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Soil heavy metal contamination 
assessment in the Hun-taizi River 
watershed, china
Wei Zhang1, Miao Liu2 ✉ & chunlin Li2

the Hun-taizi River watershed includes the main part of the Liaoning central urban agglomeration, 
which contains six cities with an 80-year industrial history. A total of 272 samples were collected from 
different land use areas within the study area to estimate the concentration levels, spatial distributions 
and potential sources of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel 
(Ni), lead (Pb) and zinc (Zn) with a geographic information system (GIS), principal component analysis 
(PCA) and canonical correspondence analysis (CCA). Only the concentration of Cd was over the national 
standard value (GB 15618–2018). However, the heavy metal concentrations at 24.54%, 71.43%, 63.37%, 
85.71, 70.33%, 53.11%, and 72.16% of the sampling points were higher than the local soil background 
values for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, which were used as standard values in this 
study. The maximal values of Cd (16.61 times higher than the background value) and Hg (12.18 times 
higher than the background value) had high concentrations, while Cd was present in the study area at 
higher values than in some other basins in China. Cd was the primary pollutant in the study area due to 
its concentration and potential ecological risk contribution. The results of the potential ecological risk 
index (RI) calculation showed that the overall heavy metal pollution level of the soil was considerably 
high. Three groups of heavy metals with similar distributions and sources were identified through 
PCA. The results of the CCA showed that the distribution of mines was the strongest factor affecting 
the distributions of Ni, As, Zn, Pb, and Cd. However, Cu was strongly influenced by the distance to the 
nearest river. These findings can provide scientific support for critical planning and strategies for soil 
pollution control and removal to support the sustainable development of the study area.

China has undergone rapid urbanization in the last several decades. Over twenty urban agglomerations have 
formed, and many urban agglomerations include cities with heavy industry1. Sustained and intensive human 
activities, especially agricultural and industrial production, in urban agglomeration areas have brought heavy 
metal pollution to surface soils in many areas2,3. Moreover, most cities within the same urban agglomeration are 
usually located within one watershed, and soil pollution migrates through hydrologic processes, soil erosion and 
agricultural irrigation. Soil is a sink for heavy metal pollutants; meanwhile, metal contaminants will transfer to 
other places through hydrological and soil erosion processes, especially within the same watershed. The heavy 
metals in urban agglomeration soils may result in excessive increases in human exposure to heavy metals due to 
food production and general human activities in the area4. The assessment of heavy metal distributions in soils 
and their influencing factors could provide information to repair regional environmental quality and improve 
ecosystem health5.

Studies have been performed to survey and estimate soil heavy metal contamination in many different 
regions, such as the Concórdia River watershed6, the upper Yangtze basin7, the Mustafakemalpasa stream basin8, 
the Raohe basin9, the Yellow River delta10, the Yangtze River delta11, the Mississippi River delta12, agricultural 
land13,14, urban areas15, mining regions16,17 and road traffic areas18. Ecological risk assessments19,20, health risk 
assessments21 and source identification22 have been carried out in many studies. Soil heavy metal pollution in 
urban areas has gained increasing attention13. Efforts have been devoted to researching the spatial distribution, 
ecological risks and human health risks of soil heavy metal pollution in cities15,23.

Soil heavy metal pollution studies have mostly used contamination to background value ratios24,25, GIS soft-
ware for spatial distribution estimation8,16, driving factors analysis with multivariate statistics26, meta-analysis14 
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and ecological health risk analysis27,28 to determine pollution levels. Spatial statistics is a powerful tool for esti-
mating the correlations among spatial factors, and some studies have tried to estimate the sources of heavy metal 
pollutants with multivariate geostatistical analysis methods29,30.

The Liaoning central urban agglomeration was one of the first Chinese urban agglomerations. It has an area 
of 6.5 × 104 km2, constituting 44.5% of the total area of Liaoning Province, and includes seven cities: Anshan, 
Benxi, Fushun, Liaoyang, Shenyang, Tieling and Yingkou. All these cities are heavy industry or mining cities. The 
Liaoning central urban agglomeration has developed heavy industry since the 1930s due to its abundant local 
iron, coal and oil resources. The heavy industries in Liaoning Province and all of Northeast China are mainly 
distributed in this area. In 2017, the population was 2.17 × 107, and the GDP of the Liaoning central urban 
agglomeration accounted for 50.02% of the total GDP of Liaoning Province. Environmental protection did not 
receive enough attention before the 1990s; extensive anthropogenic and industrial activities have resulted in many 
environmental problems, such as water, soil, and air pollution. Many efforts have been made to address water and 
air pollution in recent years; however, soil pollution control needs more attention in this region. The Hu-Taizi 
River watershed covers most of the Liaoning central urban agglomeration, except Tieling city.

