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Acquired contractile ability in 
human endometrial stromal cells 
by passive loading of cyclic tensile 
stretch
Jeonghyun Kim1, Takashi Ushida1,2, Kevin Montagne2, Yasushi Hirota3, Osamu Yoshino4, 
Takehiro Hiraoka3, Yutaka Osuga3 & Katsuko S. Furuakwa1,2 ✉

The uterus plays an important and unique role during pregnancy and is a dynamic organ subjected 
to mechanical stimuli. It has been reported that infertility occurs when the peristalsis is prevented, 
although its mechanisms remain unknown. In this study, we found that mechanical strain mimicking 
the peristaltic motion of the uterine smooth muscle layer enabled the endometrial stromal cells to 
acquire contractility. In order to mimic the peristalsis induced by uterine smooth muscle cells, cyclic 
tensile stretch was applied to human endometrial stromal cells. The results showed that the strained 
cells exerted greater contractility in three-dimensional collagen gels in the presence of oxytocin, due 
to up-regulated alpha-smooth muscle actin expression via the cAMP signaling pathway. These in vitro 
findings underscore the plasticity of the endometrial stromal cell phenotype and suggest the possibility 
of acquired contractility by these cells in vivo and its potential contribution to uterine contractile 
activity. This phenomenon may be a typical example of how a tissue passively acquires new contractile 
functions under mechanical stimulation from a neighboring tissue, enabling it to support the adjacent 
tissue’s functions.

It is now widely known that mechanical stimuli applied to various cell types can trigger intracellular signaling 
events leading to physiological and pathological changes1–5. The uterus allows implantation of the embryo and 
regulates its growth by supplying nutrients from the mother’s body6. It is also known as a dynamic organ that is 
modulated by menstrual hormone changes during the menstrual cycle and pregnancy. The uterine wall consists 
of three layers, namely the endometrium, the myometrium, and the perimetrium7,8. While the inner layer of the 
endometrium is composed of epithelial cells and stromal cells, the thickest middle myometrial layer mainly con-
sists of smooth muscle cells. The perimetrium is the thin outermost layer of connective tissue. The myometrium 
is known to show spontaneous contractile activity9, and undergoes remodeling by hyperplasia and hypertrophy 
during pregnancy10.

The non-pregnant uterus also shows a distinct activity called “endometrium movement” throughout the 
menstrual cycle, which is regulated by ovarian steroid hormones11. Furthermore, the endometrium wave is 
known to play a significant role during pregnancy in order to transport the fertilized egg/zygote through the 
utero-tubal cavities prior to implantation12. It has also been reported that infertility occurs when the mechanical 
stress induced by the endometrium wave is prevented13. Therefore, we believe that this mechanical stimulus from 
the myometrium has a crucial role in physiological functions of the endometrium, such as menstruation and 
pregnancy.

In this study, we hypothesized that the uterine peristalsis induced by uterine smooth muscle cells might affect 
the contractile ability of endometrial stromal cells, an important function of the uterus for pregnancy. The endo-
metrial stromal cells have been thought to passively undergo strain stimulation under the contractile movement 
of uterine smooth muscle cells. However, we propose that stromal cells actually actively support the peristaltic 
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movement of the uterus. It is possible that the existence of these mechanisms helps to make the uterine peristaltic 
movement, which plays an important role for implantation of fertilized eggs and pregnancy, more steady and 
reliable.

Results
Reorientation of hESCs after applying 7 days of uniaxial cyclic strain.  In this study, we loaded 15% 
of uniaxial cyclic strain at 0.1 Hz to hESCs for 7 days, as shown in Fig. 1(A). In order to quantify the reorienta-
tion of hESCs after applying uniaxial cyclic strain for 7 days, we evaluated the changes in the cells’ angle from 
normal microscope images of control and strained cells as shown in Fig. 1(B),(C). In Fig. 1(D),(E), mean angles 
of cells (or mean direction of elongation) in control and strained hESCs were 108° (SD 69.1°) and 91.3° (SD 

