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Relationship between energy 
Dosage and Apoptotic cell Death by 
Modulated electro-Hyperthermia
patrick Hung-Ju Kao1, chia-Hung chen2, Yuk-Wah tsang3,4, chen-Si Lin5, Hsin-chien chiang5, 
cheng-chung Huang6,7, Mau-Shin chi2,6, Kai-Lin Yang6,8, Wen-tyng Li4, Shang-Jyh Kao9, 
carrie Anne Minnaar10, Kwan-Hwa chi5,6,8 & Yu-Shan Wang2,5,6 ✉

Modulated electro-hyperthermia (meHt) is a form of mild hyperthermia (Ht) used for cancer treatment. 
the principle utility of Ht is the ability not only to increase cell temperature, but also to increase blood 
flow and associated pO2 to the microenvironment. While investigational evidence has shown the 
unique ability of meHt to elicit apoptosis in cancer cells, in vivo and in vitro, the same trait has not been 
observed with conventional Ht. there is dissension as to what allows meHt to elicit apoptosis despite 
heating to only mild temperatures, with the predominant opinion in favor of increased temperature at 
a cellular level as the driving force. for this study, we hypothesized that in addition to temperature, the 
amount of electrical energy delivered is a major factor in induction of apoptosis by meHt. to evaluate 
the impact of electrical energy on apoptosis, we divided generally practiced mEHT treatment into 3 
phases: Phase I (treatment start to 10 min. mark): escalation from 25 °C to 37 °C Phase II (10 min. mark 
to 15 min. mark): escalation from 37 °C to 42 °C Phase III (15 min. mark to 45 min. mark): maintenance 
at 42 °C Combinations of mEHT at 18 W power, mEHT at 7.5 W power, water bath, and incubator were 
applied to each of the three phases. power output was recorded per second and calculated as average 
power per second. total number of corresponding Joules emitted per each experiment was also 
recorded. The biological effect of apoptotic cell death was assayed by annexin-V assay. In group where 
mEHT was applied for all three phases, apoptosis rate was measured at 31.18 ± 1.47%. In group where 
mEHT was only applied in Phases II and III, apoptosis rate dropped to 20.2 ± 2.1%. Where mEHT was 
only applied in Phase III, apoptosis was 6.4 ± 1.7%. Interestingly, when mEHT was applied in Phases I 
and II, whether Phase III was conducted in either water bath at 42 °C or incubator at 37 °C, resulted in 
nearly identical apoptosis rates, 26 ± 4.4% and 25.9 ± 3.1%, respectively. These results showed that 
accumulation of mEHT at high-powered setting (18 W/sec) during temperature escalation (Phase I and 
Phase II), significantly increased apoptosis of tested cancer cells. The data also showed that whereas 
apoptosis rate was significantly increased during temperature escalation by higher power (18 W/sec), 
apoptosis was limited during temperature maintenance with lower power (7.5 W/sec). This presents that 
neither maintenance of 42 °C nor accumulation of Joules by mEHT has immediate correlating effect on 
apoptosis rate. These findings may offer a basis for direction of clinical application of mEHT treatment.

Hyperthermia (HT) is a method of cancer treatment in which patients are subjected to supra-normal 
body temperatures, and is often used in conjunction with radiotherapy or chemotherapy1,2. Modulated 
electro-hyperthermia (mEHT) is a loco-regional hyperthermia method utilizing electromagnetic current at 
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13.56 MHz radiofrequency (RF) to treat tumours3–5. Modulated electro-hyperthermia is applied for cancer treat-
ment in numerous countries, including those of the European Union, Australia, Canada, Israel, Russia, South 
Africa, South Korea, Taiwan, and Thailand, with a history of clinical practice spanning two decades6–8. The trade-
name of mEHT is ‘Oncothermia.’

Heating techniques utilize either a capacitive or phased array heating system. Capacitive heating technologies 
rely on the difference in the impedance and conductivity of tumours, resulting from the increased metabolic 
activity of the tumour, the subsequently higher ionic concentration within the extracellular tumour environment, 
and the cellular disorganization4,5,9,10. Modulated electro-hyperthermia utilizes a capacitive coupled set-up with 
additional safety parameters and impedance matching to further improve the selection of the tumours over the 
healthy tissue and to reduce the risks of hot spots and superficial burns9–11. Cell membranes contain sterol- and 
sphingolipid-enriched domains which have different biophysical properties, such as conductivity, to the rest of 
the cell membrane. These domains are subsequently more sensitive to the absorption of the applied energy and 
simulations indicate that this induces increased temperatures on a nanoscopic level12–14. This nanoscale heating 
stimulates signal transduction pathways and involved in the programmed cell death in cancer cell4,15. The ability 
of mEHT to induce cancer cell apoptosis was reported in several studies14,16,17. A direct comparison between 
water bath, conventional hyperthermia (Thermotron RF-8, 8 MHz), and mEHT for their biological effects has 
been previously published18. Under the same temperature conditions (42 °C for 30 min), mEHT could induce sig-
nificantly higher apoptosis rates than water bath and conventional hyperthermia. The apoptotic rate of mEHT at 
42 °C was similar to water bath at temperatures between 45 °C and 48 °C (approximately 46 °C)18. The hypothesis 
on the mechanism of mEHT for cancer cell apoptosis is stimulation of the cell membrane and activation of death 
receptor on cell membranes to induce apoptosis. Andocs et al. have previously investigated the apoptotic mecha-
nism of mEHT treatment. The protein expression of cell death receptor, Fas, markedly increased 3 h after mEHT 
treatment, compared to treatment using alternate hyperthermia methods. Increased activation of the enzyme 
Caspase-8 was observed 1 h and 3 h following mEHT treatment, compared to alternate hyperthermia methods14. 
This suggests that mEHT can induce more apoptotic cell death than other hyperthermia techniques, possibly due 
to the additional effect of energy disposition.

