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Hybrid Quantum protocols for 
Secure Multiparty Summation and 
Multiplication
Kartick Sutradhar   ✉ & Hari om

the summation and multiplication are two basic operations for secure multiparty quantum 
computation. the existing secure multiparty quantum summation and multiplication protocols have 
(n, n) threshold approach and their computation type is bit-by-bit, where n is total number of players. in 
this paper, we propose two hybrid (t, n) threshold quantum protocols for secure multiparty summation 
and multiplication based on the Shamir’s secret sharing, SUM gate, quantum fourier transform, and 
generalized pauli operator, where t is a threshold number of players that can perform the summation 
and multiplication. their computation type is secret-by-secret with modulo d, where d, n ≤ d ≤ 2n, is a 
prime. the proposed protocols can resist the intercept-resend, entangle-measure, collusion, collective, 
and coherent quantum attacks. they have better computation as well as communication costs and no 
player can get other player’s private input.

The secure multiparty quantum computation is an essential component in quantum cryptography. The summa-
tion and multiplication are two basic operations for secure multiparty quantum computation. The secure multi-
party quantum summation and multiplication include a list of secrets, which is shared among a set of players and 
the players jointly perform summation or multiplication without revealing their secrets. The classical summation 
and multiplication protocols cannot provide the unconditional secure communications. However, the quantum 
summation and multiplication protocols can provide the unconditional security as they are based on the prin-
ciples of quantum mechanics like quantum correlation1, entanglement for bipartite system2, Heisenberg XYZ 
model3. In 2007, Du et al.4 discussed a secure multiparty quantum addition modulo n + 1 protocol based on the 
non-orthogonal states, where n is total number of players. In 2010, Chen et al.5 introduced a secure multiparty 
quantum addition modulo 2 protocol based on multi-particle entangle. In 2014, Zhang et al.6 presented a protocol 
with addition modulo 2 based on both polarization of a single photon. In 2010, a three-party quantum addition 
modulo 2 protocol was discussed by Zhang et al.7. These protocols have some limitations, for example, they can-
not perform addition correctly if one player is dishonest as these protocols have (n, n) threshold approach, and 
the modulo of these protocols is very small. They have high communication and computation costs due to the 
bit-by-bit computation. In 2015, Shi et al.8 discussed a secure multiparty quantum summation and multiplication 
protocol. This protocol is efficient, but it has (n, n) threshold approach. In 2017, Shi and Zhang9 introduced a 
two-party quantum protocol for summation. This protocol cannot perform summation correctly if one party 
is dishonest. In the same year, a multiparty quantum summation modulo 2 protocol was discussed by Zhang et 
al.10. This protocol is efficient but its modulo is too small. Then, Liu et al.11 discussed a secure multiparty quantum 
summation protocol based on two particle Bell States. This protocol is efficient but its modulo is 2 and it has (n, 
n) threshold approach. In 2018, Yang and Ye12 introduced a secure multiparty quantum protocol for summation 
based on the quantum Fourier transform. The computation type of this protocol is secret-by-secret, but it has 
(n, n) threshold approach. Recently, Jiao et al.13 have discussed a secure multiparty quantum summation and 
multiplication protocol with mutually unbiased bases. This protocol is efficient, but the computation type of this 
protocol is secret-by-secret and it has (n, n) threshold approach. Most of the existing secure multiparty summa-
tion and multiplication protocols have (n, n) threshold approach and bit-by-bit computation type. Further, they 
are not practically feasible as they require high communication as well as computation costs.

In this paper, we propose two hybrid (t, n) threshold quantum protocols for secure multiparty summation 
and multiplication. In order to incorporate the advantages of both quantum and classical multiparty summa-
tion and multiplication, we apply the quantum methods in a secure multiparty computation. The novelty of the 
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proposed work can be summarized as follows. Our protocols have (t, n) threshold approach, where t players 
can perform the quantum summation and multiplication systematically and efficiently without revealing their 
privacy. They require less communication and computation costs as their computation type is secret-by-secret. 
Further, our proposed protocols possess all the benefits(i.e., they use qudit instead of qubit, do not require the 
secret information to be passed through the transmitted particles, do not require to perform entanglement meas-
urement, and the quantum attacks cannot be performed) of the existing secure multiparty quantum summation 
and multiplication.

preliminaries
Here, we introduce the Shamir’s secret sharing, quantum state, SUM gate, quantum Fourier transform (QFT), and 
generalized Pauli operator, which will be used in our work.

