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G-computation, propensity score-
based methods, and targeted 
maximum likelihood estimator 
for causal inference with different 
covariates sets: a comparative 
simulation study
Arthur chatton  1,2, florent Le Borgne  1,2, clémence Leyrat1,3, florence Gillaizeau1,4, 
chloé Rousseau1,4,5, Laetitia Barbin4, David Laplaud4,6, Maxime Léger1,7, Bruno Giraudeau1,8 
& Yohann foucher  1,4 ✉

controlling for confounding bias is crucial in causal inference. Distinct methods are currently employed 
to mitigate the effects of confounding bias. Each requires the introduction of a set of covariates, which 
remains difficult to choose, especially regarding the different methods. We conduct a simulation study 
to compare the relative performance results obtained by using four different sets of covariates (those 
causing the outcome, those causing the treatment allocation, those causing both the outcome and the 
treatment allocation, and all the covariates) and four methods: g-computation, inverse probability of 
treatment weighting, full matching and targeted maximum likelihood estimator. our simulations are in 
the context of a binary treatment, a binary outcome and baseline confounders. the simulations suggest 
that considering all the covariates causing the outcome led to the lowest bias and variance, particularly 
for g-computation. The consideration of all the covariates did not decrease the bias but significantly 
reduced the power. We apply these methods to two real-world examples that have clinical relevance, 
thereby illustrating the real-world importance of using these methods. We propose an R package RISCA 
to encourage the use of g-computation in causal inference.

The randomised controlled trial (RCT) remains the primary design for evaluating the marginal (population 
average) causal effect of a treatment, i.e., the average treatment effect between two hypothetical worlds where: 
i) everyone is treated and ii) everyone is untreated1. Indeed, a well-designed RCT with a sufficient sample size 
ensures the baseline comparability between groups, thus allowing the estimation of a marginal causal effect. 
Nevertheless, it is well established that RCT is performed under optimal circumstances (e.g., over-representation 
of treatment-adherent patients, low frequency of morbidity), which may be different from real-life practices2. 
Observational studies have the advantage of limiting the issue of external validity, but treated and untreated 
patients are often non-comparable, leading to a high risk of confounding bias.

To reduce such confounding bias, the vast majority of observational studies have been based on multivariable 
models (mainly linear, logistic, or Cox models), allowing for the direct estimation of conditional (subject-specific) 
effects, i.e., the average effect across sub-populations of subjects who share the same characteristics. Several 
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methods have been proposed to estimate marginal causal effects in observational studies, amongst which pro-
pensity score (PS)-based methods are increasingly used in epidemiology and medical research3.

Propensity score-based methods make use of the PS in four different ways to account for confounding, 
namely matching, stratification, conditional adjustment4 and inverse probability of treatment weighting (IPTW)5. 
Stratification and conditional adjustment on PS are associated with the highest bias6–8, because the two methods 
estimate the conditional treatment effect rather than the marginal causal effect. Matching on PS remains the most 
common approach with a usage rate of 83.8% in 303 surgical studies using PS-based methods9 and 68.9% in 296 
medical studies (without restriction regarding the field) also using PS-methods10. The IPTW appears to be less 
biased and associated with a lower variance than matching in several studies8,11–14. Nevertheless, in particular 
settings, full matching (FM) was associated with lower mean square error (MSE) in other studies15–17.

Multivariable models, even non-linear ones, can also be used to indirectly estimate the marginal causal effect 
with g-computation (GC)18. This method is also called the parametric g-formula1 or (g-)standardisation19 in 
the literature. Snowden et al.20 and Wang et al.21 detailed the corresponding methodology for estimating the 
average treatment (i.e., marginal causal) effect on the entire population (ATE) or only on the treated (ATT), 
respectively. The ATE is the average effect, at the population level, of moving an entire population from untreated 
to treated. The ATT is the average effect of treatment on those subjects who ultimately received the treatment22. 
Furthermore, some authors23,24 have proposed combinations of GC and PS to improve the estimation of the 
marginal causal effect. These methods are known as doubly robust estimators (DRE) because they require the 
specification of both the outcome (for GC) and treatment allocation (for PS) mechanisms to minimise the impact 
of model misspecification. Indeed, these estimators are consistent as long as either the outcome model or the 
treatment model is estimated correctly25.

Each of these methods carries out the adjustment in different ways, but all of these methods rely on the same 
condition: a correct specification of the PS or the outcome model1. In practice, a common issue is choosing the 
set of covariates to include to obtain the best performance in terms of bias and precision. Three simulation stud-
ies7,26,27 have investigated this issue for PS-based methods. They studied four sets of covariates: those causing the 
outcome, those causing the treatment allocation, those are a common cause of both the treatment allocation and 
the outcome, and all the covariates. For the rest of this paper, we called these strategies the outcome set, the treat-
ment set, the common set and the entire set, respectively. These studies argued in favour of the outcome or com-
mon sets for PS-based methods, but it is not immediately clear that such works will generalise to other methods of 
causal inference. Brookhart et al.26 and Lefebvre et al.27 focused on count and continuous outcomes. Austin et al.7  
investigated binary outcomes on matching, stratification and adjustment on PS. However, GC and DRE also 
require the correct specification of the outcome model with a potentially different set of covariates. Recent works 
have shown that efficiency losses can accompany the inclusion of unnecessary covariates28–31. De Luna et al.32 also 
highlighted the variance inflation caused by the treatment set. In contrast, VanderWeele and Shpitser33 suggested 
the inclusion of both the outcome and the treatment sets.

Before selecting the set of covariates, one needs to select the method to employ. Several studies have compared 
the performances of GC, PS-based methods and DRE in a point treatment study to estimate the ATE13,23,25,34–36. 
Half of these studies investigated a binary outcome13,25,34. Only Colson et al.17 studied the ATT, but they focused 
on a continuous outcome. Except in Neugebauer and van der Laan25, these studies only investigated the ATE (or 
ATT) defined as a risk difference. The CONSORT recommended the presentation of both the absolute and the 
relative effect sizes for a binary outcome, “as neither the relative measure nor the absolute measure alone gives a 
complete picture of the effect and its implications”37. None of these studies was interested in the set of covariates 
necessary to obtain the best performance.

In our study, we sought to compare different sets of covariates to consider to estimate a marginal causal effect. 
Moreover, we compared GC, PS-based methods and DRE for both the ATE and ATT, either in terms of risk dif-
ference or marginal causal OR. Three main types of outcome are used in epidemiology and medical research: con-
tinuous, binary and time-to-event outcomes. We focused on a binary outcome because i) a continuous outcome is 
often appealing for linear regression where the two conditional and marginal causal effects are collapsible38, and 
ii) time-to-event analyses present additional methodological difficulties, such as the time-dependant covariate 
distribution39. We also limit our study to a binary treatment, as in the current literature, and the extension to three 
or more modalities is beyond the scope of our study.