Several studies have explored the mechanisms of mEHT3–5,9,10,15,19,20. Clinical reports for mEHT treatment 
indicate feasibility and benefit for cancer patients with relapsed malignant glioma7,21, advanced hepatocellular 
carcinoma22,23, and advanced colorectal cancer with liver metastasis24, amongst others. In clinical practice, mEHT 
treatment is performed on patients from one to three sessions per week. Each treatment session is upwards of 
60 minutes, with maximum power being 150 W. Power is regularly and linearly elevated depending on individual 
patient tolerance. The applicators used are either 20 cm or 30 cm in diameter, depending on the tumour volume 
and treatment area. Typically, hyperthermia techniques attempt to measure temperatures inside the tumour, using 
the temperature as a measurement of treatment efficiency. Challenges associated with accurate intra-tumoural 
temperature measurements led to the proposal of a different dosing method utilized during mEHT. During 
mEHT, the energy deposition is measured as a dose of the treatment, and the temperature is only an outcome of 
the effects of the treatment, but not the driving force of the treatment. The lower temperatures achieved during 
mEHT are associated with improved safety25. Temperature is therefore not measured during mEHT treatments 
in clinical practice12. New studies in mEHT have centered around the theory that the total energy absorbed by 
the subject (measured in Joules) is a principal factor in cancer treatment, rather than the transfer of thermal 
energy26,27. The average applied energy is around 300 kilojoule per treatment (range: 250 to 450). The clinical 
application does not increase the energy power more than what the patient can tolerate. In some case, the treat-
ment parameters do not even achieve the defined values. This may be the reason for the varied clinical results 
compared to laboratory results. In this study, we hypothesized that if the patient can tolerate a higher power, or 
more total energy, an increased therapeutic outcome may be achieved.

Since mEHT treatment induces a significant increase in cell apoptosis at the same temperature as other heat-
ing techniques15, we hypothesized that the positive results of mEHT treatments are not in fact due to the direct 
effect of hyperthermia on the cell signaling processes, but rather due to the effects mediated by the electric fields 
delivered to tumour tissues. To test this hypothesis, we investigated which parameters are the most important 
factors affecting the mEHT-induced apoptotic cell death effect on cancer cells. This may assist in the optimization 
and improvement of clinical results to match prior laboratory observations. We designed several experimental 
set-ups to investigate whether differences in the accumulation of total Joules and power wattage per second with 
modulation would induce different levels of apoptosis on the human lung cancer cell line, A549. The maintenance 
of 42 °C, accumulation of total Joules, and accumulation of high or low power wattage per second with modula-
tion, were analyzed.

Materials and Methods
cell culture. The adenocarcinomic human alveolar basal epithelial cell line, A549, was maintained in 
Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen, Verviers, Belgium) containing 10% heat-inactivated 
fetal bovine serum (FBS), 2 mM L-glutamine, 100 units/mL penicillin, and 100 µg/mL streptomycin (SIGMA, St. 
Louis, MO). A549 was purchased from BCRC (Bioresource Collection and Research Center, Hsinchu, Taiwan, 
catalog number BCRC 60074).

meHt treatment. Electromagnetic heating was generated by capacitively-coupled, amplitude-modulated, 
13.56-MHz radiofrequency (LabEHY, Oncotherm GmbH, Troisdorf, Germany). An in vitro heating model was 
set up in an electrode chamber (LabEHY in vitro applicator) as previously described18. The chamber contained 
a cell bag (1 × 106 cells) heated from room temperature (25 °C) to 42 °C with average power of 18 W, and then 
maintained at 42 °C for 30 minutes, with average power of 7.5 W. For the groups that required mEHT at any exper-
imental phase, the cells were transferred at start of experiment to a cell bag, and remained in the same bag for 
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the subsequent phases. The temperature was measured using optical sensors (Luxtron FOT Lab Kit, LumaSense 
Technologies, Inc., California, USA). The power pattern was checked each time to verify the accuracy and simi-
larity of the experiments. The mEHT treatment was divided into three phases to evaluate the impact of electrical 
energy on apoptosis:

Phase I (treatment start to 10 min. mark): escalation from 25 °C to 37 °C
Phase II (10 min. mark to 15 min. mark): escalation from 37 °C to 42 °C
Phase III (15 min. mark to 45 min. mark): maintenance at 42 °C
Experiments were conducted with combinations of mEHT at 18 W power (to increase temperature) 

and mEHT at 7.5 W power (to maintain temperature). For mEHT, power watt output was recorded per second, 
and calculated as average power per second and total Joule (watt x second).