Shamir’s secret sharing. In the Shamir’s secret sharing, there is a set of players P P P{ , , , }n1 2= …P  and a 
dealer14. This secret sharing scheme consists of two phases: secret sharing and secret reconstruction. In secret 
sharing phase, the dealer shares a secret among n players using a (t − 1) degree polynomial f(y); each player knows 
only his share. In secret reconstruction phase, the t players reconstruct the secret using the Lagrange interpola-
tion. The Lagrange Interpolation is defined as follows.
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For y = 0, Eq.(1) can be written as follows.
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Quantum State. In quantum computing, the d-level quantum state is defined as follows15.
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− , where Cl represents complex number.

SUM gate. In quantum computing, the SUM gate is defined as follows16.

= +SUM u v u u v d( , ) ( , mod ), (4)

where |u〉 and |v〉 denote control and target particles, respectively, and ∈ … −u v d, {0, 1, , 1}.

Quantum fourier transform (QFT). The discrete Fourier transform is the foundation of QFT. The d-level 
QFT is defined as follows8.
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where, ω represents e2πi.

Generalized pauli operator. In quantum computing, the d-level generalized Pauli operator is defined as 
follows17.
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where, d, {0, 1, 1}γ δ ∈ … − .

proposed protocols
In this section, we propose two hybrid (t, n) threshold secure multiparty quantum summation and multiplication 
protocols. Let X and Y have two secrets a and b, respectively, and want to perform (a + b) or (a × b) without 
revealing their secrets. In these proposed protocols, we assume that the set of players P P P{ , , , }n1 2P = … , a qual-
ified subset = …P P P{ , , , }t1 2 , each qualified subset containing t players and player P1 is an initiator.

Hybrid secure multiparty quantum summation protocol. Here, we discuss our proposed hybrid (t, n) 
threshold secure multiparty quantum summation, whose procedure is given as follows.
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Step 1: The X and Y choose two different polynomials = + + + … + −
−f y a c y c y c y d( ) modt

t
1 2

2
1

1  and 
= + + + … + −

−g y b c y c y c y d( ) modt
t

1 2
2

1
1 , where … −c c c, , , t1 2 1 and c c c, , , t1 2 1… −  are coefficients and a 

and b are the secrets of X and Y, respectively. Then, they compute the classical shares f(yi) and g(yi), respectively, 
using the Shamir’s Secret Sharing14 and distribute these shares among the set of players = …P P P{ , , , }n1 2P . Player 
Pi, i n1, 2, ,= … , possesses only his shares f(yi) and g(yi).

Step 2: Player Pi, i 1, 2, ,= …  computes = +h y f y g y d( ) ( ) ( ) modi i i  and keeps h(yi) secret.
Step 3: Player Pk, k t1, 2, ,= … , computes the shadow of his shares, denoting as Ak, as follows.
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Step 4: Initiator P1 prepares t single qudit particles |0〉1, |0〉2, …, |0〉t and applies QFT on the first particle |0〉1. 
The resultant state |φ1〉 is given as follows.
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Here, |φ1〉 and |0〉k’s, = …k t2, 3, , , are control and target qudits, respectively.
Step 5: Player P1 performs (t − 1) SUM operations to produce the entangled state |φ2〉 as follows.
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Initiator P1 sends the particle |l〉k to each player Pk, k t2, 3, ,= … .
Step 6: Each player Pk, k t2, 3, ,= … , applies the QFT operation on his particle |l〉k and then executes the 

generalized Pauli operator UA ,0k
, k t1, 2, ,= … . The quantum state |φ2〉 is evolved as the quantum state |φ3〉, 

which is obtained as follows:
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Step 7: In computational basis, each player Pk, k t2, 3, ,= … , measures his particle +m Ak k  and broadcasts 
his measurement result mk + Ak, k t1, 2, ,= … .

Step 8: Finally, they jointly compute the summation by adding their measurement results. The summation of 
the secrets is computed as: + = ∑ +=a b m A d( ) modk

t
k k1 .