Figure 1.  (A) Schematic view of the experimental setup showing the side view of the Flexcell tension system 
and the top view of the Flexcell plate. Microscope images of (B) control and (C) strained cells after applying 7 
days of cyclic strain. The white bar indicates 300 μm. (D) Quantification of orientation changes in the strained 
cells. Graphs show the angle of cells (300 cells from 6 independent experiments). The bars represent the mean 
± standard error deviation (p-value was obtained from F-test; *p < 0.05, **p < 0.005). (E) Schematic plot of the 
cell distribution. The red and black arrows represent the strained and control group, respectively.
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33.6°), respectively. The mean angle of strained hESCs compared to that of control cells was significantly different 
(p < 0.005). Moreover, the standard deviation of the angle in the strained cells was much smaller than that of the 
control sample. This indicates the angle of the cells in the strained hESCs was much more uniform compared to 
the more random orientation of the control hESCs. Hence, after 7 days, the strained cells reoriented perpendicu-
larly to the direction of strain and became elongated while the control cells were randomly oriented.

Uniaxial cyclic strain up-regulated α-SMA expression in hESCs.  As shown in Fig. 2(A), we analyzed 
by real-time PCR several stromal cell markers including CD10 and CD90 and uterine smooth muscle cell (SMC) 
markers such as ACTA2 and TAGLN. Particularly, ACTA2 plays a key role in the production of alpha-smooth 
muscle actin (α-SMA), which belongs to the actin protein family and is involved in cell contraction. Cyclic strain 
slightly decreased endometrial stromal cell marker expression (0.90-fold change for CD10 and 0.86-fold change 
for CD90), but the changes were not significant. With regards to ACTA2 and TAGLN, they were significantly 
up-regulated by cyclic strain (1.32-fold change for ACTA2, p < 0.005; and 1.59-fold change for TAGLN, p < 0.05). 
In the same manner as ACTA2 and TAGLN, 7 days of cyclic strain significantly raised mRNA expression of 

Figure 2.  Promoted expressions of smooth muscle cell markers in hESCs after applying cyclic strain for 7 
days, measured by real-time PCR and immunostaining. (A) mRNA expressions of endometrial stromal cell 
markers and smooth muscle cell markers in hESCs after applying cyclic strain for 7 days measured by real-
time PCR. (CD10, CD90, ACATA2, TAGLN, OXTR, DES, IL6, ANGPT1, and RAMP1). Graphs show the fold 
change of mRNA expressions relative to RPL32 mRNA normalized to the control mean (n = 6). The bars 
represent the mean ± standard error (p-value was obtained from Student’s t-test; *p < 0.05, **p < 0.005). (B) 
Immunostaining of Vimentin (Vim) and smooth muscle actin (α-SMA) in hESCs after loading cyclic strain for 
7 days; Vim and α-SMA expression in control samples (left). Vim and α-SMA expression in strained samples 
(right). The arrows indicate the direction of cyclic strain. Scale bar = 100 μm.

https://doi.org/10.1038/s41598-020-65884-3


4Scientific Reports |         (2020) 10:9014  | https://doi.org/10.1038/s41598-020-65884-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

the oxytocin receptor (OXTR), which is highly expressed in the myometrium to regulate uterine contraction 
(2.13-fold change for OXTR, p < 0.05).

In order to distinguish uterine SMCs and myofibroblasts, we also examined desmin (DES) and Interleukin 6 
(IL6) expression, which are associated with myofibroblasts. Real-time PCR results also showed an up-regulation 
of DES mRNA expression (1.63-fold change, p < 0.05) and a decrease in IL6 (0.68-fold change; p < 0.05) after 
application of cyclic strain. On the other hand, mRNA expressions of Angiopoietin 1 (ANGPT1) (0.73-fold 
change; p = 0.12) and Receptor activity modifying protein (RAMP1) (0.50-fold change, p < 0.005) were measured 
to distinguish uterine SMCs and vascular smooth muscle cells.

After applying cyclic strain for 7 days, immunostaining for vimentin (Vim) and α-SMA was carried out to 
check for changes in stromal cell and smooth muscle cell marker expression as shown in Fig. 2(B). As a result, 
there was an increase in the staining intensity of α-SMA in the strained cells while no significant change in the 
expression of the stromal cell marker was observed after applying cyclic strain.