Water bath and incubator heating. Two control experiments were set up, with both water bath heating 
and incubator heating applied to each of the three phases as control comparisons. For negative control, cells were 
transferred to a tube, and subsequently incubated at 37 °C for a period equal to the combined time of Phases I, II, 
and III (45 mins.)

A second group was set up as ‘temperature control,’ with the purpose to mimic temperature-reached over time 
of the mEHT experimental groups. At start, cells were transferred to tube, and placed in water bath for Phase I 
heating, from 25 °C to 37 °C over a period of 10 minutes. Phase II immediately followed, with cells heated from 
37 °C to 42 °C over a period of 5 minutes. This was then immediately followed by Phase III, with temperature of 
water bath maintained at 42 °C for 30 minutes.

Apoptosis assay. A549 cells (1 × 106 cells) were treated by combinations of mEHT and/or water bath, 
seeded on 6-well plates and cultured for 24 hours, trypsinized, and washed twice with phosphate-buffered saline 
(PBS). Apoptosis was confirmed using an Annexin-V Apoptosis Kit (BD Pharmingen) according to manufac-
turer instructions. Briefly, tumour cells were washed three times with PBS, stained with Annexin V and propid-
ium iodide, incubated in the dark and on ice for 10 minutes, and then subjected to flow cytometry analysis. The 
percentage of positive cells was measured using a FACSCalibur cytometer and Cell Quest Pro software (Becton 
Dickinson, Mountain View, CA). The apoptosis rates induced by mEHT of each experiment were evaluated indi-
vidually via Annexin-V assay to confirm the energy of mEHT was delivered to cells and induced proper cell death 
effect successfully.

Statistical analysis. All results were compared using an unpaired t-test (2-tailed). Differences were consid-
ered statistically significant at a P-value <0.05. Data were represented as the mean ± SD (standard deviation). 
Pearson’s correlation coefficient was determined to assess linear relationship between power wattage output and 
apoptotic cell death in Graphpad prism 6.

Results
Round 1: different total joules induced different levels of apoptotic cell death. To evaluate the 
impact of electrical energy on apoptosis, we wanted to test heating by mEHT 18 W versus heating by water bath. 
Treatment time of 45 minutes was divided into three phases (Fig. 1A):

Phase I (treatment start to 10 min. mark): escalation from 25 °C to 37 °C
Phase II (10 min. mark to 15 min. mark): escalation from 37 °C to 42 °C
Phase III (15 min. mark to 45 min. mark): maintenance at 42 °C
Apoptotic cell death was evaluated using FITC-conjugated Annexin V and propidium iodide 24 h after 

treatment.
In the first group (I-II-III/E), Phase I utilized 18 W power of mEHT to increase temperature from 25 °C to 

37 °C over span of 10 minutes. In Phase II, settings remained unchanged to increase temperature from 37  °C to 
42 °C over span of 5 minutes. In Phase III, 7.5 W power of mEHT was then used to maintain temperature at 42 °C 
for 30 minutes. The total power of mEHT absorbed was 29317.7 ± 1984.7 Joules (Fig. 1B).

In the second group (I/WB + II-III/E), Phase I heating was substituted by water bath heating, resulting in total 
Joules absorbed to be 18125.7 ± 4717.1 deposited by mEHT during Phases II and III (Fig. 1B).

In the third group (I-II/WB + III/E), both Phase I and II utilized water bath heating, while Phase III remained 
mEHT 7.5 W, and total Joules absorbed was recorded as 15724.8 ± 5581.4 deposited by mEHT during Phase III 
(Fig. 1B).

In the fourth group (WB), Phases I, II, and III were conducted on cells using water bath. In Phase I, water bath 
was used to increase temperature from 25 °C to 37 °C over span of 10 minutes. In Phase II, water bath was used 
to increase temperature from 37 °C to 42 °C over span of 5 minutes. In Phase III, water bath of 42 °C was used to 
maintain temperature for 30 minutes. As mEHT was not utilized, 0 Joules were absorbed (Fig. 1B).

A fifth group (37 °C incubator) was set as control, replacing Phases I, II, and III, with incubation at 37 °C for 
a total of 45 minutes.

Results from these experiments showed a significantly higher proportion of apoptotic cells in the first 
group (I-II-III/E) (31.18 ± 1.47%) compared with the group (WB) where only water bath was used for heating. 
Interestingly, the control group (37 °C incubator) had apoptosis rates comparable to water bath group (WB).