The paper is structured as follows. In the next section, the methods are detailed. The third section presents the 
design and results of the simulations. In the fourth section, we consider two real data sets. Finally, we discuss our 
results in the last section.

Methods
Setting and notations. Let A denote the binary treatment of interest ( =A 1 for treated patients and 0 oth-
erwise), Y  denote the binary outcome ( =Y 1 for events and 0 otherwise), and L denote a set of baseline covariates. 
Consider a sample of size n in which one can observe the realisations of these random variables: a, y, and l, respec-
tively. Define E P Y do A a L( ( 1 ( ), ))aπ = = =  or π = = = =E P Y do A a L A( ( 1 ( ), ) 1)a  as the expected propor-
tions of event if the entire (ATE) or the treated (ATT) populations were treated ( =do A( 1)) or untreated 
( =do A( 0)), respectively40. From these probabilities, the risk difference can be estimated as π π π∆ = −1 0 and 
the log of the marginal causal OR estimated as θ π π= logit( )/logit( )1 0 , where logit(•) = log(•/(1 − •)). The meth-
ods described bellow allow for the estimation of both the ATE and the ATT effects.

Causal inference requires the three following assumptions, called identifiability conditions: i) The values of 
exposure under comparisons correspond to well-defined interventions that, in turn, correspond to the versions 
of treatment in the data. ii) The conditional probability of receiving every value of treatment, though not decided 
by the investigators, depends only on the measured covariates. iii) The conditional probability of receiving 
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every value of the treatment is greater than zero, i.e., is positive. These assumptions are known as consistency, 
(conditional) exchangeability and positivity, respectively1. However, PS-based methods rely on treatment alloca-
tion modelling to obtain a pseudo-population in which the confounders are balanced across treatment groups. 
Covariate balance can be checked by computing the standardised difference of the covariates included in the 
PS between the two treatment groups10. In contrast, GC relies on outcome modelling to predict hypothetical 
outcomes for each subject under each treatment regimen. Note that one can ignore the lack of positivity if one 
is willing to rely on Q-model extrapolation1. As is the case for standard regression models, these methods also 
require the assumptions of no interference, no measurement error and no model misspecification.

Weighting on the inverse of the propensity score. Formally, the PS is = =p P A L( 1 )i i i , i.e. the proba-
bility that subject i ( = …i n1, , ) will be treated according to his or her characteristics Li at the time of the treatment 
allocation4. It is often estimated using a logistic regression. The IPTW makes it possible to reduce confounding by 
correcting the contribution of each subject i  by a weight ωi .  For ATE, Xu et al .41 defined 
ω = = + − = −A P A p A P A p( 1)/ (1 ) ( 0)/(1 )i i i i i i i . The use of stabilised weights has been shown to produce a 
suitable estimate of the variance even when there are subjects with extremely large weights5,41. For ATT, Morgan and 
Todd42 defined ω = + − −A A p p(1 ) /(1 )i i i i i . Based on ωi, the following weighted univariate logistic regression 
can be fitted: P Y A Alogit{ ( 1 )} 0 1α α= = +ˆ ˆ , resulting in π α= + − −ˆ ˆ(1 exp( ))0 0

1, π α α= + − − −ˆ ˆ ˆ(1 exp( ))1 0 1
1, 

and θ α=ˆ ˆ1. To obtain θ

ˆvar( ), we used a robust sandwich-type variance estimator5 with the R package sandwich43.

full Matching on the propensity score. The FM minimises the average within-stratum differences in the 
PS between treated and untreated subjects16. Then, two weighting systems can be applied in each stratum, making 
it possible to estimate either the ATE or the ATT unlike other matching methods which can only estimate the 
ATT44. If t and u denote the number of treated and untreated subjects in a given stratum, one can define the 
weight for a subject i in this stratum as ω = = + + − − = +A P A t u u A P A t u t( 1)( )/ (1 )(1 ( 1))( )/i i i  for ATE 
and ω = + −A A t u(1 ) /i i i  for ATT16. In the latter case, the weights of untreated subjects are rescaled such that 
the sum of the untreated weights across all the matched sets is equal to the number of untreated subjects: 

ω ω ω= × ∑ − ∑ −= =A A(1 )/ (1 )i i j

n
j j

n
j j1 1

45. From the resulting paired data set, we fitted a weighted univariate 
logistic regression, and the rest of the data analysis is tantamount to IPTW. We used the R package MatchIt45 to 
generate the pairs.

G-computation. Consider the following multivariable logistic regression γ β= = +P Y A L A Llogit{ ( 1 , )} . 
This regression is frequently called the Q-model20. Once fitted, one can compute for all subjects 

= =P̂ Y do A L( 1 ( 1), )i i i  and = =P̂ Y do A L( 1 ( 0), )i i i , i.e. the two expected probabilities of events if they were 
treated or untreated20. For ATE, one can then obtain π = ∑ = =−ˆ ˆn P Y do A a L( 1 ( ), )a i i i i

1 . The same procedure 
can be performed amongst the treated patients for ATT21. For implementation in practice, consider a treated 
subject ( =A 1i ) included in the fit of the Q-model. Thanks to this model, one can then compute for this subject 
his or her predicted probabilities of the event if he or she received the treatment ( =do A( 1)i ) or not ( =do A( 0)i ). 
Computing these predicted probabilities for all the subjects, one can obtain two vectors of probabilities if the 
entire sample were treated or not. The corresponding means correspond to π̂1 and π̂0, respectively. We obtained 

θ

ˆvar( ) by simulating the parameters of the multivariable logistic regression assuming a multinormal distribu-
tion46. Note that we could have used bootstrap resampling instead. However, regarding the computational burden 
of bootstrapping and the similar results obtained by Aalen et al.46, the variance estimates in the simulation study 
were only based on parametric simulations. We used both bootstrap resampling and parametric simulations in 
the applications.

targeted Maximum Likelihood estimator. Amongst the several existing DREs, we focused on the tar-
geted maximum likelihood estimator (TMLE)24, for which estimators of ATE and ATT have been proposed47. The 
TMLE begins by fitting the Q-model to estimate the two expected hypothetical probabilities of events π̂1 and π̂0. 
An additional “targeting” step involves estimation of the treatment allocation mechanism, i.e., the PS 

Figure 1. Causal diagram. Solid lines corresponded to a strong association (OR = 6.0) and dashed lines to a 
moderate one (OR = 1.5).
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=P A L( 1 )i i , which is then used to update the initial estimates obtained by GC. In the presence of residual con-
founding, the PS provides additional information to improve the initial estimates. Finally, the updated estimates 
of π̂1 and π̂0 are used to generate π∆ or θ̂ . We used the efficient influence curve to obtain standard errors47,48. A 
recent tutorial provides a step-by-step guided implementation of TMLE49.