Cyclic strain increases cAMP production in hESC.  In order to understand the effect of uniaxial cyclic 
strain on hESCs, we measured the level of cAMP in hESCs after applying strain. Firstly, cAMP concentrations 
after 15 mins of cyclic strain were measured. Figure 3(A) shows a transient and significant up-regulation in cAMP 
production (1.75-fold change; p < 0.005) in as little as 15 mins. In addition, Fig. 3(B) shows the levels of cAMP 
after 7 days of cyclic strain. There was a non-significant increase in cAMP production immediately after 7 days 
of strain (1.62-fold change; p = 0.07). We then performed 7 days of strain, followed by a 2-hour break for cAMP 
levels to stabilize, followed by an extra 15 mins of cyclic strain. After such a strain regimen, cAMP concentration 
was significantly up-regulated (2.35-fold change; p < 0.05).

SQ22536 and H-89 inhibit the up-regulation of α-SMA expression by cyclic strain in hESCs.  To 
determine whether the cAMP pathway is involved in the up-regulation of α-SMA expression under strain, we 
stretched hESCs in the presence or absence of the adenylyl cyclase inhibitor SQ22536 or the PKA inhibitor H-89. 
Figure 4(A)–(F) represent the fold changes in mRNA expression measured by real-time PCR in the presence or 
absence of inhibitors. As in the previous experiment, the cyclic strain did not significantly affect CD10 or CD90 
expression in hESCs but significantly up-regulated ACTA2 (1.37-fold change) and TAGLN (1.68-fold change) 
expression. By adding SQ22536, the up-regulation of ACTA2, TAGLN, and OXTR by cyclic strain was inhibited, 
with a respectively 1.01-, 0.91-, and 1.00-fold change in ACTA2, TAGLN, and OXTR expression. Moreover, the 
use of H-89 also showed an inhibiting effect on ACTA2 (0.47-fold change), TAGLN (0.55-fold change), and OXTR 
(0.73-fold change) expression. Moreover, the SQ22536 and H-89 non-significantly suppressed the increase in DES 
(0.81- and 1.12-fold change, respectively) expression.

Effect of oxytocin on the hESC-mediated collagen I gel contraction.  After applying uniaxial cyclic 
strain to hESCs for 7 days, the strained cells were collected for a cell contraction assay to check the contractile 
ability of the cells seeded in a three-dimensional collagen gel. Before the stress in the gel was released by detaching 
the gels from the culture dish, the cells in the collagen I gel were treated with oxytocin (10 nM) to examine if in the 

Figure 3.  Relative cAMP production levels measured by the cyclic AMP EIA kit. (A) Applying cyclic strain for 
15 mins significantly up-regulated cAMP production in hESCs. (B) cAMP levels were measured after 7 days of 
strain, followed by a 2-hour break for cAMP levels to stabilize, followed by an extra 15 mins of cyclic strain. 7 
days of strain induced a non-significant increase in cAMP production, but adding a 2-hour break followed by an 
extra 15 mins significantly up-regulated cAMP levels. Graphs show the fold change of cAMP production levels 
relative to the amounts of DNA and normalized to the control mean. The bars represent the mean ± standard 
error (n = 4) (p-value was obtained from Student’s t-test; *p < 0.05, **p < 0.005).
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Figure 4.  mRNA expressions measured by real-time PCR of (A) CD10, (B) CD90, (C) ACTA2, (D) TAGLN, (E) 
OXTR, and (F) DES in hESCs after applying cyclic strain in the presence or absence of the inhibitors SQ22536 
and H-89. All the mRNA expressions were normalized to RPL32 expression and further normalized to control 
values. Applying cyclic strain for 7 days non-significantly down-regulated both endometrial stromal cell 
markers and up-regulated the smooth muscle cell markers. While the non-significant down-regulation of CD10 
and CD90 were unchanged by addition of SQ22536 and H-89, both inhibitors significantly inhibited the up-
regulation of ACTA2 and OXTR. The bars represent the mean fold change ± standard error between strained 
and control samples (n = 4) (p-values were obtained from ANOVA followed by Fisher’s LSD test; *p < 0.05). (G) 
Schematic diagram of the signaling pathway activated in hESCs in response to cyclic strain. Adenylyl cyclase 
located on the inner side of the plasma membrane converts ATP to intracellular cAMP. cAMP induced by cyclic 
strain then promoted SMa marker α-SMA expression, via adenylyl cyclase and PKA.