Hybrid secure multiparty quantum multiplication protocol. Here, we discuss our proposed quantum 
protocol for secure multiparty multiplication, whose procedure is given as follows.

Step 1: Initially, X and Y select two different polynomials f y a c y c y c y d( ) modt
t

1 2
2

1
1= + + + … + −

−  and 
= + + + … + −

−g y b c y c y c y d( ) modt
t
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1
1 , where a and b are the secrets of X and Y, c c c, , , t1 2 1… −  and 

c c c, , , t1 2 1… −  are coefficients of polynomials f(y) and g(y), respectively. Then, they compute the classical shares 
f(yi) and g(yi), respectively, and distribute them among n players. Player Pi, i n1, 2, ,= … , knows his shares f(yi) 
and g(yi) only.

Step 2: Player Pi, = …i n1, 2, , , computes ′ = ×h y f y g y d( ) ( ) ( ) modi i i  and shares h y( )i′  among n players 
using new random polynomial z x h y x x x d( ) ( ) modi i t

t
1 2

2
1

1β β β= ′ + + + … + −
− . The total polynomial, 

denoted as Ti, is computed by each player Pi, i n1, 2, ,= … , using the Vandermonde matrix18. Player Pi, 
= …i n1, 2, , , knows Ti only.

Step 3: Each player Pk, k t1, 2, ,= … , computes the shadow Bk of his share as follows.
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Step 4: Initiator P1 prepares t single qudit particles 0 , 0 , , 0 t1 2 …  and applies QFT on the first particle 01. 
The resultant state |Φ1〉 is given as follows.
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Here, |Φ1〉 denotes control qudit and |0〉k’s, = …k t2, 3, , ), denote target qudits.
Step 5: Initiator executes (t − 1) SUM operations to get the entangled state |Φ2〉, as follows.
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Initiator P1 sends the particle |r〉k to each player Pk, k t2, 3, ,= … .
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Step 6: Each player Pk, k t2, 3, ,= … , applies QFT on his particle |r〉k, followed by the generalized Pauli oper-
ator UB ,0k

. The quantum state |Φ2〉 is evolved as the resultant state |Φ3〉,which is given below:
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Step 7: Each player Pk, k t2, 3, ,= … , measures his particle w Bk k+  in computational basis and broadcasts 
his measurement result wk + Bk.

Step 8: Finally, they compute the multiplication by adding their measurement results. The multiplication of 
the secrets is computed as: × = ∑ +=a b w B d( ) modk

t
k k1 .

correctness
In this section, we prove the correctness of our proposed protocols. We discuss the correctness proof of the secure 
multiparty quantum summation protocol only. The correctness proof of the secure multiparty quantum multipli-
cation protocol is very much similar to that of the secure multiparty quantum summation protocol.

Correctness Proof. lemma 1 If all players in a qualified subset P P P{ , , , }t1 2= …  act honestly, then they can 
perform summation a b A d( ) modk

t
k1+ = ∑ = .

proof 1 On Applying QFT and Pauli operators by each player Pk, k t1, 2, ,= … , on his particle gives the quantum 
state as follows.

∑

∑

∑ ∑ ∑

∑

∑ ∑

∑ ∑

∑

φ

ω ω

ω

ω

ω

= ⊗ ⊗ … ⊗





…





= ⊗ ⊗ … ⊗

=












⊗













⊗… ⊗












= + ⊗ + ⊗ …

⊗ +

= + ⊗ + ⊗ …

⊗ +

= + ⊗ + ⊗ …

⊗ +

=

−

=

−

=

−

=

−

=

−

=

−

=

−
−

≤ … <

+…+

− +

≤ … < =

−
+…+

− +

≤ … < + + … + =

U QFT U QFT U QFT
d

l l l

d
U QFT l U QFT l U QFT l

d
U

d
m U

d
m

U
d

m

d
d m A m A

m A

d m A m A

m A

d s d m A m A

m A

1

1

1 1 1

1

1

A A A
l

d

t

l

d

A A A t

l

d

A
m

d
m l

A
m

d
m l

A
m

d
m l

t

l

d
t

m m m d

m m l

t t

t

m m m d l

d
m m l

t t
t

m m m d m m m d

t t

3 ,0 ,0 ,0
0

1

1 2

0

1

,0 1 ,0 2 ,0

0

1

,0
0

1

1 ,0
0

1

2

,0
0

1

0

1

2
0 , , ,

( )
1 1 2 2

1
2

0 , , , 0

1
( )