Simulation study
Design. We used a close data generating procedure from previous studies on PS models7,50. We generated the 
data in three steps. i) Nine covariates (L1, …, L9) were independently simulated from a Bernoulli distribution with 
a parameter equal to 0.5 for all covariates. ii) We generated the treatment A according to a Bernoulli distribution 
with a probability obtained by the logistic model with the following linear predictor: γ γ γ+ + +L L0 1 1 9 9. We 
fixed the parameter γ0 at −3.3 or −5.2 to obtain a percentage of treated patients equal to 50% for scenarios related 
to ATE and 20% for ATT, respectively. iii) We simulated the event Y  using a Bernoulli distribution with a proba-
bility obtained by the logistic model with the following linear predictor: β β β β+ + + +A L L0 1 2 1 10 9. We set 
the parameter β1 for a conditional OR at 0 (the null hypothesis is no treatment effect) or 2 (the alternative hypoth-
esis is a negative impact of treatment). We also fixed the parameter β0 at −3.65 and −3.5 to obtain a percentage of 
the event close to 50% in ATE and ATT, respectively. Figure 1 presents the values of the regression coefficients γ1 
to γ9 and β1 to β10. We considered four covariates sets as explained in the introduction: the outcome set included 
the covariates L1 to L6, the treatment set included the covariates L L L L L L, , , , ,1 2 4 5 7 8, the common set included 
the covariates L L L L, , ,1 2 4 5, and the entire set included the covariates L1 to L9. For each of the four methods and 
the four covariate sets, we studied the performance under different sample sizes: =n  100, 300, 500 and 2000. For 
each scenario, we randomly generated 10 000 data sets. We computed the theoretical values of π1 and π0 by aver-
aging the values of π1 and π0 obtained from univariate logistic models (treatment as the only covariate) fitted from 
data sets simulated as above, except that the treatment A was simulated independently of the covariates L50. We 
reported the following criteria: i) the percentage of non-convergence, ii) the mean absolute bias (e.g., θ θ−ˆE( ) ), 
iii) the MSE ( θ θ−ˆE[( ) ]2 ), the variance estimation bias θ θ


 = × −






ˆ ˆ( )E Var VarVEB 100 [ ( )] / ( ) 1 51, the 

empirical coverage rate of the nominal 95% confidence intervals (CIs), defined as the percentage of 95% CI 
including the theoretical value, the type I error, defined as the percentage of rejection of the null hypothesis under 
the null hypothesis, and the statistical power, defined as the percentage of rejections of the null hypothesis under 
the alternative hypothesis. The MSE was our primary performance measure of interest because it combines bias 
and variance. We assumed that the identifiability conditions hold in these scenarios. We further performed the 
same simulations by omitting L1 in the PS or in the Q-model to evaluate the impact of an unmeasured con-
founder. We performed all the analyses using R version 3.6.052.

Results
convergence. Non-convergence only occurred for ATT estimation when sample sizes were lower or equal 
to 300 subjects (see Fig. 2). The GC, IPTW and FM had a minimal convergence percentage higher than 98%, even 
under small sample size (n = 100). Similarly, TMLE experienced some difficulty in converging for ATT estimation 
in the medium-sized sample (n = 300). However, they experienced severe difficulty in converging in the small 
sample with a convergence percentage of approximately 92%.

Mean bias. As expected with the common set, the mean absolute bias of θ was close to zero for GC, IPTW and 
TMLE when the three identifiability assumptions hold with a maximum at −0.028 given moderate sample size 
(n = 300) under the alternative hypothesis for ATT estimation (Table 1). Note that the three other covariate sets 
led to a bias close to zero with a maximum of 0.053 for TMLE with the entire set given small sample size (n = 100) 
under the alternative hypothesis for ATE estimation (Table 2). Furthermore, FM was also associated with a simi-
lar bias with a maximum of 0.082 given a small sample size (n = 100), with the treatment set under the alternative 
hypothesis for the ATE estimation. With an unmeasured confounder, the bias increased in all scenarios with a 

Figure 2. Percentage of simulation iterations which did not converge according to the methods.
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n method
selection 
strategy

mean bias log OR

π0 π1 Δπ log OR MSE MSE* VEB (%) coverage (%) power (%)