Figure 5.  hESCs-mediated collagen I gel contraction after 7 days in response to oxytocin (10 nM). (A) control 
sample without oxytocin (B) control sample with oxytocin, (C) gel containing strained cells without oxytocin, 
and (D) gel containing strained cells with oxytocin. (E) The graph represents the gel area 7 days after release 
normalized to the initial area. The bars represent the mean ± standard error of gel area (n = 4) (p-value was 
obtained from ANOVA followed by Fisher’s LSD; *p < 0.05, **p < 0.005; the statistical analysis was performed 
using the original area measurement data).
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presence of oxytocin, the strained cells exerted greater contractility, behaving like uterine SMC. Figure 5(A)–(D) 
show the samples 7 days after releasing the gels from the culture dish in the presence or absence of oxytocin. The 
surface areas of the samples were measured and quantified as shown in Fig. 5(E). The surface areas of the control 
samples with and without oxytocin shrank to 71.6% (1.36 cm2) and 55.9% (1.06 cm2), respectively. On the other 
hand, the strained cells showed a significant elevation in their contractile ability both in the absence and in the 
presence of oxytocin, as gels shrank to 48.9% (0.93 cm2) and 36.7% (0.70 cm2), respectively, of their initial surface 
area. In particular, while the strained cells showed greater contractility than the control cells (p < 0.005), the addi-
tion of oxytocin in the strained cells further enhanced their contractility (p < 0.05).

Discussion
Mechanical stimulation is crucial to the proper function of many different organs like cartilage, blood vessels or 
the uterus14,15. For the uterus, which plays an important role during pregnancy and childbirth, the mechanical 
stress caused by the peristaltic movement of the fallopian tube due to the contraction of uterine smooth muscle 
cells promotes the migration of fertilized eggs16. In addition, infertility can also be caused by uterine fibroids that 
perturb the periodic uterine peristaltic movement induced by hormones17. Therefore, although the number of 
studies regarding mechanical stress responses in the uterus is still limited, the mechanical stress may play a role in 
homeostasis and pathogenesis of the uterus.

In this study, we proposed a new hypothesis regarding the response to mechanical stress in the uterine tissues 
with a hierarchical structure. The uterus has a three-layer structure consisting of, starting from the inside, epi-
thelial cells, stromal cells, and smooth muscle cells. From our in vitro results, it is reasonable to imagine a similar 
mechanism in vivo, by which the peristaltic movement of the uterus caused by contraction of the outermost 
smooth muscle layer enhances the contractility of the inner stromal cells. We believe that such a mechanism 
might make the three-dimensional peristaltic movements of the uterus during pregnancy and childbirth more 
consistent and reliable.

In two-dimensional culture, the tensile stress that mimics the peristaltic movement of the myometrium is 
reported to regulate the biochemical function of stromal cells to support a the differentiation process of endo-
metrium, decidualization18, but it is dubious whether the tensile stress is well loaded three-dimensionally on the 
stromal cells in the body. As shown in this study, acquisition of contractility by the stromal cells under strain may 
be an effective mechanism to transmit the tensile stress from the smooth muscle layer in the body. In other words, 
it is suspected that contraction by uterine smooth muscle cells is transmitted to the inner stromal cells, whereby 
each individual stromal cell can contract steadily thanks to the increased expression of proteins such as α-SMA 
and oxytocin. Considering the fact that, in vivo, infertility can occur when the uterus is unable to contract prop-
erly, these findings may represent a new mechanotransduction mechanism, by which contractility is transmitted 
from the outside to the adjacent inner cell layer.