The (I/WB + II-III/E) group, where Phase I used water bath heating, apoptosis was significantly less than 
(I-II-III/E), 22.6 ± 4.42% versus 31.18 ± 1.47%, respectively (Fig. 1C). Although tumour cells were subjected to 
same temperatures and same durations, cell death by apoptosis showed positive correlation to accumulation of 
power wattage. These results indicate that mEHT treatment conducted at various total Joule-count would result 
in differing levels of apoptotic cell death.
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Round 2: limited role of temperature maintenance at 42° in apoptosis. We wanted to investigate 
the role of 42 °C maintenance phase (Phase III) in cell death by apoptosis. Using the first group (I-II-III/E) from 
Round 1 as the baseline, where Phase I utilized 18 W power of mEHT to increase temperature from 25 °C to 37 °C 
over span of 10 minutes, Phase II utilized 18 W power of mEHT to increase temperature from 37 °C to 42 °C 
over span of 5 minutes, and then Phase III utilizes 7.5 W power of mEHT to maintain temperature at 42 °C for 
30 minutes. The total power of mEHT absorbed was 29317.7 ± 1984.7 Joules and apoptosis was 31.18 ± 1.47%).

Experiments followed the same segmentation as those from Round 1 (Fig. 2A):
Phase I (treatment start to 10 min. mark): escalation from 25 °C to 37 °C
Phase II (10 min. mark to 15 min. mark): escalation from 37 °C to 42 °C
Phase III (15 min. mark to 45 min. mark): maintenance at 42 °C
The second group (I-II/E + III/WB) replaced maintenance of 42 °C (Phase III) of 7.5 W power of mEHT with 

maintenance in 42 °C water bath. The total Joules absorbed decreased to 16203.2 ± 605.6 (Fig. 2B).
The third group (I-II/E + III/ 37 °C) replaced maintenance of 42 °C (Phase III) of 7.5 W power of mEHT with 

maintenance in 37 °C incubator. The total Joules absorbed decreased to 14924.5 ± 2431.8 (Fig. 2B). The total 
Joules were accounted only from mEHT treatment which accumulated power per second for total treatment time.

Interestingly, although the total Joules absorbed were significantly different amongst the three experiment 
groups, the apoptosis rates were not significantly different. Whereas the baseline group (I-II-III/E) had apop-
tosis at 31.18 ± 1.47%, the second group (I-II/E + III/WB) had apoptosis of 26 ± 4.4%, and the third group 
(I-II/E + III/ 37 °C) had apoptosis of 25.9 ± 3.1% (Fig. 2C). These results indicate limited apoptosis induction 
ability of temperature maintenance (Phase III), once temperatures reach 42 °C.

Round 3: pivotal role of high-power mEHT in the induction of apoptotic cell death. We further 
evaluated the effects of 18 W power on apoptotic cell death. Once again, we kept the first group (I-II-III/E) from 
Round 1 as the baseline, where Phase I utilized 18 W power of mEHT to increase temperature from 25 °C to 37 °C 
over span of 10 minutes, Phase II utilized 18 W power of mEHT to increase temperature from 37 °C to 42 °C  
over span of 5 minutes, and then Phase III utilizes 7.5W power of mEHT to maintain temperature at 42 °C for 
30 minutes. The total power of mEHT absorbed was 29317.7 ± 1984.7 Joules and apoptosis was 31.18 ± 1.47%).

Experiments followed the same segmentation as previous rounds (Fig. 3A):
Phase I (treatment start to 10 min. mark): escalation from 25 °C to 37 °C

Figure 1. Evaluation of Temperature Increase Phase. (A) The heating protocol has three phases and a set of 
variation, fulfilled with three variant of energy-absorption (1) electric (mEHT), water-bath (WB, max.42 °C), 
(3) incubator (constant 37 °C). The incubator had fixed temperature the WB was controlled. Hyperthermia 
treatment was divided into three phases to evaluate the impact of electrical energy on apoptosis: Phase I) 
Escalation from room temperature to 37 °C in span of 10 minutes. Phase II) Escalation from 37 °C to 42 °C in 
span of 5 minutes. Phase III) Maintenance of 42 °C for 30 minutes. I/WB + II-III/E: Phase I was heated by WB 
and Phase II and III were heated by mEHT. I-II/WB + III/E: Phase I and II were heated by WB and Phase III 
was heated by mEHT. (B) The absorbed energy was measured only in case of electric energy transfer. Power 
of mEHT was setting as Phase I, II-18W and Phase III-7.5 W. Power output was recorded per second and 
calculated as average power per second. Total number of corresponding Joules emitted per each experiment 
was recorded and showed as bar chart. (C) Apoptosis was measured using flow cytometry after staining with 
FITC-conjugated Annexin V and propidium iodide. Positively stained cells were counted using FACSCalibur. 
Histograms for the percentage of Annexin-V-positive cells are shown. Data represent results from 3 
independent experiments; bars indicate mean ± standard deviation (SD). (*P < 0.05).
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Figure 2. Evaluation of Phase III Temperature. (A) The heating protocols. I-II/E + III/WB: Phase I and II were 
heated by mEHT and Phase III was heated by WB. I-II/E + III/37 °C: Phase I and II were heated by mEHT and 
Phase III was shifted to 37 °C incubator. (B) Total number of corresponding Joules emitted per each experiment 
was recorded and showed as bar chart as previous figure described. (C) Apoptosis was measured as previous 
figure described. Histograms for the percentage of Annexin-V-positive cells are shown. Data represent results 
from 3 independent experiments; bars indicate mean ± standard deviation (SD). (*P < 0.05).