100

GC

outcome 0.000 −0.001 −0.001 0.012 0.526 0.716 −6.2 94.1 17.7

treatment 0.002 −0.001 −0.003 0.006 0.580 0.786 −5.7 94.1 14.0

common 0.002 −0.001 −0.003 0.006 0.552 0.735 −4.2 94.8 15.1

entire −0.001 −0.001 −0.001 0.013 0.558 0.768 −8.8 93.3 16.9

IPTW

outcome 0.000 −0.001 −0.001 0.008 0.578 0.727 10.8 97.3 7.8

treatment −0.000 −0.001 −0.001 0.000 0.716 0.837 −1.2 95.1 9.8

common 0.002 −0.001 −0.003 0.003 0.587 0.743 6.6 96.8 8.8

entire −0.003 −0.001 0.002 0.005 0.741 0.838 −1.5 95.2 9.6

TMLE

outcome −0.001 −0.001 0.000 0.002 0.694 0.794 30.0 95.7 5.8

treatment 0.000 −0.001 −0.001 −0.020 0.876 0.955 183.3 98.8 1.0

common −0.000 −0.001 −0.001 −0.001 0.702 0.794 10.4 95.3 7.3

entire −0.003 −0.001 0.001 −0.013 0.886 0.953 412.2 98.8 0.5

FM

outcome −0.004 −0.001 0.003 0.022 0.665 0.787 −16.7 90.1 18.9

treatment −0.006 −0.001 0.004 0.017 0.822 0.911 −32.3 81.3 25.2

common −0.001 −0.001 −0.000 0.010 0.653 0.795 −15.3 91.0 17.5

entire −0.008 −0.001 0.006 0.022 0.842 0.921 −33.8 80.3 26.7

300

GC

outcome 0.001 −0.001 −0.002 −0.021 0.283 0.555 −1.6 94.5 43.6

treatment 0.002 −0.001 −0.003 −0.024 0.319 0.606 −2.3 94.3 35.2

common 0.002 −0.001 −0.003 −0.023 0.304 0.561 −1.5 94.8 38.5

entire 0.001 −0.001 −0.002 −0.022 0.297 0.600 −2.6 94.0 39.9

IPTW

outcome 0.002 −0.001 −0.003 −0.027 0.301 0.556 16.4 97.9 24.0

treatment 0.001 −0.001 −0.002 −0.026 0.372 0.628 6.6 96.2 21.4

common 0.003 −0.001 −0.004 −0.028 0.318 0.563 9.1 96.8 26.1

entire 0.001 −0.001 −0.002 −0.025 0.361 0.622 11.7 97.2 20.0

TMLE

outcome 0.000 −0.001 −0.001 −0.023 0.358 0.577 −2.3 93.6 29.0

treatment 0.002 −0.001 −0.003 −0.035 0.454 0.683 51.2 99.1 6.8

common 0.001 −0.001 −0.002 −0.023 0.378 0.582 −3.5 93.0 26.5

entire 0.002 −0.001 −0.003 −0.035 0.432 0.674 81.8 99.3 4.4

FM

outcome −0.000 −0.001 −0.001 −0.020 0.351 0.579 −11.7 91.9 37.2

treatment −0.001 −0.001 −0.000 −0.022 0.444 0.656 −30.2 82.7 38.9

common 0.001 −0.001 −0.002 −0.024 0.363 0.587 −14.6 90.4 36.9

entire −0.001 −0.001 0.000 −0.020 0.439 0.662 −29.3 83.2 39.1

500

GC

outcome 0.001 −0.001 −0.002 −0.014 0.217 0.509 −1.1 94.7 64.5

treatment 0.001 −0.001 −0.002 −0.014 0.245 0.556 −1.5 94.4 53.6

common 0.001 −0.001 −0.002 −0.015 0.233 0.618 −0.8 94.8 57.6

entire 0.001 −0.001 −0.002 −0.014 0.228 0.552 −2.0 94.2 60.5

IPTW

outcome 0.002 −0.001 −0.003 −0.019 0.230 0.509 16.5 97.9 43.3

treatment 0.000 −0.001 −0.001 −0.013 0.285 0.574 6.8 96.6 35.4

common 0.002 −0.001 −0.003 −0.018 0.244 0.514 9.2 96.8 43.7

entire 0.000 −0.001 −0.001 −0.014 0.274 0.571 12.3 97.2 33.9

TMLE

outcome 0.001 −0.001 −0.002 −0.015 0.272 0.521 −4.7 93.4 48.5

treatment 0.001 −0.001 −0.002 −0.018 0.347 0.618 35.0 99.1 15.9

common 0.000 −0.001 −0.001 −0.013 0.289 0.527 −4.8 93.1 43.7

entire 0.001 −0.001 −0.002 −0.019 0.328 0.611 51.1 99.3 12.9

FM

outcome 0.001 −0.001 −0.002 −0.015 0.265 0.525 −9.9 92.4 53.0

treatment −0.001 −0.001 −0.000 −0.011 0.346 0.597 −31.0 82.7 51.7

common 0.001 −0.001 −0.001 −0.014 0.283 0.530 −15.8 90.1 52.3

entire −0.002 −0.001 0.001 −0.008 0.340 0.596 −29.8 83.2 52.6

2000

GC

outcome 0.000 0.000 −0.000 −0.002 0.108 0.479 −1.7 94.7 99.6

treatment 0.001 0.000 −0.000 −0.003 0.122 0.524 −1.2 94.8 98.6

common 0.001 0.000 −0.000 −0.003 0.116 0.480 −0.9 94.7 99.1

entire 0.000 0.000 −0.000 −0.002 0.113 0.523 −1.8 94.5 99.4

IPTW

outcome 0.002 0.000 −0.001 −0.006 0.113 0.478 16.3 97.6 98.1

treatment 0.000 0.000 −0.000 −0.002 0.138 0.539 7.9 96.4 93.0

common 0.002 0.000 −0.001 −0.006 0.120 0.480 9.4 97.0 97.7

entire 0.000 0.000 −0.000 −0.002 0.131 0.537 13.9 97.4 93.6

Continued
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minimum of 0.456 for GC with the common set given a large sample size for the ATT estimation (see Online 
Supporting Information (OSI) for complete results). The results were similar under the null hypothesis (see OSI).

Variance. For all methods, the outcome set led to the lowest MSE, followed closely by the common set. 
G-computation led to the lowest MSE and FM to the highest. In ATT, IPTW had lower MSE than TMLE. Note 
that the VEB was particularly high for FM in all ATE scenarios with a minimum of −17.5% (n = 500 with the 
outcome set). For the ATT, FM also had a higher VEB than other methods, apart from TMLE with the treatment 
or entire sets in sample sizes of fewer than 2000 subjects. In the presence of an unmeasured confounder, the 
MSE increased in all scenarios in agreement with the increase in bias. The VEBs did not change notably with an 
unmeasured confounder.

coverage and error rates. G-computation produced coverage rates close to 95%, except for ATE in a small 
sample size leading to an anti-conservative 95% CIs with a minimum of 91.7% with the entire set under the null 
hypothesis. Anti-conservatives 95% CIs were also produced by FM in all scenarios, and by TMLE given a small 
sample size. Conversely, conservative 95% CIs were obtained when using TMLE for the ATT with the entire or the 
treatment sets, and when using IPTW for ATT or ATE with the outcome or the common sets.

Lending confidence to these results, the type I error was close to 5% for GC in all scenarios and may vary 
for other methods. The power was more impacted by the choice of the covariate set. The outcome set led to the 
highest power for GC.

Applications
We illustrated our findings by using two real data sets. First, we compared the efficiency of two treatments, i.e., 
Natalizumab and Fingolimod, sharing the same indication for active relapsing-remitting multiple sclerosis. 
Physicians preferentially use Natalizumab in practice for more active disease, indicating possible confounders. 
Given the absence of a clinical trial with a direct comparison of their efficacy, Barbin et al.53 recently conducted an 
observational study. We reused their data. Second, we sought to study barbiturates that can lead to a reduction of 
the patient functional status. Indeed, barbiturates are suggested in Intensive Care Units (ICU) for the treatment 
of refractory intracranial pressure increases. However, the use of barbiturates is associated with haemodynamic 
repercussions that can lead to brain ischaemia and immunodeficiency, which may contribute to the occurrence of 
infection. These applications were conducted in accordance with the French law relative to clinical noninterven-
tional research. According to the French law on Bioethics (July 29, 1994; August 6, 2004; and July 7, 2011, Public 
Health Code), the patients’ written informed consent was collected. Moreover, data confidentiality was ensured 
in accordance with the recommendations of the French commission for data protection (Commission Nationale 
Informatique et Liberté, CNIL decisions DR-2014-558 and DR-2013-047 for the first and the second application, 
respectively).