It is possible that such a phenomenon occurs not only in the uterus, but also in blood vessels as reported in the 
literature. When the tensile stress is applied to vascular endothelial cells such as human umbilical cord endothelial 
cells (HUVEC), smooth muscle actin expression is dramatically increased19–21. It might imply that the vascular 
endothelial cells loaded with tensile stimulation may not differentiate into vascular smooth muscle cells, and 
individual vascular endothelial cells might have instead acquired the contractility under the tensile stimulation 
induced by mechanical activation of intracellular signaling pathways, thus potentially enhancing the efficiency of 
blood vessel contraction. Our experiments in hESCs have shown that the strain slightly increases the gene expres-
sion levels of SMC markers, ACTA222 and TAGLN23. On the other hand, the immuno-staining data still showed 
strong staining levels of vimentin, a marker for stromal cells24, even with or without strain. Although Additionally, 
the α-SMA staining levels in ESC were extremely low compared to those in the SMC in vivo24. However, the strain 
did not apparently increase those of α-SMA in ESC even after stretching. Taking into consideration those results, 
it is reasonable to conclude that strain did not differentiate ESC into SMC, but made ESC acquire the ability to 
contract. This phenomenon might be similar to the response of HUVEC under strain.

In the field of cell and tissue engineering, mechanical stimuli have been identified as a significant factor to 
induce physiological changes by activating intracellular signaling pathways. While many researchers have 
reported on the effects and roles of mechanical stimuli in various cell models, studies of the uterus in response to 
mechanical stimuli are limited. There have been only a few studies reporting the effect of mechanical stretch on 
hESCs, particularly focusing on the expression of specific genes such as IGFBP1 or interleukin-8 (IL-8), which are 
associated with decidualization or inflammatio18,25. In this study, we aimed to understand the effects of mechani-
cal stimuli on the hESCs, particularly on their contractility.

We applied 15% of uniaxial cyclic strain to hESCs at 0.1 Hz for up to 7 days. First, application of uniaxial cyclic 
strain to hESCs induced rearrangement in the direction perpendicular to the strain axis while control cells were 
randomly distributed. Moreover, both real-time PCR and immunostaining showed that the cyclic strain induced 
an increase in the expression of α-SMA. As well as the up-regulation of α-SMA, real-time PCR results showed a 
significant up-regulation in the mRNA expression of oxytocin receptor (OXTR) after loading cyclic strain for 7 
days, a gene which is highly expressed in the myometrium26–28. The oxytocin receptor, however, is also expressed 
in the endometrium and its expression varies during the non-pregnant cycle, depending on ovarian steroid hor-
mones, such as progesterone and estrogen29,30. Kunz’s group showed that oxytocin increases the frequency of the 
endometrial wave31. Moreover, it is known that up-regulation of the oxytocin receptor before the onset of labor 
during pregnancy induces the production of prostaglandin F2α, which results in an increase in endometrial con-
traction. This study is the first to suggest that mechanical stimuli play a role in endometrial stromal cells in the 
acquisition of contractility, by up-regulating α-SMA and oxytocin receptor expression.

In addition, we showed the strained cells to be different from myofibroblasts. While there is a lack of desmin 
accumulated in myofibroblasts, the expression of DES is known to be relatively abundant in the myometrium32,33. 
Moreover, IL6 production level is known to be elevated in myofibroblasts34–36. Application of cyclic strain 
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for 7 days significantly induced the expression of DES and also down-regulated the expression of IL6, which 
indicates the strained hESCs were distinct from myofibroblasts. On the other hand, an essential marker abun-
dantly expressed in vascular smooth muscle cells, ANGPT1, was non-significantly but slightly reduced by cyclic 
strain37–40. RAMP1 mRNA expression, which is specific to vascular smooth muscle cells in uterine arteries, was 
significantly down-regulated by cyclic strain, indicating that the strained cells were distinct from vascular smooth 
muscle cells41–43.