Few studies have been conducted in urban agglomeration areas, especially within the different land uses of an 
“urban agglomeration watershed”. Meanwhile, spatial distribution factors were proposed to analyze the potential 
pollution sources with the CCA method. This study addressed three goals: (1) to evaluate the overall and indi-
vidual land use pollution conditions of As, Hg, Cd, Cu, Zn, Cr, Pb, and Ni based on the local natural background 
values in the Hu-Taizi River watershed, (2) to characterize the spatial distribution of these eight heavy metal 
elements with GIS, and (3) to assess the ecological risk potential sources with multivariate statistical methods.

Materials and methods
Study area and sampling sites. The Hun-Taizi River watershed locates in Liaoning Province, Northeast 
China, and is a sub-basin of the Liao River basin. The watershed area is 2.73 × 104 km2, including Anshan, Benxi, 
Fushun, Liaoyang, Shenyang, and Yingkou cities. The study area includes two main rivers: the Taizi River and the 
Hun River (Fig. 1). The lengths of the Hun River and the Taizi River are 415 km and 413 km, respectively. The two 
rivers flow from east to west, following the topography from low hills in the eastern part of the province to the 
alluvial plain in the central and western parts. The land use and cover are characterized by forestland concentrated 

Figure 1. Location of the study area.
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in the eastern part, farmland in the central and western parts, and urban areas along the rivers. The sampling 
points are presented in Fig. 1.

Sampling and assay. We collected 272 surface (0–5 cm) soil samples considering land use and distribution 
evenness (Fig. 1). Three duplicate soil samples were collected and mixed at each sampling point. The geographic 
positions were recorded using portable GPS units. The samples were completely air-dried in a storage room, and 
any stones and residual roots were removed by hand. Afterward, the samples were sieved with a 1 mm mesh. The 
samples were kept in sealed brown glass bottles and stored at −4 °C. The samples were analyzed one month after 
collection.

One standard reference and one reagent blank sample were included in the heavy metal concentration test for 
data accuracy and precision. The test quality assurance was controlled with the soil standard reference material 
(GBW07401, GSS-1) obtained from the Center of National Standard Reference Material of China. Soil samples 
were digested with a microwave digestion instrument (CEM Inc., Matthews, NC, USA) and prepared for the 
determination of elements. The soil samples Hg and As were measured by HG-AES, while Cr, Cu, Ni, Pb, Zn, 
and Cd were measured by inductively coupled plasma mass spectrometry (ICP-MS, PerkinElmer, Waltham, MA, 
USA). The instrument detection limits (mg/kg) of Cu, Zn, Pb, Cd, Ni, Cr, Hg, and As are 0.04, 0.04, 0.1, 0.001, 
0.04, 0.04, 0.001, and 0.01, respectively. Each heavy metal solution was tested three times. The data were accept-
able under the condition of a relative standard deviation <5%; if the standard deviation did not meet that condi-
tion, the soil sample was tested again.

Landsat images (Landsat 7 and 8) from 2016 were used to derive thematic land-use maps. The maps included 
six land-use categories: paddy, water area, dry farmland, forestland, built-up area and grassland. The interpreta-
tion accuracy was 89.7% based on 650 field survey points. The research also used 1:50 000 topographic maps from 
2015 to locate mines and roads. The locations of sewage treatment plants and polluting factories were obtained 
from the Department of Ecology and Environmental Protection of Liaoning Province. A 1:50 000 digital elevation 
model (DEM) of the study area was obtained from the Liaoning Surveying and Mapping Bureau. Slope and aspect 
maps were calculated with the DEM using ArcGIS version 9.1 software.

Soil pollution standard values. There are two national soil environmental quality standards: the soil envi-
ronmental quality-risk control standard for soil contamination in agricultural land (GB 15618–2018) (Table 1) 
and the soil environmental quality-risk control standard for soil contamination in development land (GB 36600–
2018). This study did not consider land use planning, so the standard for development land was not considered. 
The GB 15618–2018 standard determines the environmental risk value of agricultural land, which is divided into 
paddy fields and other agricultural lands. The first natural background values in the study area were obtained in 
1986, and the values were obtained out based on soil types (Table 2)24. The values in the standards were higher 
than the natural background values of soils for estimating the environmental risk31. The soil samples were col-
lected from different land use types, not only agricultural land, in the study area; moreover, the national standard 
was decided based on the soil conditions throughout the whole country. Therefore, the local background values 
were selected for use in order to estimate the degree of soil pollution and potential ecological risk at the watershed 
scale.