To define the four sets of covariates, we asked experts (D.L. for multiple sclerosis and M.L. for ICU) which 
covariates were causes of the treatment allocation and which were causes of the outcome, as proposed by 
VanderWeele and Shpitser33. We checked the positivity assumption and the covariate balance (see OSI). We 
applied B-spline transformations for continuous variables when the log-linearity assumption did not hold.

natalizumab versus fingolimod to prevent relapse in multiple sclerosis patients. The outcome 
was at least one relapse within one year of treatment initiation. Six hundred and twenty-nine patients from the 
French national cohort OFSEP were included (www.ofsep.org). The first part of Table 3 presents a description of 
their baseline characteristics.

All included patients could have received either treatment. Therefore, we sought to estimate the ATE. The first 
part of Table 4 presents the results according to the different possible methods and covariate sets. The GC, IPTW 
and TMLE yield similar results regardless of the covariate sets considered. Thus, Fingolimod exhibits lower effi-
cacy than Natalizumab with an OR [95% CI] ranging from 1.50 [1.02; 2.21] for IPTW with the entire set to 1.55 
[1.06; 2.28] for GC with the common set. When using FM, the OR ranged from 1.73 [1.19; 2.51] with the outcome 
set to 1.78 [1.23; 2.56] with the common set. Note that, unlike IPTW, FM does not to balance all covariates in the 
outcome set with standardised differences higher than 10%.

Overall, the confounder-adjusted proportion of patients with at least one relapse within the first year of 
treatment was lower in the hypothetical world where all patients received Natalizumab (approximately 20% and 

n method
selection 
strategy

mean bias log OR

π0 π1 Δπ log OR MSE MSE* VEB (%) coverage (%) power (%)

2000

TMLE

outcome 0.001 0.000 −0.000 −0.002 0.132 0.483 −5.9 93.3 97.5

treatment 0.000 0.000 0.000 −0.002 0.169 0.568 18.2 98.2 71.8

common −0.000 0.000 0.000 −0.000 0.142 0.486 −5.6 93.6 95.5

entire 0.001 0.000 −0.000 −0.004 0.158 0.565 23.5 98.6 75.3

FM

outcome 0.000 0.000 −0.000 −0.002 0.134 0.484 −12.0 91.6 97.7

treatment 0.001 0.000 −0.000 −0.005 0.203 0.548 −41.6 74.6 89.9

common 0.001 0.000 −0.000 −0.003 0.149 0.485 −20.5 88.5 96.7

entire 0.000 0.000 0.000 −0.002 0.162 0.543 −26.9 84.5 94.8

Table 1. Simulation results comparing the ATT estimation under the alternative hypothesis. *MSE in the 
presence of an unmeasured confounder. Theoretical values: π π θ= . = . = .0 701, 0 589, 0 4921 0 .

https://doi.org/10.1038/s41598-020-65917-x
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n method set

mean bias log OR

π0 π1 Δπ log OR MSE MSE* VEB (%) coverage (%) power (%)