In this study, a cAMP production assay was performed after loading strain on hESCs. cAMP is a secondary 
messenger produced from adenosine triphosphate (ATP) and is known to regulate endometrial stromal cells for 
decidualization during the menstrual cycle44. There is a report that addition of estradiol in uterine cells evoked an 
increase in cAMP levels, and the cAMP pathway via adenylyl cyclase is involved in this mechanism45. Moreover, 
the phenotype induced in bone marrow-derived MSCs by cAMP treatment suggests those cells could serve as a 
source of endometrial stem/progenitor cells46. Thus, cAMP has a significant regulatory role in the uterus just like 
hormones such as estrogen and progesterone. In this study, we therefore focused on the involvement of cAMP in 
response to cyclic strain.

Here we also report that cyclic strain up-regulated cAMP production in hESCs, implying that the cAMP sig-
naling pathway may be involved in the up-regulation of α-SMA expression under stretch. Applying cyclic strain 
for as little as 15 mins induced the up-regulation of cAMP production in hESCs. After up-regulating α-SMA 
expression in hESCs under cyclic strain for 7 days, we also examined whether cAMP production was responsive 
to strain. Since cAMP production is usually transiently induced, cells strained for 7 days were subjected to a 
2-hour break (static condition) to stabilize the level of cAMP, followed by 15 mins of cyclic strain. This resulted in 
a significant up-regulation of cAMP production, showing that stretch was able to induce cAMP production both 
before and after applying cyclic strain for 7 days.

In order to determine the importance of cAMP in the stretch-induced up-regulation of α-SMA expression, 
we carried out inhibitor tests using the adenylyl cyclase inhibitor SQ22536 and the PKA inhibitor H-89, since 
adenylyl cyclase regulates cAMP production while PKA is a well-known cAMP-dependent protein kinase47,48. 
Figure 4(G) schematically illustrates the signaling pathway activated in the hESCs under cyclic strain, as dis-
cussed in this study. Adenylyl cyclase is an enzyme located on the inner side of the plasma membrane and usually 
activated by G proteins. Activation of adenylyl cyclase under cyclic strain converts adenosine triphosphate (ATP) 
to cAMP, an intracellular second messenger. We showed that cyclic strain increased the cAMP production level in 
hESCs. This transient up-regulation of cAMP in hESCs by cyclic strain was consistent with previous studies using 
other cell models under mechanical stimuli such as cyclic strain or static compressive strain49,50. As suggested by 
the inhibitor tests, the increase in intracellular cAMP levels is essential for the up-regulation of α-SMA expression 
in hESCs by cyclic strain. Interestingly, the addition of H-89 led to a decrease in the mRNA expression of SMC 
markers and OXTR under cyclic strain. The result may imply that H-89 did not only specifically inhibit the cAMP 
signaling pathway, but also activated other signaling pathways which inhibit SMC markers and OXTR expression 
under strain. Further studies will be required to address this point.

The cell contraction assay using collagen gels was then carried out to measure the cells’ contractile ability. As 
a result, the samples strained for 7 days showed an increased contractile ability compared to control samples. 
Moreover, the contractility in the strained samples was significantly enhanced in the presence of oxytocin, indi-
cating that the strained hESCs behaved like uterine smooth muscle cells. It has been reported that the enhanced 
contractile ability of ESC may help to minimize defects in an endometrial wound model and promote endome-
trial tissue repair in vivo51. In ruminants, the level of oxytocin receptor is known to increase during the diestrus 
phase, reach its maximum value during the proestrus phase, and then decline during the estrus phase52,53. 
Peristaltic patterns such as intrauterine pressure and strain have also been reported to change during the estrous 
cycle54. Up-regulation of OXTR mRNA expression induced by mechanical stimulation might contribute to stop-
ping the bleeding during the menstrual cycle by strengthening the contractility of the endometrium in response 
to oxytocin. Although the endometrium is exposed to a dynamic environment induced by the myometrium, the 
effect of mechanical stimuli on the ESCs with regard to their contractility remained unknown. In this study, we 
suggested that the enhanced contractility in the strained cells was due to the up-regulation of α-SMA expression 
and the oxytocin receptor. While several studies have shown that biochemical stimulation using cytokines or 
platelet-derived growth factor (PDGF) increased the contractility in hESCs in vitro51,55, we are the first to report 
that mechanical stimuli also allowed endometrial stromal cells to acquire greater contractility while keeping their 
original cell phenotype. In other words, mechanical stimulation might help to control the dynamic and active 
functions of endometrial stromal cells. It has been reported that OXTR is not expressed in stromal cells in vivo 
by immuno-staining27 or in situ hybridization56. However, in this paper, we reported that strain up-regulated 
OXTR mRNA expression in stromal cells by real-time PCR, which enables more sensitive signal detection than 
immune-staining and in situ hybridization. However, our current studies have only been performed in vitro, and 
the relevance of our findings will be examined during further studies. Although there are limitations to direct 
extrapolation of in vitro result to the in vivo context, passive strain stimulation of stromal cells caused by uterus 
SMCs might trigger active stromal cell contraction.