Figure 3. Evaluation of Phase II Temperature Increase: The first temperature increasing phase (Phase I, 
25 °C → 37 °C) could cause significant elevation of apoptotic rate. (A) The heating protocols. I/E + II-III/WB: 
Phase I was heated by mEHT and Phase II and III were heated by WB. I/E + II-III/37 °C: Phase I was heated 
by mEHT and Phase II and III were shifted to 37 °C incubator. (B) Total number of corresponding Joules 
emitted per each experiment was recorded and shown as bar chart as previous figure described. (C) Apoptosis 
was measured as previous figure described. Histograms for the percentage of Annexin-V-positive cells are 
shown. Data represent results from 3 independent experiments; bars indicate mean ± standard deviation (SD). 
(*P < 0.05).
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Phase II (10 min. mark to 15 min. mark): escalation from 37 °C to 42 °C
Phase III (15 min. mark to 45 min. mark): maintenance at 42 °C
Experiments on the second group (I/E + II-III/WB) utilized water bath heating in Phase II to increase temper-

ature from 37 °C to 42 °C over span of 5 minutes, and water bath maintenance in Phase III to maintain tempera-
ture at 42 °C for 30 minutes. Total Joules absorbed were to 9318.6 ± 371 (Fig. 3B).

The third group (I/E + II-III/37 °C) utilized maintenance in 37 °C incubator for Phases II and III. The total 
Joules absorbed decreased from the first group to a similar total as the second group to 9637.1 ± 1685.3 (Fig. 3B).

Minute differences in apoptotic cell death were observed between the water bath heating group (I/E + II-III/
WB) and the 37 °C incubator group, 13.52 ± 2.6% versus 13.6 ± 2%, respectively (Fig. 3C). However, these rates 
were significantly lower than the baseline group (I-II-III/E) of 31.18 ± 1.47%. In contrast, the (I/WB + II-III/E) 
group from Round 1, where Phase I utilized water bath heating from 25 °C to 37 °C, followed by Phase II with 
18 W mEHT, had apoptosis of 22.6 ± 4.42% (Fig. 1C). Thereby, apoptosis effect by mEHT heating from 37 °C to 
42 °C during short span of 5 minutes, shows significant value and efficiency, and warrants further exploration.

Round 4: comparison of low-power and high-power mEHT. To follow up on our findings from 
Round 3, we wished to further investigate whether high-powered heating-induced apoptosis was caused by the 
accumulation of total Joules or by temperature increase over time.

For this experiment, treatment time of 75 minutes was divided into four phases using various settings of heat-
ing (Fig. 4A):

Phase I (treatment start to 10 min. mark): escalation from 25 °C to 37 °C
Phase II (10 min. mark to 15 min. mark): escalation from 37 °C to 42 °C
Phase III (15 min. mark to 45 min. mark): variable
Another round of Phase III (45 min. mark to 75 min. mark): maintenance at 42 °C
As with previous rounds, we kept the first group (I-II-III/E) from Round 1 as the baseline, where Phase I uti-

lized 18 W power of mEHT to increase temperature from 25 °C to 37 °C over span of 10 minutes, Phase II utilized 
18 W power of mEHT to increase temperature from 37°C to 42°C over span of 5 minutes, and then Phase III 
utilizes 7.5 W power of mEHT to maintain temperature at 42 °C for 30 minutes.

In the second group (I-II-III-III/E), 18 W power of mEHT was used to increase temperature from 25 °C to 
42 °C, then 7.5 W power of mEHT was used to maintain temperature at 42 °C for 60 minutes. The results of the 
second group (I-II-III-III/E) did not show increased apoptotic cell death (31.63 ± 2.75%) when compared with 
baseline group from Round 1 (I-II-III/E) (31.18 ± 1.47%), even though the total Joules accumulated were signif-
icantly greater (42262.6 ± 2932.5 versus 29317.7 ± 1984.7, respectively) (Fig. 4C).

In the third group (I-II +I- II-III/E), 18 W power of mEHT was used to increase temperature from 25 °C 
to 42 °C, then 7.5 W power of mEHT was used to maintain temperature at 42 °C for 10 minutes, then cooled to 
25 °C by water bath, then again treated with 18 W power of mEHT to increase temperature to 42 °C, then 7.5 W 
power of mEHT was used to maintain temperature at 42 °C by 7.5 W for 30 minutes.