Evaluation of the contamination degree. Potential ecological risk index estimation. The RI was esti-
mated based on the method proposed by Hakanson27, which has been widely used in many studies28,31. The RI was 
calculated using the following equation:
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where RI is the potential ecological risk index, which is the sum of the individual RIs for the potential ecological 
risks. The classification threshold value was set based on previous studies27,32 (Table 3). Er

i is the potential ecolog-
ical risk of pollutant i; Tr

i is the toxic response factor of pollutant i presented by Hakanson; Cf
i  is the pollution 

As Cd Cr Cu Hg Ni Pb Zn

Paddy field 25 0.6 300 200 0.6 100 140 250

Other 30 0.3 200 100 2.4 100 120 250

Table 1. Soil environmental quality -Risk control standard for soil contamination in agricultural land (mg/kg) 
(GB 15618–2018) (6.5 < PH < 7.5).

As Cd Cr Cu Hg Ni Pb Zn

Brown soil 10.590 0.118 51.740 23.740 0.055 28.250 24.220 57.750

Paddy soil 9.070 0.128 66.720 21.650 0.081 29.060 29.440 56.650

Meadow soil 8.390 0.129 68.320 23.390 0.088 28.280 20.970 71.810

Table 2. Local natural background values in different soil types (mg/kg).
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index of pollutant i; Ci is the concentration of pollutant i; and Cn
i is the evaluation reference value of pollutant i, 

which was the natural background value in the study area.
The Tr

i values for As, Cd, Cr, Cu, Hg, Pb, Ni and Zn were 10, 30, 2, 5, 40, 5, 5 and 1, respectively.

Potential sources. Statistical analysis. The heavy metal concentrations were interpolated to spatial maps 
for ecological risk calculation and effect factor analysis with the kriging method in ArcGIS. The data format of 
the grid used a cell size of 30 m. Two hundred random sampling points were used as training data for map inter-
polation. The remaining 72 sampling points were used as test points to estimate the accuracy of the interpolation 
results. The average concentrations of heavy metals in different land use categories, except in the water area, were 
analyzed based on the heavy metal pollutant interpolation maps and the land use map with ArcGIS.

Pearson’s correlation analysis and principal component analysis (PCA) were used to divide the heavy metals 
into different groups. The results of the PCA were diagnosed with the Kaiser-Meyer-Olkin (KMO) procedure 
and Bartlett’s test. Canonical correspondence analysis (CCA) was performed using CANOCO 4.533 to study the 
interactions between the eight heavy metals and the effect factors. The data were statistically analyzed using the 
R platform.

Spatial distribution effect factors. We tried to estimate the potential sources of pollutants through spatial 
effect factors. Many factors influence the spatial distribution and migration of heavy metal elements in surface 
soils. The Hun-Taizi River watershed is an urban agglomeration region. A total of 10 spatial effect factors from 
three aspects were chosen for analysis. Two factors were chosen to describe urbanization, including distance to 
city and distance to villages. Four factors were chosen to represent geographic conditions, including slope, DEM, 
distance to the river and distance to reservoirs. Four factors were chosen to represent anthropogenic activities, 
including distance to main polluting factories, distance to sewage treatment plants, distance to mines and dis-
tance to roads. The effect factor maps were analyzed using a grid data format with a cell size of 30 m. A total of 
1000 random points were generated within the boundary of the study area, which was used to extract the values 
of the RI and effect factors with ArcGIS.

Results and Discussion
Heavy metal concentrations. The results showed that the mean concentrations of heavy metals were as 
follows, in declining order: Zn (79.85 ± 32.33) > Cr (65.05 ± 25.23) > Cu (40.97 ± 22.54) > Pb (30.18 ± 13.51) 
> Ni (29.16 ± 12.33) > As (7.21 ± 3.05) > Cd (0.23 ± 0.25) > Hg (0.12 ± 0.09) (Table 4). Based on the national 
standard (GB 15618–2018) (Table 1), only the concentration of Cd was over the standard value. Cd was over 
the standard value in 19.12% of the 272 total sampling points, and the points with excess Cd were located in the 
suburbs of Shenyang city31. However, the proportion of points in which As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were 
over the local soil background values (Table 2) were 24.54%, 71.43%, 63.37%, 85.71, 70.33%, 53.11%, and 72.16%, 
respectively. Table 4 shows that the concentrations of Zn, Cr, Cu, Pb and Ni varied greatly and had large standard 
deviations. A total of 125, 61 and 86 sampling points located in brown soil, paddy soil and meadow soil, respec-
tively. Compared with the local environmental background values for the corresponding soil categories (Table 2), 
the mean concentrations of As, Cd, Cr, Cu, Hg, Pb, Ni and Zn were 0.68-, 1.98-, 1.26-, 1.73-, 2.10-, 1.03-, 1.25- 
and 1.38-fold higher, respectively (Table 4). The average concentration of all pollutants was higher than the local 