100

GC

outcome −0.001 −0.002 −0.001 −0.003 0.404 0.634 −7.3 93.2 24.7

treatment −0.002 −0.001 0.000 0.004 0.477 0.727 −9.5 92.4 19.9

common −0.001 −0.002 −0.001 −0.002 0.434 0.650 −6.6 93.5 22.1

entire −0.002 −0.001 0.001 0.003 0.450 0.714 −11.4 91.8 22.6

IPTW

outcome −0.003 −0.001 0.001 0.011 0.464 0.646 12.1 97.4 12.1

treatment −0.006 0.002 0.008 0.046 0.633 0.769 −7.6 93.8 16.7

common −0.002 −0.001 0.001 0.010 0.480 0.657 6.3 96.3 13.5

entire −0.006 0.003 0.009 0.053 0.647 0.773 −7.2 94.7 16.4

TMLE

outcome −0.001 −0.002 −0.000 0.003 0.438 0.642 −14.3 89.5 26.9

treatment −0.004 0.002 0.006 0.039 0.572 0.757 −24.9 84.3 27.5

common −0.001 −0.002 −0.001 0.002 0.469 0.657 −10.7 90.9 21.2

entire −0.005 0.003 0.007 0.043 0.544 0.748 −30.7 80.9 34.3

FM

outcome −0.005 0.002 0.006 0.039 0.549 0.710 −24.3 87.1 28.5

treatment −0.009 0.005 0.014 0.082 0.677 0.832 −37.7 78.0 35.1

common −0.005 0.001 0.006 0.038 0.563 0.713 −26.3 85.8 29.1

entire −0.007 0.006 0.014 0.082 0.674 0.830 −37.3 78.1 34.8

300

GC

outcome −0.000 −0.000 0.000 0.001 0.221 0.532 −1.9 94.5 59.8

treatment −0.000 −0.000 0.000 0.001 0.259 0.608 −2.8 94.3 47.4

common −0.000 −0.000 0.000 0.001 0.237 0.539 −1.2 94.8 53.5

entire −0.000 −0.000 0.000 0.001 0.241 0.600 −3.4 94.0 53.0

IPTW

outcome −0.001 −0.000 0.001 0.006 0.239 0.533 20.2 98.0 34.7

treatment −0.002 0.000 0.003 0.014 0.330 0.615 4.6 96.0 29.5

common −0.001 −0.000 0.001 0.006 0.252 0.541 13.3 97.4 36.5

entire −0.002 0.000 0.002 0.013 0.326 0.607 7.9 96.6 28.5

TMLE

outcome −0.000 −0.001 −0.000 0.000 0.233 0.532 −3.0 93.9 54.2

treatment −0.001 0.000 0.002 0.009 0.310 0.612 −10.4 90.6 40.2

common −0.001 −0.001 0.000 0.001 0.249 0.540 −1.5 94.6 48.1

entire −0.001 0.000 0.001 0.008 0.290 0.603 −13.2 89.6 46.1

FM

outcome −0.002 0.000 0.002 0.010 0.294 0.552 −20.2 88.7 51.6

treatment −0.003 0.003 0.006 0.032 0.389 0.652 −39.3 77.0 53.3

common −0.001 −0.000 0.001 0.008 0.315 0.588 −25.5 86.2 51.3

entire −0.003 0.003 0.006 0.032 0.377 0.644 −37.4 77.8 52.2

500

GC

outcome −0.000 0.000 0.001 0.003 0.168 0.501 −0.4 94.8 81.1

treatment −0.000 0.000 0.001 0.002 0.198 0.573 −1.0 94.8 69.0

common −0.000 0.000 0.000 0.002 0.183 0.505 −0.7 94.9 75.0

entire −0.000 0.000 0.001 0.004 0.183 0.569 −1.0 94.8 75.3

IPTW

outcome −0.001 0.000 0.001 0.005 0.180 0.501 22.2 98.3 58.5

treatment −0.001 0.001 0.001 0.007 0.248 0.573 8.1 96.5 42.3

common −0.001 0.000 0.001 0.005 0.193 0.505 13.8 97.3 58.6

entire −0.001 0.000 0.001 0.006 0.239 0.569 13.1 97.2 41.3

TMLE

outcome −0.000 0.000 0.000 0.002 0.177 0.501 −0.8 94.7 76.8

treatment −0.000 0.000 0.000 0.003 0.234 0.571 −5.9 92.7 56.1

common −0.000 0.000 0.000 0.002 0.190 0.505 −0.5 94.7 69.7

entire −0.000 0.000 0.000 0.003 0.218 0.566 −7.5 91.8 63.1

FM

outcome −0.001 0.000 0.001 0.005 0.219 0.518 −17.5 89.8 70.1

treatment −0.002 0.002 0.003 0.018 0.302 0.598 −39.8 76.2 65.5

common −0.001 −0.000 0.001 0.005 0.266 0.555 −31.8 82.3 66.4

entire −0.002 0.002 0.004 0.019 0.289 0.592 −37.1 78.3 66.2

2000

GC

outcome −0.000 −0.000 −0.000 −0.001 0.085 0.482 −0.6 94.6 100.0

treatment 0.000 −0.001 −0.001 −0.003 0.099 0.550 −0.6 94.7 99.8

common 0.000 −0.001 −0.001 −0.003 0.092 0.483 −0.8 94.7 99.9

entire −0.000 −0.000 −0.000 −0.001 0.091 0.550 −0.6 94.7 99.9

IPTW

outcome −0.000 −0.000 0.000 0.002 0.090 0.482 21.2 98.2 99.8

treatment 0.000 −0.001 −0.001 −0.002 0.122 0.547 9.3 96.7 95.1

common −0.000 −0.000 0.000 0.001 0.096 0.483 13.5 97.3 99.7

entire 0.000 −0.000 −0.001 −0.002 0.117 0.546 14.3 97.5 95.6

Continued
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varying slightly depending on method and set of covariates) than one in which all patients received Fingolimod 
(approximately 28%). This difference of approximately 8% is clinically meaningful and suggests the superiority of 
Natalizumab over Fingolimod to prevent relapses at one year. This result was concordant with the recent clinical 
literature53,54.

impact of barbiturates in the icU on the functional status at three months. We define an unfa-
vourable functional outcome by a 3-month Glasgow Outcome Scale (GOS) lower than or equal to 3. We used the 
data from the French observational cohort AtlanREA (www.atlanrea.org) to estimate the ATT of barbiturates 
because physicians recommended these drugs to a minority of severe patients. The second part of Table 3 presents 
the baseline characteristics of the 252 included patients.

The second part of Table 4 presents the results according to the different possible methods and covariate sets. 
G-computation and TMLE lead to the conclusion of a significant negative effect of barbiturates regardless of the 
covariate set considered with an OR [95% CI] ranging from 0.43 [0.25; 0.76] for GC with the common set to 0.51 
[0.29; 0.90] for TMLE with the entire set. By contrast, the results were discordant when using different covari-
ate sets for IPTW and FM. We report, for instance, OR estimates obtained by FM ranging from 1.520 with the 
outcome set to 2.300 with the common set. In line with the simulation study, the estimated standard errors were 
higher for these methods (0.294 and 0.293 for GC and TMLE when the outcome set was considered, respectively) 
leading to lower power. Note also that standardised differences were higher than 10% for the IPTW with the 
entire set (see OSI) and for FM with the outcome, the treatment and the entire sets.

Depending on the methods and sets of covariates included, we estimated that from 18% to 20% of patients 
treated with barbiturates had an unfavourable GOS at three months. If these patients had not received barbitu-
rates, the methods estimate that from 30% to 35% would have had an unfavourable GOS at three months. For the 
patients, this difference is meaningful but full clinical relevance depends also on the effect of barbiturates on other 
clinically relevant outcomes, such as death or ventilator-associated pneumonia. However, the results obtained by 
GC or TMLE differ with those obtained by Majdan et al.55, who did not find any significant effect of barbiturates 
on the GOS at six months. Two main methodological reasons can explain this difference: the GOS was at six 
months rather than three months post-initiation, and the authors used multivariate logistic regression leading to 
a different estimand.

Discussion
The aim of this study was to better understand the different sets of covariates to consider when estimating the 
marginal causal effect.

The results of our simulation study, limited to the studied scenarios, highlight that the use of the outcome set 
was associated with the lower bias and variance, principally when associated with GC, for both ATE and ATT. 
As expected, an unmeasured confounder led to increased bias, regardless of method employed. Although we do 
not report an impact on the variance, the effect’s over- or under-estimation leads to the corresponding over- or 
under-estimation of power and compromises the validity of the causal inference.

The performance of FM is lower than that of the other studied methods, especially for the variance. Our results 
were in line with King and Nielsen56, who argued for halting the use of PS matching for many reasons such as 
covariate imbalance, inefficiency, model dependence and bias. Nonetheless, Colson et al.17 found slightly higher 
MSE for GC than FM. Their more simplistic scenario, with only two simulated confounders leading to little covar-
iate imbalance, could explain the difference with our results. Moreover, is unclear whether they accounted for the 
matched nature of the data, as recommended by Austin and Stuart16 or Gayat et al.50.

While DRE offers protection against model misspecification23,34,36, our simulation study resulted in the finding 
that GC was more robust to the choice of the covariate set than the other methods, TMLE included. This result 
was particularly important when the treatment set was taken into account, which fits with the results of Kang 
and Schafer35: when both the PS and the Q-model were misspecified, DRE had lower performance than GC. 
Furthermore, GC was associated with lower variance than DRE in several simulation studies13,17,35, which accords 
with our results.

