the genetic 
features that might be associated with AMR. They have also developed a pipeline, named as VAMPr, to discover 
variant-level genetic features and its correlation with phenotypic AMR data.

Besides, there are other antibiotic resistance databases that were built on the basis of known antibiotic resist-
ance genes. The most popular resources are ResFinder21, the Comprehensive Antibiotic Resistance Database 
(CARD)22, and Resfams23. Our laboratory has also developed a database of β–lactamases named as CBMAR24. 
However, we could not find any in-silico tool that can discriminate bacterial antibiotic resistance efflux (ARE) 
proteins from efflux proteins which do not efflux out antibiotics (non-ARE), and/or can predict the family to 
which an ARE protein might belong.

In the present manuscript, we have described a systematic attempt to build a machine-learning based two-tier 
in-silico tool, named BacEffluxPred which discriminates bacterial ARE proteins from non-ARE and also pre-
dicts its respective family. BacEffluxPred completes a prediction cycle in two different tiers. In tier-I, discrimi-
nation between ARE and non-ARE proteins is done while in tier-II, family of the ARE protein(s) is predicted. 
BacEffluxPred has also been evaluated on an independent dataset and a web-server was developed which is freely 
available for the scientific community. We expect that BacEffluxPred would be helpful to the scientific community 
in the prediction and annotation of bacterial efflux proteins that confer AR.

Results
Tier-I prediction.  At tier-I, we achieved 85.81% accuracy with MCC 0.57. The corresponding values of sen-
sitivity and specificity were 80.23% and 86.84%, respectively (Table 1).

Tier-II predictions.  At tier-II prediction also, the SVM models were trained using only 5/6 fractions of total 
ARE proteins (178 in total). These proteins were also used as positive class examples during tier-I prediction. 
During tier-II, the prediction models were developed to predict the family of tier-I predicted ARE proteins. 
During training all proteins of a particular family were considered as an example of positive class while proteins 
of the remaining family were considered as negative class example. For instance, to predict proteins of ABC 
efflux family, all ABC efflux family protein sequences (total 34 in number) were used as a positive data, while 
the remaining families, namely MATE, MFS, RND and SMR (total 144 sequences) were considered as examples 
of negative class. During tier-II prediction, the accuracy achieved during LOOCV was 92.13%, 85.39%, 91.01%, 
and MCC 0.77, 0.71, and 0.76 in ABC, MFS and RND family prediction, respectively while in case of MATE fam-
ily, the prediction accuracy and MCC achieved was 99.44% and 0.97, respectively. The sensitivity achieved was 
88.24%, 87.50%, 90.00%, and 95.00% and specificity was 93.06%, 83.67%, 91.30%, and 100.00% in best models of 
ABC, MFS, RND and MATE families, respectively at the tier-II during LOOCV (Table 1).

Performance on independent testing dataset.  We re-evaluated the performance of all prediction mod-
els on an independent testing dataset. Prediction model of tier-I showed 94.24% accuracy with MCC as 0.79. 
The sensitivity and specificity were 86.84% and 95.61%, respectively (Table 1). The overall accuracy and MCC of 
the tier-II model was more than 93% and 0.8 for ABC, MFS and RND families. For the MATE family proteins we 

Threshold Tier

Training Dataset Independent Testing Dataset

AC (%) SEN (%) SPE (%) MCC AUC AC (%) SEN (%) SPE (%) MCC AUC

−0.4 Tier-I 85.81 80.23 86.84 0.57 0.87 94.24 86.84 95.61 0.79 0.95

−0.4 T
i
e
r
-
II

ABC 92.13 88.24 93.06 0.77 0.96 93.75 100.00 92.00 0.85 0.96

−0.3 MFS 85.39 87.50 83.67 0.71 0.92 93.75 93.33 94.12 0.87 0.97

−0.4 RND 91.01 90.00 91.30 0.76 0.94 93.75 100.00 92.00 0.85 1.00

0.3 MATE 99.44 95.00 100.00 0.97 0.99 100.00 100.00 100.00 1.00 1.00

Table 1.  Performance of SVM models at training and independent testing dataset during LOOCV at tier-I 
and II. The overall performance of SVM models during LOOCV at tier-I and tier-II. AC, SEN, SPE, MCC and 
AUC represent accuracy, sensitivity, specificity, Matthew’s correlation coefficient and area under the ROC curve 
respectively.
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found 100% accuracy and MCC as 1.00 (Table 1). Collectively both tier-I and tier-II SVM models are henceforth 
referred as BacEffluxPred.