Er
i RI Potential ecological risk

<40 <70 low

40–80 70–140 moderate

80–160 140–280 considerable

160–320 high

≥320 ≥280 very high

Table 3. Risk factors and potential ecological risk classification.

Heavy 
metal

Concentrations(mg/kg)

SD

Ratio of 
mean to 
LNBV

Ratio of 
Max to 
LNBV

Percent of 
over LNBVMin Max Median Mean

As 1.48 20.00 6.73 7.21 3.05 0.68 1.89 13.24

Cd 0.02 1.96 0.14 0.23 0.25 1.98 16.61 56.99

Cr 9.21 164.60 61.97 65.05 25.23 1.26 3.18 48.90

Cu 3.16 127.50 34.73 40.97 22.54 1.73 5.37 70.96

Hg 0.01 0.67 0.09 0.12 0.09 2.10 12.18 56.25

Ni 5.32 89.00 27.20 29.16 12.33 1.03 3.15 38.60

Pb 0.32 93.58 27.95 30.18 13.51 1.25 3.86 58.09

Zn 5.61 215.62 76.19 79.85 32.33 1.38 3.73 58.46

Table 4. Statistical description of heavy metal pollutants in the study area. SD: standard deviation; LNBV: local 
natural background values.
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natural background values, except that of As. The average concentrations of the pollutants declined in the order 
Hg > Cd > Cu > Zn > Cr > Pb > Ni. All the maximal values of the eight pollutants were higher than the local 
natural background values, and the ratios occurred in the following decreasing order: Cd > Hg > Cu > Pb > 
Cr > Zn > Ni > As, which were 16.61-, 12.18-, 5.37-, 3.75-, 3.86-, 3.18-, 3.15- and 1.89-fold higher, respectively, 
than the local background values. The percentages over the local natural background values in the 272 sampling 
points were, in decreasing order: Cu (70.96%) > Zn (58.46%) > Pb (58.09%) > Cd (56.99%) > Hg (56.25%) > 
Cr (48.90%) > Ni (38.60%) > As (13.24%). The results showed that Hg and Cd had high concentrations at many 
sampling points. Meanwhile, the Cu, Zn, Pb, Cd and Hg values in over half of the samples in which they occurred 
were higher than the local natural background values.

Comparisons with other basins. Some surveys were carried out in basin boundary, such as the upper 
Yangtze basin, the Wei River basin in the western part of the Yellow River basin and the Raohe basin in the lower 
Yangtze basin (Table 5). Comparing the heavy metal concentrations in the study area to those in the other three 
basins showed that the average concentration of Cd was at the high pollution level, but Cr was at the low pollution 
level. As, Cu, Hg, Ni, Pb and Zn had similar average concentrations. The maximal values of Cd, Cr, Cu, Ni and Zn 
placed them at the high pollution level. The comparison showed that Cd was the primary pollutant and that Cd, 
Cr, Cu, Ni and Zn had high pollution level points in the study area.

Different boundaries have been used to define study areas, such as watersheds, agricultural soils, mining areas, 
industrial areas, river deltas, ocean bays, urban areas, and suburban areas3,34. Which boundary is the most suitable 
for soil heavy metal estimation? Hydrological processes and soil erosion are the main migration carriers of heavy 
metals and are usually studied at the watershed or basin scale. Moreover, most cities and urban agglomerations 
are located along rivers1. Therefore, the watershed boundary is the most suitable boundary for soil pollution esti-
mation, source analysis and eco-environmental comprehension.