The first application to multiple sclerosis (ATE) illustrated similar results between the studied methods. In 
contrast, the second application (ATT) to severe trauma or brain-damaged patients showed different results 
between the methods. In agreement with simulations, the estimations obtained with GC or TMLE were similar 

n method set

mean bias log OR

π0 π1 Δπ log OR MSE MSE* VEB (%) coverage (%) power (%)

2000

TMLE

outcome −0.000 −0.000 −0.000 −0.001 0.088 0.482 −0.6 94.8 100.0

treatment 0.000 −0.001 −0.001 −0.003 0.116 0.545 −2.2 94.4 98.7

common 0.000 −0.000 −0.001 −0.002 0.095 0.483 −0.3 94.8 99.9

entire 0.000 −0.000 −0.001 −0.002 0.108 0.544 −2.6 94.1 99.4

FM

outcome −0.000 −0.000 −0.000 0.000 0.129 0.497 −29.9 82.9 99.0

treatment −0.001 −0.000 0.000 0.003 0.169 0.569 −46.6 70.6 96.2

common 0.000 −0.000 −0.001 −0.001 0.205 0.534 −55.9 61.1 92.7

entire −0.000 −0.000 0.000 0.002 0.145 0.549 −37.7 77.9 98.2

Table 2. Simulation results comparing the ATE estimation under the alternative hypothesis. *MSE in the 
presence of an unmeasured confounder. Theoretical values: π π θ= . = . = .0 557, 0 441, 0 4661 0 .
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in terms of logOR estimation and variance regardless of the covariate set considered. Estimations obtained with 
IPTW or FM were highly variable, depending on the covariate set employed: some indicated a negative impact 
of barbiturates and others did not. These results also tended to demonstrate that GC or TMLE had the highest 
statistical power. Variances obtained by parametric simulations or by bootstrap resampling were similar (results 
not displayed).

One can, therefore, question the relative predominance of the PS-based approach compared to GC, although 
there are several potential explanations. First, there appears to be a pre-conceived notion according to which 
multivariable non-linear regression cannot be used to estimate marginal absolute and relative effects57. Indeed, 
under logistic regression, the mean sample probability of an event is different from the event probability of a 
subject with the mean sample characteristics. Second, while there is an explicit variance formula for the IPTW58, 
the equivalent is missing for the GC. The variance must be obtained by bootstrapping, simulation or the delta 
method. Third, several didactic tutorials on PS-based methods can be found, for instance59–61.

We still believe that PS-based methods may have value when multivariate modelling is complex, for instance, 
for multi-state models62. In future research, it would be interesting to examine whether the use of potentially bet-
ter settings would provide equivalent results, such as the Williamson estimator for IPTW58, the Abadie-Imbens 
estimator for PS matching63, or bounded the estimation of TMLE, which can also be updated several times36. We 
also emphasise that we did not investigate these methods when the positivity assumption does not hold. Several 
authors have studied this problem13,25,35,36,64. G-computation was less biased than IPTW or DRE except in Porter 
et al.36, where the violation of the positivity assumption was also associated with model misspecifications. The 
robustness of GC to non-positivity could be due to a correct extrapolation into the missing sub-population, which 
is not feasible with PS1. Other perspectives of this work are to extend the problem to i) time-to-event, continuous 
or multinomial outcomes and ii) multinomial treatment. However, implementing GC using continuous treatment 
raises many important considerations concerning the research question and resulting inference64.

A - Multiple sclerosis
Overall 
(n = 629)

First line treatment Relapse at 1 year

Ntz (n = 326) Fng (n = 303) p No (n = 478) Yes (n = 151) p

Patient age, years (mean, sd) 37.0 9.6 36.8 9.9 37.2 9.2 0.6505 37.1 9.7 36.6 9.2 0.5849

Female patient (n, %) 479.0 76.2 254.0 77.9 225.0 74.3 0.2822 367.0 76.8 112.0 74.2 0.5124

Disease duration, years (mean, sd) 8.5 6.4 8.0 6.1 9.0 6.8 0.0505 8.6 6.6 8.2 6.0 0.4809

At least one relapse (n, %) 526.0 83.6 293.0 89.9 233.0 76.9 <0.0001 391.0 81.8 135.0 89.4 0.0277

Gd-enhancing lesion on MRI (n, %) 311.0 49.4 185.0 56.7 126.0 41.6 0.0001 240.0 50.2 71.0 47.0 0.4944

EDSS score >3 (n, %) 288.0 45.8 166.0 50.9 122.0 40.3 0.0074 212.0 44.4 76.0 50.3 0.1986

Previous immunomodulatory treatment (n, %) 556.0 88.4 293.0 89.9 263.0 86.8 0.2284 424.0 88.7 132.0 87.4 0.6672

B – ICU Overall 
(n = 252)

Barbiturates treatment Favourable GOS at 3 months

No (n = 178) Yes (n = 74) p No (n = 180) Yes (n = 72) p

Patient age, years (mean, sd) 47.4 17.4 48.7 17.9 44.1 15.7 0.0565 50.8 16.4 38.7 16.9 <0.0001

Female patient (n, %) 89.0 35.3 58.0 32.6 31.0 41.9 0.1592 68.0 37.8 21.0 29.2 0.1963

Diabetes (n, %) 17.0 6.7 15.0 8.4 2.0 2.7 0.0989 15.0 8.3 2.0 2.8 0.1122

Nosological entity: Severe trauma (n, %) 124.0 49.2 95.0 53.4 29.0 39.2 0.0403 77.0 42.8 47.0 65.3 0.0012

SAP ≤90 mmHg before admission (n, %) 56.0 22.2 36.0 20.2 20.0 27.0 0.2368 46.0 25.6 10.0 13.9 0.0442

Evacuation of subdural or extradural hematoma (n, %) 41.0 16.3 33.0 18.5 8.0 10.8 0.1301 27.0 15.0 14.0 19.4 0.3878

External ventricular drain (n, %) 64.0 25.4 39.0 21.9 25.0 33.8 0.0486 48.0 26.7 16.0 22.2 0.4640

Evacuation of cerebral hematoma or lobectomy (n, %) 42.0 16.7 28.0 15.7 14.0 18.9 0.5362 34.0 18.9 8.0 11.1 0.1345

Decompressive craniectomy (n, %) 27.0 10.7 15.0 8.4 12.0 16.2 0.0686 21.0 11.7 6.0 8.3 0.4396

Blood transfusion before admission (n, %) 34.0 13.5 25.0 14.0 9.0 12.2 0.6903 26.0 14.4 8.0 11.1 0.4841

Pneumonia before increased ICP (n, %) 29.0 11.5 16.0 9.0 13.0 17.6 0.0519 19.0 10.6 10.0 13.9 0.4538

Osmotherapy (n, %) 112.0 44.4 75.0 42.1 37.0 50.0 0.2525 89.0 49.4 23.0 31.9 0.0115

GCS score ≥8 62.0 24.6 39.0 21.9 23.0 31.1 0.1237 37.0 20.6 25.0 34.7 0.0183

Hemoglobin, g/dL (mean, sd) 11.8 2.3 11.7 2.2 12.1 2.5 0.1824 11.8 2.4 11.9 1.9 0.7373

Platelets, counts/mm3 (mean, sd) 206.7 78.0 207.4 79.7 205.1 74.2 0.8312 209.0 83.8 200.9 61.1 0.4589