1 1 2 2

1
2 0

0 , , , , , , 0 mod
1 1 2 2

t

t

t
t

t

t

t

t

t t

1 2

1 2

1
1

1
2

1

2

1

1 2

1

1 2

1

1 2 1 2

Each player Pk, = …k t1, 2, , , measures his particle in computational basis. The compute the sum after receiving 
others players’ measurement results.
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From Eq. (15), we get sum of the secrets a b A d( ) modk
t

k1+ = ∑ = .

example
Here, we illustrate our proposed secure multiparty quantum summation and multiplication protocols using an 
example. Suppose X and Y have two secrets 4 and 2, respectively, and want to compute their sum and multiplica-
tion without revealing their secrets. The X and Y share these secrets among 7 players = …P P P P{ , , , }1 2 7  and the 
qualified subset P P P{ , , }1 2 3 =  computes the summation and multiplication. The X and Y select prime as 11. 
Thus, prime d = 11, threshold t = 3, and total number of players n = 7.
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Summation example. Example. Consider that X and Y choose their respective polynomials 
= + +f y y y( ) 4 2 3 mod112  and = + +g y y y( ) 2 3 mod112 . They compute their classical shares f(yi) and g(yi) 

and distribute these shares among 7 players P P P P{ , , , }1 2 7= … . Each player Pi, i 1, 2, , 7= … , computes 
h y f y g y( ) ( ) ( )mod11i i i= + . The computation of share and h(yi) are shown in Table 1. Each player Pk, k = 1, 2, 3, 
(of qualified subset = P P P{ , , }1 2 3 ) computes the shadow of his share Ak as follows:
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Initiator P1 computes φ = ∑ = l l ll2
1
11 0

10
1 2 3 and sends the particle |l〉k to each player Pk, k = 2, 3. Each player 

Pk (of qualified subset = P P P{ , , }1 2 3 ) applies QFT and generalized Pauli operators U1,0, U3,0, U2,0 on his particle. 
Hence,
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Players P1 P2 P3 P4 P5 P6 P7

Shares

f(yi) 9 9 4 5 1 3 0

g(yi) 6 1 9 8 9 1 6

h(yi) = f(yi) + g(yi) 4 10 2 2 10 4 6

h′(yi) = f(yi) × g(yi) 10 9 3 7 9 3 0

Polynomials: zi(x) 10 + x + 2x2 9 + 3x + x2 3 + 2x + 2x2 7 + 2x + 3x2 9 + 5x + x2 3 + 2x + x2 0 + x + 5x2

Shares

z1(xi) 2 9 9 2 10 0 5

z2(xi) 2 8 5 4 5 8 2

z3(xi) 7 4 5 10 8 10 5

z4(xi) 1 1 7 8 4 6 3

z5(xi) 4 1 0 1 4 9 5

z6(xi) 8 8 3 4 0 2 10

z7(xi) 6 0 4 7 9 10 10

Ti 7 9 3 0 0 3 9

Table 1. Share Computation for Summation and Multiplication.
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Finally, the players measure (computational basis) their particles and broadcast their respective measurement 
results m1 + 1, m2 + 3, m3 + 2. They get the sum by adding their measurement results as follows:

m m m m m m1 3 2 6 6 mod11 61 2 3
11

1 2 3
11

+ + + + + ≡ + + + ≡ =

Example of multiplication. Example. Similar to summation, X and Y select their respective polynomials 
f y y y( ) 4 2 3 mod 112= + +  and g y y y( ) 2 3 mod 112= + +  and compute their respective classical shares f(yi) 
and g(yi). They distribute these shares among 7 players P = …P P P{ , , , }1 2 7 . Each player Pi, = …i 1, 2, , 7, com-
putes h y f y g y d( ) ( ) ( ) modi i i′ = ×  and these h y( )i′  shares are shared among n players using new random polyno-
mial z x h y x x x d( ) ( ) modi i t

t
1 2

2
1

1β β β= ′ + + + … + −
− . The shares of total polynomial, denoted as Ti, are 

computed by each player Pi, = …i 1, 2, , 7, using the Vandermonde matrix18. The computation of Ti is shown in 
Table 1. Each player Pk, k = 1, 2, 3, (of qualified subset P P P{ , , }1 2 3 = ) computes the shadow of his shares Bk as 
follows.
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Initiator P1 computes r r rr2
1
11 0