Although the total Joules accumulated by the second group (I-II-III-III/E) and third group (I-II-III + II-III/E) 
were similar, 42262.6 ± 2932.5 and 43264.2 ± 2862.7, respectively (Fig. 4B), the third group had significantly 

Figure 4. Repeating Phase II vs. Lengthening Phase III: Two rounds of temperature increasing phase and one 
round or elongation maintenance phase. (A) The heating protocols. I/E + II-III/WB: Phase I was heated by 
mEHT and Phase II and III were heated by WB. I/E + II-III/37 °C: Phase I was heated by mEHT and Phase II 
and III were shifted to 37 °C incubator. (B) Total number of corresponding Joules emitted per each experiment 
was recorded and shown as bar chart as previous figure described. (C) Apoptosis was measured as previous 
figure described. Histograms for the percentage of Annexin-V-positive cells are shown. Data represent results 
from 3 independent experiments; bars indicate mean ± standard deviation (SD). (*P < 0.05).

https://doi.org/10.1038/s41598-020-65823-2


7Scientific RepoRtS |         (2020) 10:8936  | https://doi.org/10.1038/s41598-020-65823-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

higher apoptosis (51.6 ± 9.85%). Whereas (I-II-III-III/E) had maintenance of 42 °C with 7.5 W power of mEHT 
for Phase III and Phase IV, we experimented by adding an additional cooling and heating segment to the 
(I-II-III + II-III/E) group; Phase III started with 10 minutes of 7.5 W mEHT, followed by 5 minutes of 37 °C incu-
bator, followed by another 5 minutes of 18 W mEHT to reach 42 °C a second time, followed by 30 minutes of 7.5 W 
mEHT to maintain 42 °C, followed with 10 minutes of 37 °C incubator.

These results show that low-power heating by mEHT did not induce apoptosis as effectively as of high-power heat-
ing, with time and accumulated Joules being equal. The results also corroborated our findings from Round 3, where 
18 W power of mEHT for 5 minutes was found to be most significant setting for apoptosis. By doubling this setting, 
apoptosis rates drastically increased to 51.6 ± 9.85%, dwarfing the apoptosis rates from the previous settings.

correlation of power levels and apoptotic cell death. The direct comparison of total accumulated 
Joules at high-power and low-power levels to apoptotic cell death percentage is shown in Fig. 5A. Correlation 
analysis was performed to determine power levels to apoptotic cell percentage. The correlation between total 
accumulated Joules and induction of apoptotic cell death was shown to have significant positive correlation 
(r = 0.9106, p < 0.0001, Fig. 5B). There was also a high degree of significant positive correlation (r = 0.9649) 
between high-power heating (18 W) and induction of apoptotic cell death (p < 0.0001, Fig. 5C). Conversely, a 
low degree of positive correlation was found between low-power heating (7.5 W) and induction of apoptotic cell 
death, which did not reach statistical significance (r = 0.5300, p = 0.0935, Fig. 5D). Low-power heating (7.5 W) 
and induction of apoptotic cell death did not show positive correlation.

Discussion
For many years, the study of hyperthermia was focused mainly on the effect of increased temperatures. However, 
the hyperthermia technology for deep site heating has improved over time. The additional effect of electronic or 
magnetic-based devices used to conduct deep site heating was ignored. In this study, we found that the accumulation of 
relatively high-power wattage per second (18 W/sec) during temperature escalation (Phase I and Phase II), significantly 
induced apoptotic death in cancer cells. The data also showed that whereas apoptosis rate was significantly increased 
during temperature escalation (18 W/sec), apoptosis was limited during temperature maintenance (7.5 W/sec). This 
presents that neither the maintenance of 42 °C nor the accumulation of Joules by mEHT may have mediated correlating 
effect on apoptosis. Water bath heating at 42 °C did not show an ability to significantly induce apoptosis, with time 
being constant, which matches our previously observations18. In that previous study, we had found other commercially 
available hyperthermia devices to have insignificant effects on apoptosis18.

Figure 5. Correlation of Watt/sec and Apoptosis Rate: The SAR/c values well characterized the dose of the 
treatment. (A) The comparison of total number of corresponding Joules emitted per each experiment and 
apoptotic rate was showed as bar chart. (B) Relation between the total Joules (x-axis) and apoptotic rate 
(y-axis). Representative of three experiments. (C) Relation between the high watt (x-axis) and apoptotic rate 
(y-axis). Representative of three experiments. P-values in F represent the probability that there is not a negative 
correlation between high watt and apoptotic rate. (D) Relation between the low watt (x-axis) and apoptotic rate 
(y-axis). Representative of three experiments.
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The reducing the temperature of cell cultures to the relative harsh environment of 25 °C may cause lower 
proliferation, modified differentiation, and protein production. In order to prevent this misreading, we used a 
dual control setup. In the first control group, we heated cells in water bath starting at 25 °C, mimicking the tem-
perature increase of the mEHT treatment groups, to isolate temperature-dependent results. To guard against the 
chance that lowering of temperatures to 25 °C affected outcomes, the second control group was setup, whereby 
all cells were placed in test tube and maintained at 37 °C throughout all phases of testing. While this experiment 
design may be artificial, the observations on cellular apoptosis showed stark contrast in the five groups. The 
results point toward apoptosis causing effects of mEHT to be temperature-independent. Our previous studies 
have shown thermal effects of mEHT, particularly in in vivo models, where the elevation of temperature dur-
ing mEHT treatment induces the up-regulation of heat shock protein, stimulating intra-tumoural inflammatory 
cytokine-expression and synergistic effects with dendritic cell therapy16. We believe these effects to be caused by 
the elevation of temperature, and the incorporation of both non-thermal and thermal effects by mEHT in cancer 
treatment.