Serum creatinine, mmol/L (mean, sd) 71.1 29.3 71.1 27.6 71.1 33.3 0.9853 72.4 32.6 67.9 18.7 0.2732

Arterial pH (mean, sd) 7.3 0.1 7.3 0.1 7.3 0.1 0.0978 7.3 0.1 7.3 0.1 0.6317

Serum proteins, g/L (mean, sd) 58.2 10.4 57.7 10.6 59.6 9.7 0.1662 58.0 10.7 58.8 9.7 0.5963

Serum urea, mmol/L (mean, sd) 5.0 2.5 5.2 2.7 4.7 1.8 0.1827 5.2 2.3 4.5 2.9 0.0505

PaO2/FiO2 ratio (mean, sd) 302.7 174.0 292.7 154.7 326.6 212.9 0.1595 282.1 172.4 354.2 168.4 0.0028

SAPS II score (mean, sd) 47.6 11.4 47.6 10.7 47.6 12.9 0.9847 49.9 10.8 41.8 10.7 <0.0001

Table 3. Baseline characteristics of patients of the two studied cohorts. Ntz: Natalizumab, Fng: Fingolimod, 
Gd: Gadolinium, MRI: Magnetic Resonance Imaging, EDSS: Expanded Disability Status Scale, SAP: Systolic 
Arterial Pressure, ICP: Intra-Cranial Pressure, GCS: Glasgow Coma Scale, PaO2/FiO2: arterial partial Pressure 
of Oxygen/Fraction of Inspired Oxygen, SAPS II: Simplified Acute Physiology Score II.
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To facilitate its use in practice, we have implemented the estimation of both ATE and ATT, and their 95% CI, 
from a logistic model in the existing R package entitled RISCA (available at cran.r-project.org/web/packages/
RISCA). We provide an example of R code in the appendix. Note that the package did not consider the inflation 
of the type I error rate due to the modelling steps of the Q-model. Users also have to consider novel strategies for 
post-model selection inference.

In the applications, we classified covariates into sets based on experts knowledge33. However, several statistical 
methods can be useful when no clinical knowledge is available. Heinze et al.65 proposed a review of the most used, 
while Witte and Didelez66 reviewed strategies specific to causal inference. Alternatively, data-adaptive methods 
have recently been developed, such as the outcome-adaptive LASSO67 to select covariates associated with both 
the outcome and the treatment allocation. Nevertheless, according to our results, it may be preferable to focus 
on constructing the best outcome model based on the outcome set. For instance, the consideration of a super 
learner68,69, merging models and modelling machine learning algorithms may represent an exciting perspective70.

Finally, we emphasise that the conclusions from our simulation study cannot be generalised to all situations. 
They are consistent with the current literature on causal inference, but theoretical arguments are missing for gen-
eralisation. Notably, our results must be considered in situations where both the PS and the Q-model are correctly 
specified and where positivity holds.

To conclude, we demonstrate in a simulation study that adjusting for all the covariates causing the outcome 
improves the estimation of the marginal causal effect (ATE or ATT) of a binary treatment in a binary outcome. 
Considering only the covariates that are a common cause of both the outcome and the treatment is possible 
when the number of potential confounders is large. The strategy consisting of considering all available covariates, 
i.e., no selection, did not decrease the bias but significantly decreased the power. Amongst the different studied 
methods, GC had the lowest bias and variance regardless of covariate set considered. Consequently, we recom-
mend that the use of the GC with the outcome set, because of its highest power in all the simulated scenarios. For 

application method set π̂0 π̂1 θ̂ SE 95% CI

A - Multiple 
sclerosis

GC

outcome 20.3 28.2 0.432 0.189 [0.062, 0.802]

treatment* 20.3 28.3 0.436 0.195 [0.054, 0.819]

common* 20.3 28.3 0.436 0.195 [0.054, 0.819]

entire 20.3 28.2 0.431 0.191 [0.056, 0.806]

IPTW

outcome 21.2 28.8 0.406 0.195 [0.023, 0.789]

treatment* 20.3 28.2 0.433 0.191 [0.059, 0.808]

common* 20.3 28.2 0.433 0.191 [0.059, 0.808]

entire 21.3 28.9 0.406 0.196 [0.022, 0.791]

TMLE

outcome 21.2 28.8 0.407 0.195 [0.025, 0.790]

treatment* 20.3 28.2 0.433 0.190 [0.061, 0.806]

common* 20.3 28.2 0.433 0.190 [0.061, 0.806]

entire 21.1 28.9 0.410 0.196 [0.026, 0.794]

FM

outcome 19.1 29.0 0.549 0.189 [0.178, 0.921]

treatment* 19.9 30.6 0.575 0.187 [0.210, 0.941]

common* 19.9 30.6 0.575 0.187 [0.210, 0.941]

entire 21.1 31.9 0.561 0.183 [0.201, 0.920]

B - ICU

GC

outcome 66.3 81.1 0.778 0.294 [0.201, 1.354]

treatment 65.3 81.1 0.824 0.298 [0.240, 1.407]

common 65.0 81.1 0.836 0.289 [0.270, 1.402]

entire 66.5 81.1 0.769 0.295 [0.191, 1.347]

IPTW

outcome 31.0 81.1 0.656 0.356 [−0.042, 1.354]

treatment 68.2 81.1 0.693 0.355 [−0.002, 1.388]

common 67.4 81.1 0.729 0.353 [0.038, 1.421]

entire 69.2 81.1 0.645 0.362 [−0.064, 1.354]

TMLE

outcome 66.2 79.6 0.692 0.293 [0.118, 1.266]

treatment 65.4 80.2 0.758 0.288 [0.194, 1.322]

common 64.8 79.9 0.769 0.298 [0.185, 1.354]

entire 66.4 79.4 0.668 0.285 [0.109, 1.228]

FM

outcome 73.8 81.1 0.419 0.342 [−0.252, 1.090]

treatment 67.2 81.1 0.739 0.337 [0.078, 1.399]

common 65.1 81.1 0.831 0.336 [0.173, 1.490]

entire 66.2 81.1 0.782 0.336 [0.123, 1.442]

Table 4. Results of the two applications. *Treatment and common sets contain same covariates. π0: Percentage 
of event in the Natalizumab (or control) group, π1: Percentage of event in the Fingolimod (or Barbiturates) 
group, SE: standard error.
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instance, at least 500 individuals were necessary to achieve a power higher than 80% in ATE, with a theoretical 
OR at 2, and a percentage of treated subjects at 50%. In ATT, we needed larger sample size to reach a power of 80% 
because the estimation considers only the treated patients. With 2000 individuals, all the studied methods with 
the outcome set led to a bias close to zero and a statistical power superior to 95%.
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