10
1 2 3Φ = ∑ = , sends the particle |r〉k to player Pk, k = 2, 3. Each player Pk (of 

qualified subset P P P{ , , }1 2 3 = ) applies QFT operation and generalized Pauli operators U10,0, U6,0, U3,0 on his 
particles as follows.
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Finally, players measure (computational basis) their particle and broadcasts their measurement results w1 + 10, 
w2 + 6, w3 + 3. They get the multiplication by adding measurement results as follows:

+ + + + + ≡ + + + ≡ =w w w w w w10 6 3 19 19 mod11 81 2 3
11

1 2 3
11

Security Analysis
In this section, we analyze the security of our proposed secure multiparty quantum summation and multiplica-
tion protocols. We mainly focus on the security analysis of summation protocol because the security analysis of 
multiplication protocol is very much similar to that of summation protocol.
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intercept-resend attack. Suppose an eavesdropper E intercepts the particle |l〉k and measures it in the 
computational basis | 〉 | 〉 … | − 〉d{ 1 , 2 , , 1 } to extract the information about the shadow of the share. The eaves-
dropper E prepares a fake particle lk and resends it to player Pk, k t2, 3, ,= … . If E performs this attack, then he 
can compute l correctly with probability 

d
1 . But E cannot get any valuable information about the share of the 

shadow from l, because |l〉k does not contain any valuable information about the shadow of the share.

collusion attack. In our proposed protocols, each player Pk measures his particle +m Ak k  and broadcasts 
his measurement result +m Ak k, = …k t1, 2, , . Thus, other players cannot obtain the shadow of the share (Ak). 
Suppose the dishonest players Pr−1 and Pr+1 collude together to obtain other players’ shadow of the share Ak. They 
cannot get any information about the shadow of the share because player P1 only sends the particles |l〉k to other 
players; nothing else, and the particles |l〉k don’t carry any valuable information about the shadow of the share. So, 
this attack is not possible in our proposed protocols.

entangle-measure attack. In this attack, the eavesdropper E intercepts all the particles |l〉k, when the ini-
tiator P1 sends the particles |l〉k to player Pk, k t2, 3, ,= … . Further, E selects a intercepted particle |l〉m and pre-
pares an ancillary particle |c〉. The d-level SUM operation is performed by E on |l〉m to entangle the ancillary 
particle |c〉. The quantum state |φ2〉 is evolved as |φ2〉′, which is given below.

SUM l c

d
l l l l c

( ( , ))
1 , , ,

m

l

d

t

2 2

0

1

1 2∑

φ φ′ =

= … ⊕
=

−

E prepares another secret particle |l〉o and performs d-level SUM operation on |c〉. The quantum state |φ2〉′ is 
evolved as |φ2〉″, which is given below.

∑

φ φ

φ

″ = ⊕

= … ⊕ ⊕

=
=

−

SUM l l c

d
l l l l l c

c

( ( , ))
1 , , ,

o

l

d

t

2 2

0

1

1 2

2

The ancillary particle |c〉 is measured by E and gets the initial value |c〉. So, E concludes that the particles |l〉m 
and |r〉r are the same. Based on this conclusion, E assumes that all the particles |l〉k’s are same. Thus, E cannot get 
any information about the shadow of the share from this attack.

collective attack. In this attack, E interacts with each qudit by preparing an independent ancillary particle 
and jointly performs the measurement operation on all the ancillary qudit to get the shadow of the share. E pre-
pares an independent ancillary particle |c〉 to interact with each qudit of player = …P k t, 1, 2, ,k . After interact-
ing, E gets the particle |l〉k and jointly performs the measurement operation in the computational basis 

… −d{ 1 , 2 , , 1 } to learn the shadow of the share. From this joint measurement, E cannot get any informa-
tion about the shadow of the share because |l〉k does not contain any information of the shadow of the share.