There are numerous heating methods in clinical use, but not all methods have shown beneficial results. 
Hyperthermia by phased array systems showed benefit combined with radiotherapy for cervical cancer as investi-
gated by van der Zee28, and capacitive heating failed to show a benefit in a phase three trial combined with CCRT 
for cervical cancer published by Harima29. In the results of our present study, round 1 shows a higher importance 
of the energy deposition than of temperature, on the rates of apoptosis. It is important to note that this does not 
negate the effects of temperature on the sensitization of tumours to treatments such as radiotherapy and chemo-
therapy, as applied in conventional hyperthermia. These effects of hyperthermia are well known. However, the 
effects of mEHT, which has a milder heating effect, as a sensitizer are being demonstrated in studies such as that 
by Minnaar et al.30. Modulated electro-hyperthermia has also shown to improve disease management in palliative 
treatment for brain and pancreatic tumours as a standalone treatment31,32. The clinical results showing mEHT has 
an effect in the absence of higher temperatures prompted the research group to investigate other effects of the 
technique.

The beneficial impact of this thermal effect is both a fever-range temperature-mediated local cellular response 
and a systemic physiological response transferred via the blood to the rest of the body. Additionally, mEHT 
induces greater biological effects than conventional forms of hyperthermia. In mEHT treatment, the major role 
of temperature surveillance was to avoid any sort of damage during therapy. This study showed that the energy 
disposition was associated with the highest rates of apoptosis. This study is investigating only the effects of tem-
perature and energy on apoptosis, not on sensitization of tumors to chemotherapy and radiotherapy. The radi-
osensitization effects of temperatures are described in detail in the literature33. However, we speculate, and our 
study confirms, that mEHT has an additional effect as the heating achieved during mEHT is mild, and despite this, 
recent clinical results are showing improved outcomes25,30,34. We speculate that the energy input and non-thermal 
field effect of the treatment adds to the tumour killing. In our study, this may be due to the increased apoptosis 
rates seen with the increase in power when the amplitude modulated field is applied. Murine and human studies 
have shown an increase in temperature of an average of 2 degrees above normal temperature using mEHT35, 
however the temperatures are not as high as what is achieved during other heating techniques. The clinical results 
of mEHT do not match the results observed in vitro. The limited of clinical level 1 evidence should also be noted, 
however, this is an area which is growing31,32,35. Recently, mEHT was investigated in a Phase III randomized con-
trolled trial, as a sensitizer for CCRT for the treatment of local advance cervical cancer (LACC) patients30. The 
authors claim this was the largest randomized controlled trial of any form of hyperthermia, combining CCRT, for 
LACC30. Improved local disease control and six month local disease free survival was significantly increased with 
the addition of mEHT30 and a preliminary analysis of the survival rates showed a significant improvement in two 
year survival and two year disease free survival in the sample treated with mEHT36. This study shows mEHT does 
have clinical benefit for cancer patients, even in high risk patients, under resource constrained settings. However, 
there is always a need to improve the therapeutic effect. Better understanding of the effects of hyperthermia and 
more specifically of mEHT, as a whole is needed, including optimal protocol development, timing, temperature, 
temperature monitoring techniques, delivery methods etc.