In summary, we report that applying uniaxial cyclic strain significantly up-regulates the expression of α-SMA 
as well as cAMP production. Together, the results show that strained hESCs acquire greater contractility, thus 
behaving more like uterine smooth muscle cells. Furthermore, these findings may imply that contractile move-
ments by the myometrium have a significant role in inducing endometrial stromal cells to acquire the ability to 
contract in vivo for physiological functions of the endometrium. This newly reported phenomenon might be a 
typical example of how a tissue passively acquires new contractile functions under mechanical stimulation from 
a neighboring tissue, enabling it to support the adjacent tissue’s functions.

https://doi.org/10.1038/s41598-020-65884-3


8Scientific Reports |         (2020) 10:9014  | https://doi.org/10.1038/s41598-020-65884-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Methods
Isolation and culture of hESCs.  Endometrial biopsies were obtained from 38~48-year-old female 
patients who had regular menstrual cycles. Fresh human endometrial stromal cells were isolated and cultured 
as previously reported57–59. The purity of the cell source was greater than 98%59. This study was approved by 
the Institutional Review Board of the University of Tokyo in accordance with the Declaration of Helsinki, and 
each patient gave informed consent for sample collection. We cultured hESCs in DMEM/Ham’s F12 (Sigma) 
supplemented with 2.5% charcoal-stripped FBS (Funakoshi) and 1% of Antibiotic-Antimycotic (GIBCO) in a 
humidified incubator at 37 °C with 5% CO2. The culture medium was changed every 3 or 4 days. For inhibitor 
tests, we used the adenylyl cyclase inhibitor SQ22536 and the protein kinase A (PKA) inhibitor H-89 (both from 
Cayman Chemical). SQ22536 (100 μM) and H-89 (10 μM) were added to the cells’ culture medium just before 
loading cyclic strain.

Uniaxial cyclic strain loading.  In this study, we loaded cyclic strain using the Flexcell tension system (FX-
4000; Flexcell International Corporation) placed in a humidified incubator at 37 °C with 5% CO2. The Flexcell is 
computer-operated and applies its strain by vacuum. In this study, 15% uniaxial strain was applied at 0.1 Hz as 
illustrated in Fig. 1. During application of the uniaxial cyclic strain, the culture medium was changed every 2 or 3 
days. For control samples, hESCs were cultured in identical Flexcell plates but without strain.

Measurement of cell reorientation under cyclic strain.  In order to measure the cells’ orientation 
angles, we used normal microscope images (×5) taken from the center of Flexwell plate to cover a wide range of 
the sample, that is further to avoid sample vialing. By using ImageJ, a line was drawn from the bottom of the cell to 
the top of the cell along the cell’s major axis. After drawing the line, the angle between this line and the horizontal 
axis was measured using ImageJ. We selected 50 cells per each sample from 6 different experiments so as to select 
entirely in terms of area distribution.