coherent attack. In coherent attack, E jointly interacts with all qudit of player P k t, 1, 2, ,k = … , by prepar-
ing an independent ancillary particle |c〉 and he gets each player’s particle |l〉k. E jointly performs the measurement 
operation in computational basis … −d{ 1 , 2 , , 1 } on each player’s particle |l〉k. From this measurement of 
particle |l〉k, E only gets l with probability 

d
1 . But, l does not contain any valuable information about the shadow of 

the share. Here, E only knows the interacting particle |l〉k, nothing else. So, from this attack, E cannot learn the 
shadow of the share.

performance Analysis
Here, we analyze the performance of our proposed secure multiparty quantum summation and multiplication 
protocols and compare it with that of ten existing secure multiparty quantum summation and multiplication 
protocols: Du et al.’s protocol4, Chen et al.’s protocol5, Zhang et al.’s protocol6, Zhang et al.’s protocol7, Shi et al.’s 
protocol8, Shi’s protocol9, Zhang et al.’s protocol10, Liu et al.’s protocol11, Yang’s protocol12 and Jiao et al.’s protocol13 
based on three parameters: cost, universality, and attack. The Du et al.’s protocol4 is based on multiparty compu-
tation but it has (n, n) threshold approach and its modulo is n + 1 and computation type is bit-by-bit. The Chen 
et al.’s5, Zhang et al.s6, Zhang et al.’s7 protocols are based on multiparty computation but they have (n, n) threshold 
approach; their modulo are 2 and computation type is bit-by-bit. The protocols of Chen et al.5 and Zhang et al.6 
perform 1 Unitary operation. Both the protocols of Shi et al.8 are based on multiparty computation and compu-
tation type is secret-by-secret, but they have (n, n) threshold approach. In the Shi et al.’s protocols8, the QFT is 
applied on the first particle by initiator Bob1,who sends second particle to next player. Then, the unitary operation 
is performed by each player Bobi, i = 2, 3, …, n. Initiator Bob1 applies QFT−1 on his particle. So, the total compu-
tation and communication costs of these protocols are 1QFT + 1QFT−1 + (n − 1) unitary operations + 2 measure 
operation and n, respectively. The Shi’s protocol9 is based on multiparty computation but it has (n, n) threshold 
approach and its computation type is bit-by-bit. The Zhang et al.’s protocol10 is based on multiparty computation 
but it has (n, n) threshold approach with bit-by-bit computation type and modulo of 2. The total computation 
cost of this protocol is n measure operations. The Liu et al.’s protocol11 is based on multiparty computation but 
it has (n, n) threshold approach with bit-by-bit computation type and modulo of 2. The total computation and 
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computation costs of this protocol is n and n, respectively. The Yang’s protocol12 is based on multiparty compu-
tation but it has (n, n) threshold approach. The total computation and communication costs of this protocol are 
nQFT + n measure operation and (n − 1), respectively. The Jiao et al.’s protocol13 is based on multiparty compu-
tation but it has (n, n) threshold approach with bit-by-bit computation type. The total computation and commu-
nication costs of this protocol is n unitary operation + n measure operations and n, respectively. However, our 
proposed summation and multiplication protocols are based on multiparty computation with modulo d, have (n, 
n) threshold approach, and their computation type is secret-by-secret. The total computation and communication 
costs of these protocols are 1QFT + (t − 1) unitary operation + t measure operation and (t − 1), respectively. So, 
our protocols are more secure, flexible, and practical as compared to the existing summation and multiplication 
protocols. The comparison of cost, universality, and attack are shown in Table 2. In this table, IR, EM, Comt, Com, 
s-by-s, b-by-b, Summ. and Multi. denote intercept-resend attack, entangle-measure attack, computation cost, 
communication cost, secret-by-secret, bit-by-bit, summation and multiplication, respectively.

conclusion
In this paper, we have presented the hybrid (t, n) threshold quantum protocols for multiparty summation 
and multiplication. They have better communication and computation costs as the type of computation is 
secret-by-secret. They can resist the quantum attacks, i.e., intercept-resend, entangle-measure, collusion, col-
lective, and coherent. No player cannot get other players’ private information. Our protocols are more secure, 
flexible, and practical as compared to the existing summation and multiplication protocols. Further, they possess 
all the benefits (i.e., use qudit instead of qubit, do not pass any secret information through the transmitted par-
ticles, do not perform entanglement measurement, and quantum attacks are not possible) of the existing secure 
multiparty quantum summation and multiplication.
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