Hyperthermia therapies are commonly applied in short sessions, about an hour, inducing tissue temperatures 
from 40 to 44 °C10. It has been reported that cell survival at slightly elevated temperatures not only depend on 
temperature, but also on the exposure time37. Our study further adds a parameter, that of energy dosage, to the 
effect of hyperthermia on cell survival. The energy and treatment time of mEHT has been tested in previous 
studies4,15,17,20. It has been reported that 30 minutes of mEHT treatment time was enough to produce biological 
response13,16,18,20,38–40. In this study, we hoped to shed light on protocols which could achieve better clinical results 
to match our experimental observation. From our findings, we conclude that higher powers could achieve better 
therapeutic effect than relatively lower power. This high power was shown to increase the temperature elevation 
of the cell bag. Temperature elevation from 37 °C to 42 °C by high power, done twice in succession, was shown 
to be the most effective setting to obtain apoptosis. In a previous publication, we shared results of experiments 
using various forms of hyperthermia, along with water bath and 8 MHz radiofrequency hyperthermia, where 
we found mEHT could induce apoptosis during temperature escalation, while other methods could not. Those 
results indicated that temperature escalation was not the cause of apoptosis. Our belief then was that energy deliv-
ery by mEHT was the cause of apoptosis, and temperature escalation was merely a consequence of that energy 
delivery18. However, the temperature elevation may indicate the absorption of energy during mEHT treatment. 
In clinical application, the temperature elevation is generally accepted to be low and is not even measured dur-
ing mEHT treatment. Our results indicate that mEHT treatments combined with thermometry, may verify the 
absorption of energy, until the vender is able to propose another method to check the energy absorption. Having 
said this, thermometry has shown to be challenging in general practice and the use of thermometry may only be 
of benefit in a research setting in order to optimize protocols which could be applied in general clinical practice. 
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This study raises another potential protocol, being that power is applied and paused and reapplied, and this could 
be investigated in murine models for efficacy. Patient tolerance still plays a major role in the ability to achieve 
higher power outputs and patient tolerance is therefore an important safety parameter used when treating deep 
seated tumours in which intra-tumoural temperature measurement is not achievable. Another research question 
is the effect of modulation during the mEHT treatments. The amplitude modulation is a characteristic unique to 
mEHT treatments which may contribute to the improved results seen at lower temperatures and power outputs 
as is seen when comparing the results of Harima et al. using 8 MHz at a higher power output and a higher temper-
ature, but with non-significant results, and the results of Minnaar et al. using mEHT at a maximum power output 
of 130 W, and with significant results, when treating LACC patients wih CCRT+ /− capacitive heating or mEHT 
respectively. A follow up study could include a similar design to the present study, but divided into groups with 
modulation and without modulation.

Highly-localized heating, referred to as nano-heating, is an abstract concept and very difficult to demonstrate. 
In another recently published study, our team showed gold nanoparticles may prevent mEHT-induced cell death 
instead of enhancing the cell killing effect of mEHT41. Our conclusion from that study was that we did not find 
that extracellular gold nanoparticles played a role on mEHT’s selectivity and killing of malignant cells. Conversely, 
cell-incorporated gold nanoparticles reduced cell selectivity and acted as protectors in mEHT treatment. These 
observations were consistent with previous publications42,43. These papers found the nano-heating theory to be 
very difficult to prove, and that nanoparticles did not help to enhance or prove the nano-heating theory. The role 
that gold nanoparticles played in the prevention of mEHT-induced cell death may be due to the change of the 
membrane potential. Hyperthermia induces changes in the configuration of cell membrane proteins, while also 
altering the membrane transportation of potassium, calcium, and sodium ions44, membrane potential45, and cel-
lular function46. The hyperthermia-resistant cells manifested a significantly higher (up to 15%) membrane poten-
tial than the naive cells47. The electric current generated from the mEHT tended to flow predominantly through 
the tumour lesion due to the relatively higher ionic conductivity and abnormal membrane potential of the malig-
nant cells. The changes in membrane potential induced by the incorporated gold nanoparticles may diminish the 
cell selectivity of the RF current between the normal and malignant cells in mEHT treatment. This may be due to 
the lower proportion of apoptotic cells after mEHT treatment when cells were preincubated with gold nanoparti-
cles for several hours. Thus, our aim, in this present study, was not to demonstrate the nano-heating phenomenon, 
but rather to investigate which parameters are the most important factors affecting mEHT-induced apoptotic cell 
death effect on cancer cells. This may provide hints for the clinical application of mEHT to achieve better clinical 
outcomes. However, our study only indicated in vitro benefits of mEHT. Although temperature increase is just a 
consequence of energy delivery and is not directly correlated to apoptosis, we do not discard the potential of the 
elevation of temperature to stimulate the immune system and contribute to the therapeutic benefit (e.g. induce 
specific T-cell response and abscopal effect) in addition to apoptosis in in vitro system.

In conclusion, the results of these experiments show that the effect of mEHT-induced apoptosis was depend-
ent on power dose, based on isothermal conditions. The results imply that mEHT may trigger the stimulation 
of death receptors to process the apoptotic pathway. One possible reason for the increased rates of apoptosis 
seen with increased periods of power input is the deposition of energy at the membrane with the occurrence 
of non-thermal effects. Since there was only two degree Celsius difference in temperature, this difference in 
general may not be sufficient to achieve the stimulation of death receptors to process apoptotic pathway. The 
modulated-induced chemical imbalance in cell environment may be a suitable explanation for the apoptotic effect 
which revealed by Wust et al.48. The large dose of power at the high-power setting, and large accumulation of this 
power over a long period of time, induced the greatest rate of cell death. This phenomenon further confirmed our 
previous findings that mEHT expressed effects not limited to those that are thermal-related, which we had not 
found with other methods of hyperthermia. However, we did not have ability to collect evidence for an intracel-
lular temperature rise. The only biological effect we observed in this study was the apoptotic cell death effect after 
mEHT treatment. The induction of apoptotic cell death may be correlated with the intracellular temperature rise, 
but the evidence is not straight forward. This heterogeneous intracellular temperature distribution during mEHT 
treatment needs further investigation. We hope our results can provide some opportunity to design future trials. 
This novel finding warrants further study into the concept of adjusting power dosage during clinical hyperther-
mia treatment.
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