Receiver operating characteristics plot and area under ROC curve analysis.  Overall accuracy can 
be a good indicator to measure overall performance of a predictor but simultaneously overall accuracy might be 
an unrealistic assessment of a classifier performance on an unbalanced dataset. Therefore, to avoid the impact of 
majority class during performance estimation, the prediction capability of all SVM modules, developed in the 
present study, was evaluated in terms of both sensitivity and specificity. We have selected those SVM learning 
parameters at which both sensitivity and specificity were nearly equal. An alternative way of impartial assessment 
of a classifier’s efficiency is by using the receiver operating characteristic (ROC) plot25,26, which is a very popular 
way to analyze the overall performance of a classifier system. It displays the trade-off between sensitivity and 
specificity at various thresholds and is created by plotting ‘sensitivity’ (True positive rate) vs. ‘specificity’ (False 
positive rate). The area under the ROC curve (AUC) can be used as a summary measure of diagnostic accuracy27. 
The ROC plots (Figure 1) and their corresponding AUC values (Table 1) also supported the conclusion that both 
SVM modules have very high prediction efficiency at their respective tiers.

Implementation of web-server and standalone tool.  Using the prediction models developed during 
this work, we have also established a web-server, named as BacEffluxPred, to predict and classify unknown ARE 
proteins. Similar to the methodology adopted during training, BacEffluxPred also works on a two-tier prediction 
approach. At tier-I, BacEffluxPred would decide whether the query protein is an ARE protein or not. At tier-II the 
predicted ARE protein would be classified into one of the four efflux protein families on the basis of SVM score. 
The overall schema of prediction methodology of the tool is explained in Figure 2. Snapshots of the query sub-
mission and result page of ‘BacEffluxPred’ web-server is shown in Figure 3. The web-server allows users to submit 
up to five protein sequences at a time for prediction. The query submission page also allows users to set the SVM 
prediction thresholds. The result page of BacEffluxPred displays results in two columns. The first column displays 
the ID of the query proteins that users have submitted and the second column shows the prediction result. The 
BacEffluxPred is available at http://proteininformatics.org/mkumar/baceffluxpred. A standalone version of the 
tool allows users to analyze a larger dataset. Both web-server and standalone versions as well as datasets which 
were used to build the tool are freely available at the download section of BacEffluxPred http://proteininformatics.
org/mkumar/baceffluxpred/downloads.html.

Potential use of BacEffluxPred.  Recent advances in DNA technology and advent of the genomic era have 
led to the identification of numerous new efflux pump proteins. As efflux proteins are one of the major factors 
underlying emergence of MDR in microbial pathogens. Hence, development of an in-silico tool, which is capable 
of predicting antibiotics efflux proteins, can be highly useful in annotation of novel efflux proteins.

Discussion
Efflux proteins are essentially transport proteins, which are involved in transporting different substrates (includ-
ing antibiotics and/or other chemical substances) from the cell to the external environment28–31. Efflux proteins 
that are capable of pumping out the antibiotics from the cell are of the major reasons contributing to AR in several 
microbes2,11–14. Currently to the best of our knowledge, there is no method to predict the bacterial ARE proteins 
and their families. Hence, in this study we have developed a SVM based highly accurate and novel method named 

Figure 1.  Receiver Operating Characteristics (ROC) Plot: ROC plots showing comparative performance at 
both tiers on training and independent datasets.

https://doi.org/10.1038/s41598-020-65981-3
http://proteininformatics.org/mkumar/baceffluxpred
http://proteininformatics.org/mkumar/baceffluxpred/downloads.html
http://proteininformatics.org/mkumar/baceffluxpred/downloads.html


4Scientific Reports |         (2020) 10:9287  | https://doi.org/10.1038/s41598-020-65981-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 2.  Prediction schema of BacEffluxPred: The prediction schema of BacEffluxPred. Tier-I screens out 
efflux proteins not involved in antibiotic resistance. If the query protein is predicted as efflux proteins capable 
of efflux out antibiotics also, it will be forwarded to tier-II, which predicts the efflux protein family to which it 
might belong.