Real Time-PCR.  To measure mRNA expression in the different samples from the Flexcell system, we carried 
out real-time PCR. After finishing loading cyclic strain, the cells were rinsed with PBS and immediately lysed 
with Trizol reagent (Invitrogen) before RNA extraction and cDNA synthesis using the ReverTra Ace qPCR RT 
Master Mix with gDNA Remover (Toyobo). CD10 and CD90 were used as endometrial stromal cell markers while 
ACTA2 and transgelin (TAGLN) are highly expressed in SMC. Oxytocin receptor (OXTR) was also examined as a 
uterine smooth muscle cell marker while desmin (DES) and interleukin 6 (IL6) were utilized to distinguish uter-
ine SMCs from myofibroblasts. Similarly, the expression of the vascular smooth muscle cell markers angiopoietin 
1 (ANGPT1) and receptor activity modifying protein 1 (RAMP1) were also measured. All genes were normalized 
to RPL32 expression and further normalized to the control samples. Primer sequences and amplicon sizes are 
listed in Table 1.

Immunostaining.  After 7 days of cyclic strain, hESCs were immediately fixed with 4% paraformaldehyde. 
The fixed samples were permeabilized with 0.2% Triton-X 100 in PBS for 3 min and washed with PBS 3 times. 
Then non-specific binding was blocked with PBS containing 1% BSA before covering the cells with anti-α-SMA 
antibody (Abcam) at a 1/500 dilution for 1 hour at room temperature or overnight at 4°C. After revealing the 
antibody using the DAB peroxidase substrate kit (Vector Laboratories), the samples were mounted on glass slides 
for visualization and storage.

Cyclic adenosine monophosphate (cAMP) measurement.  The samples were collected and lysed 
with 0.1 M HCl. After centrifugation at 1,000 g the supernatant was decanted and stored at −80 °C until assay. 
Cyclic AMP concentrations were measured using the cyclic AMP EIA kit (Cayman Chemical) according to the 
manufacturer’s instructions. The absorbance at 412 nm was measured with an EnSpire Multimode Plate Reader 
(PerkinElmer). The cAMP concentrations were normalized to the DNA amounts quantified using the Quant-iT 
PicoGreen dsDNA Reagent and Kit (Invitrogen).

Cell contraction assay.  After the samples were subjected to cyclic strain for 7 days, they were trypsinized 
and resuspended in medium at a density of 2.0 × 106 cells/ml. By using the collagen-based Cell Contraction 

Gene Forward primer Reverse primer
Amplicon 
size (bp)

RPL32 GCCCAAGATCGTCAAAAAGA GTCAATGCCTCTGGGTTT 98

CD10 TCCACTGGAGATCAGCCTTT TATCGGGAACTGGTCTCAGG 237

CD90 CTAGTGGACCAGAGCCTTCG TGGAGTGCACACGTGTAGGT 235

TAGLN AGGTCTGGCTGAAGAATGGC TTCAAAGAGGTCAACAGTCTGG 199

ACTA2 CTGAGCGTGGCTATTCCTTC TTCTCAAGGGAGGATGAGGA 133

OXTR TTCTTCGTGCAGATGTGGAG ACGAGTTCGTGGAAGAGGTG 149

DES CTGAGCAAAGGGGTTCTGAG TGGCAGAGGGTCTCTGTCTT 135

IL6 CACACAGACAGCCACTCACC TTTTCTGCCAGTGCCTCTTT 139

ANGPT1 GAAGGGAACCGAGCCTATTC GCTCTGTTTTCCTGCTGTCC 108

RAMP1 CCTCACCCAGTTCCAGGTAG GAACCTGTCCACCTCTGCAT 157

Table 1.  Primer List.
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Assay kit (Cell Biolabs, Inc.), we prepared a collagen lattice with bovine type I collagen at a concentration of 
3.0 mg/ml. As indicated in the protocol of the kit, the collagen gel was polymerized in the presence of cells and 
incubated for two days to allow stresses to develop within the gel. Before the stress was released by detaching 
the gel from the culture dish, oxytocin (10 nM) was added to promote contraction as in SMC. Seven days after 
releasing the gels from the culture dish, pictures were taken and the surface area of the sample was measured 
using ImageJ.

Statistical analysis.  The statistical significance was assessed using Student’s t-test, F-test, or ANOVA fol-
lowed by Fisher’s least significant difference (LSD). P-values below 0.05 were regarded as significant.
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