Figure 3.  Snapshot of ‘BacEffluxPred’ tool: [A] Query submission page. [B] Prediction result page.

https://doi.org/10.1038/s41598-020-65981-3
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as BacEffluxPred, to predict bacterial ARE proteins and assign the predicted protein to its respective efflux family. 
To develop the prediction model, we created a manually curated dataset of bacterial ARE proteins and classified 
them on the basis of their families. During training SVM requires training examples to be labeled as positive and 
negative classes, hence we divided the training dataset into positive and negative classes. Positive class consisted of 
bacterial ARE protein sequences, which were retrieved from Patric32 and UniProtKB33 databases. In the negative 
class, we put efflux proteins which were unable to pump out antibiotics (non-ARE), non-efflux prokaryotic pro-
teins (non-efflux) and non-efflux antibiotic resistance (non-EAR) proteins (Figure 4 and Figure 5). The complete 
dataset was further divided into two fractions, which were used to train the predictor and for their independent 
evaluation of prediction models.

It has been reported in several previous studies that evolutionary information in the form of position spe-
cific scoring matrix (PSSM) profiles provide more information during the learning phase of a predictor. Hence, 
use of PSSM as an input, has significantly improved the prediction accuracy of several prediction methods34,35. 
In the present work we extracted evolutionary information of a protein from PSSM profiles generated during 
PSI-BLAST search against a 90% non-redundant NR protein database. The complete prediction pipeline runs 
at two tiers. In tier-I ARE proteins were predicted with 85.81% accuracy (Table 1) and forwarded to tier-II. In 
the tier-II family of ARE proteins was predicted. The classification accuracies of 92.13%, 85.39%, 91.01% and 
99.44% were achieved for ABC, MFS, RND and MATE families, respectively (Table 1). We also assessed the 
performance of the developed model on an independent data and found comparable performance (Table 1). 
Similarly, the rate of prediction at tier-II was also found consistent across all the classes. The overall performances 
of all SVM modules were also compared at both tiers in the form of ROC plot ( Figure 1). The AUC values of each 
ROC plot also supported the conclusion that SVM models of both tiers can predict AREs at a very high accuracy 
(Table 1). We also established a web-server and a standalone tool to predict and classify ARE proteins. It can be 
freely accessed at http://proteininformatics.org/mkumar/baceffluxpred.

Figure 4.  The overall schema of tier-I dataset compilation: Methodology adopted for tier-I dataset compilation. 
Numerical values indicates the number of proteins. ARE: antibiotic resistance efflux proteins, non-ARE: non-
antibiotic resistance efflux proteins, non-efflux: non-efflux prokaryotic proteins, and non-EAR: non-efflux 
antibiotic resistance proteins.

Figure 5.  The overall schema of tier-II dataset compilation: Methodology adopted for tier-II dataset 
compilation. Numerical values indicates the number of proteins. ABC, MFS, RND, MATE and SMR are efflux 
protein families.
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Methods
Prediction schema.  In the present study we tried to solve two different problems simultaneously, hence 
BacEffluxPred works at two tiers. The 1st problem (referred as tier-I) was to identify the proteins involved in efflux 
protein mediated antibiotic resistance and the 2nd problem (referred as tier-II) was to predict the family to which 
each predicted ARE proteins might belong. This indicates that the former is a binary classification problem, which 
can be addressed by a binary classifier that can classify a query protein into an ARE or non-ARE protein. In the 
second problem we had to identify the family of an ARE protein (predicted at tier-I), which was a multi-class 
classification. To solve this, we divided the multi-class classification problem into a series of binary classifications 
and developed multiple prediction models using one vs. rest approach. It involved the development of a classifier 
for each family of ARE using proteins of one family as positive examples and proteins of remaining families as 
negative examples. We feel adaptation of the two-tiered prediction approach would provide several benefits to 
the overall prediction quality of BacEffluxPred. For example, the tier-I would act as a filter and restrict the entry 
of non-ARE proteins to the ARE family prediction. Further, due to filtering at tier-I a relatively small number of 
proteins would be presented to tier-II. It reduces the chance of misclassification, which ultimately increases the 
overall accuracy of prediction. Overall, a complete prediction cycle works in following three steps: 1) the query 
protein is presented to the prediction algorithm; 2) If the query protein would be predicted to be a non-ARE 
protein, the prediction would stop after tier-I; 3) If the query protein would be predicted as an ARE protein at the 
tier-I, the query protein would be forwarded to tier-II for ARE family prediction.

Data sources and compilation.  The Bacterial efflux proteins, which are involved in antibiotics resistance 
(ARE), were collected from Patric32 and UniProtKB33 databases using keyword search (Efflux and their associated 
families i.e. ABC, RND, MATE, MFS and SMR, respectively). For the present work we have used only reviewed 
and non-fragmented ARE proteins. The ARE proteins were further divided on the basis of efflux protein families 
namely ABC, MATE, RND, SMR and MFS. In all five families the sequence redundancy was reduced to 40% using 
CD-HIT36–38, which resulted in a total 210 protein sequences.

The negative proteins were composed of non-ARE, non-Efflux and non-efflux antibiotic resistance (non-EAR) 
proteins were collected from three different sources. (a) First, we searched the UniProtKB database using the key-
word ‘Efflux’. After reducing the redundancy using CD-HIT at 40% identity cutoff, we removed all bacterial ARE 
proteins and finally got a total 389 proteins. (b) Secondly we collected all non-fragmented, non-membranous and 
non-efflux bacterial proteins from UniProtKB whose existence was established at protein level. After redundancy 
reduction at 40% using CD-HIT, we randomly selected each 15th protein (total 554). We have selected only 1/15th 
of total proteins because a large skew between negative and positive data may lead to prediction bias towards the 
over-represented class. For example in the present work the number of proteins in the negative class is more than 
the positive class proteins. Hence, a prediction model can achieve high accuracy simply by unilateral prediction 
of all proteins as negative class proteins irrespective of their correct class. We also added189 non-EAR proteins to 
the negative dataset. The details and overall statistics of tier-I and tier–II datasets are shown in Figure 4 and 
Figure 5. The complete data can be downloaded from Supplementary Material.

Training and independent testing datasets.  For training, we divided the complete dataset into two 
non-overlapping fractions. One fraction, having nearly 5/6 of the total data (1,099 out of total 1,342 protein 
sequences), was used to train and develop the prediction models while remaining, nearly 1/6 of the total data (243 
protein sequences), for independent evaluation of trained models. Similarly in tier-II we used the 178 protein 
sequences from the complete datasets of 210 ARE protein sequences, which includes ABC, RND, MATE, MFS 
and SMR family, were used for training. The remaining 32 protein sequences were used as an independent dataset 
for benchmarking of trained models. The overall statistics and distribution of data is presented in Figure 4 and 
Figure 5. It is pertinent to mention that in tier-I both ARE and non-ARE proteins were used because its purpose 
was to discriminate between ARE and non-ARE proteins. On the other hand in tier-II only ARE proteins were 
used since it was intended to predict the family of predicted ARE proteins. As a result of redundancy reduction 
only four protein sequences of the SMR family was present in the final non-redundant dataset. Since a very small 
number of sequences wouldn’t be able to train an efficient prediction model, hence we did not develop the SMR 
family prediction model.

Input feature encoding.  To train the SVM we have used PSSM computed by PSI-BLAST search against a 
database that was derived from the NR protein database after reducing sequence redundancy at ≥90%. The PSSM 
of each sequence was computed by three iterations of PSI-BLAST search with an e-value threshold 0.001. The 
PSSM contains the probability of occurrence of each type of amino acid at each residue position of a given protein 
sequence. Therefore the values of PSSM can also be considered as an indication of conservation of amino acids at 
a given position. It means the PSSM summarizes evolutionary information of each amino acid in a vector of 20 
dimensions and hence the size of PSSM for a protein with N residues would be 20 × N. In the present work, since 
we used complete protein sequences hence the size of PSSM also varied according to the protein length. Since 
SVM requires a fixed length input, hence a variable length 20 Χ N matrix was transform into a fixed dimension 
20 × 20 matrix by column wise addition of PSSM scores of each of 20 types of amino acid as described in our 
previous work39.

Support vector machine.  SVM is one of the most popular kernel-based machine-learning method. It can 
efficiently classify complex, non-linear and high-dimensional data through kernel based calculation40. In the 
present work we have used SVM_light, a freely available software package. During optimization of the SVM 
model we used several parameters and kernel features (e.g. linear, polynomial, radial basis function, sigmoid etc.) 
to model the data.

https://doi.org/10.1038/s41598-020-65981-3
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Besides SVM there are also other machine-learning tools used to develop different predictors. In our previous 
work for predicting palmitoylation sites, we have evaluated three machine-learning methods namely Naive Bayes, 
RBF Network and Random Forest35. We found that the SVM classifier showed higher performance in comparison 
to Naive Bayes, RBF Network and Random forest classifiers. Hence, in the present work we have used only SVM 
to develop the predictor.

Cross-validation.  Cross-validation is a way to evaluate the performance of a prediction model on a data-
set that is not used to train the model. The two most popular methods of cross-validations are sub-sampling 
(k-fold cross-validation) and jackknife analysis (leave-one-out or LOOCV). In k-fold cross–validation, as the 
name suggests, the dataset is arbitrarily divided into k number of non-overlapping sets. All, except one set is 
used for training, while the remaining one set is used as a test dataset. At each training parameter, the training 
and testing process is repeated using a distinct train and test set. Therefore at each training parameter k different 
models were obtained. The performance at each training parameter was calculated by averaging the performances 
of all test sets. In LOOCV all, except one example is used to train the model and the remaining one example is 
used to assess the performance of a trained model. Hence, in one cycle of LOOCV the number of prediction 
models developed is equal to the number of examples in the training dataset. In the present work, the jackknife 
or LOOCV method of cross-validation was used at both tier-I and tier-II because it is considered less biased in 
comparison to k-fold cross-validation41.

Performance evaluation.  We used sensitivity, specificity, accuracy and MCC to evaluate the performance 
of prediction models developed at each training parameter. These performance metrics have also been frequently 
used in several prediction and classification studies15,16. The mathematical expressions used to calculate the 
above-mentioned parameters were as follows:

=
+

×Sensitivity TP
TP FN

100
(1)

=
+

×Specificity TN
TN FN

100
(2)

=
+

+ + +
×Accuracy TP TN

TP FP TN FN
100

(3)

=
× − ×

+ + + +
×MCC TP TN FP FN

TP FP TP FN TN FP TN FN
( ) ( )

( )( )( )( )
100

(4)

where, TP, TN, FP, FN and MCC represents true positive, true negative, false positive, false negative and Matthews 
Correlation Coefficient respectively. Sensitivity and specificity corresponds to the proportion of correct predic-
tions of positive and negative examples. The overall percentage of correctly predicted examples was calculated 
through accuracy, which was the arithmetic mean of sensitivity and specificity. Since MCC shows the balance 
between specificity and sensitivity hence, MCC is considered as a reliable parameter of binary classification for 
asymmetrical datasets42,43. The MCC value lies between −1 to 1. A highly successful predictor will have MCC 
value near to 1, while opposite and random predictions have MCC value −1 and 0, respectively.

The Overall schema to classify a prediction into different categories is shown in Figure 6. At tier-I prediction, 
the input proteins would be predicted as either an ARE or non-ARE protein. Only ARE protein will move to 
tier-II where they would be classified into one of the four efflux families. Depending on the tier of prediction, the 
meaning of TP, TN, FP and FN also changes accordingly. For example, at tier-I TP and TN showed the number 
of proteins, which were actually ARE and non-ARE and also predicted as ARE and non-ARE proteins, respec-
tively. Similarly, FP and FN were actually non-ARE and ARE proteins but they were falsely predicted as ARE and 

Figure 6.  Classification schema of prediction on the basis of actual and prediction state: At tier-I, the decision 
was made on the basis of whether the query protein sequence was predicted as efflux protein conferring 
antibiotic resistance or not. At tier-II, the predicted protein was divided into different prokaryotic efflux 
families.
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non-ARE proteins, respectively. At tier-II prediction, for a protein of efflux protein family ‘X’, if it is correctly 
predicted to class ‘X’ it would be a TP prediction, if it would be falsely predicted to class non-‘X’ it would be a FN 
prediction. Similarly, if a non-‘X’ would be predicted as non-‘X’ and ‘X’ it was an example of TN and FP predic-
tions, respectively.

Conclusion
To conclude, using machine learning we have developed a novel two tier in-silico tool for prediction and classi-
fication of efflux proteins capable of efflux out antibiotics from the cell of a bacterial cell. The proposed tool first 
predicts the efflux proteins that may have capability to efflux out antibiotics and then classifies the predicted 
protein into one of the four classes of efflux proteins. We also developed a web-server ‘BacEffluxPred’ and its 
standalone version. We anticipate that BacEffluxPred would be helpful to the scientific community in prediction 
and characterization of microbial efflux proteins, which are involved in antibiotic resistance.

Data availability
The tool and its dataset (tier-I and tier-II) are freely accessible without any restriction at download page of 
the web-server http://proteininformatics.org/mkumar/baceffluxpred/downloads.html.
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