Spatial distribution of heavy metals and ecological risk. The spatial distribution maps were gener-
ated with 200 random sampling points using the kriging method. The maps were shown in Fig. 2. The map accu-
racies for As, Cd, Cr, Cu, Hg, Pb, Ni and Zn based on the other 72 sampling points were 83.46%, 88.32%, 79.56%, 
84.86%, 78.13%, 82.51%, 80.18% and 83.55%, respectively, which showed that the results were acceptable. A 
potential ecological risk index map (Fig. 3(a)) was estimated based on the RI calculation equation, and the eco-
logical risk index was reclassified into four potential ecological risk levels (Fig. 3(b)). As shown in Fig. 3, two 
high-value regions were located near Shenyang city and the junction area between Benxi and Fushun, which 
accounted for 4.33% of the study area. The percentages of the study area that were considered to have low, mod-
erate and considerable potential ecological risk were 0.11%, 20.84% and 74.73%, respectively. Cd was the main 
pollutant due to its mean concentration and potential ecological risk contribution (Tr

i = 30). As shown in Fig. 2 
(Cd) and Fig. 3, the spatial distributions of Cd and the RI were similar, meaning that the RI was mainly influenced 
by Cd in the study area.

Heavy metal concentrations in different land use categories. Based on the results of the interpreta-
tion of Landsat images, the areas of paddy, water area, dry farmland, forestland, built-up area and grassland were 
3864.54 km2 (14.12%), 1171.68 km2 (4.11%), 6422.53 km2 (22.51%), 13108.39 km2 (47.91%), 3654.22 (12.81%) 
km2, and 312.77 km2 (1.10%), respectively. Forestland occupied almost half of the study area and was mainly 
distributed in the eastern and southern mountainous areas (Fig. 1). Farmland, including dry farmland and pad-
dies, accounted for 36.05% of the study area and located in the central and west alluvial plain areas. The built-up 
area accounted for 12.81% of the total area because the study area covers most of the Central Liaoning Urban 
Agglomeration, which is one of the Chinese urban agglomerations.

The average concentrations of all the heavy metal pollutants, except Ni, were obviously higher in 
human-dominated land use categories, including built-up area, paddy and dry farmland (Table 6). The results 
showed that the spatial distributions of As, Cd, Cr, Cu, Hg, Pb, and Zn were significantly affected by anthropic 
activities. The high concentration area of Ni located in the southeastern part of the study area, which is mainly 
covered by forests. Forestland had the lowest concentration values for all heavy metal pollutants except Ni. 
Grassland had similar heavy metal concentration levels as forestland. The highest mean concentrations of Cu, 
Hg and Zn were distributed in the built-up area. Paddy areas had the highest mean concentrations of Cr and Pb.

Potential sources of heavy metals. The PCA method and Pearson’s correlation matrix were used to iden-
tify similar groups of soil heavy metals, and the results are shown in Fig. 4 and Table 7. These nonparametric tests 
were analyzed for nonnormally distributed data using the Shapiro-Wilks test. The significant correlations were 

As Cd Cr Cu Hg Ni Pb Zn

Upper Yangtze 
Basin7

Mean 6.21 ± 3.21 0.33 ± 0.10 75.49 ± 12.03 26.99 ± 8.59 0.08 ± 0.002 35.24 ± 9.18 27.90 ± 3.00 87.91 ± 15.77

Max. 32.77 1.57 144.40 106.50 1.79 96.39 59.30 238.50

Raohe Basin9
Mean 78.52 0.51 35.26 197.21 — 31.03 39.63 32.31

Max. 318.05 1.60 97.09 793.52 — 66.35 222.19 72.09

Wei River 
Basin38

Mean 3.89 ± 0.99 0.18 ± 0.24 50.12 ± 7.58 26.89 ± 6.93 0.07 ± 0.11 12.01 ± 3.69 — 62.33 ± 16.26

Max. 5.86 1.20 73.40 35.60 0.39 19.08 — 93.30

Table 5. Concentrations of heavy metals in the upper Yangtze, Raohe and Wei River basins (mg/kg).
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estimated with Pearson’s correlation analysis (p < 0.05): Hg and Cu (r = 0.367), Ni and Cr (r = 0.999), Pb and Cd 
(r = 0.253), Pb and Hg (r = 0.178), Zn and As (r = −0.163), Zn and Cd (r = 0.236), Zn and Cu (r = 0.236), and 
Zn and Pb (r = 407) at p < 0.01, as well as Pb and As (r = −0.143) and Zn and Hg (r = 0.132). Pollutants with 
significant correlations may come from similar or even the same pollution sources.

Figure 2. Spatial distribution of eight heavy metals in the study area.

Figure 3. Spatial distribution of the potential ecological risk index (a) and classification (b).

As Cd Cr Cu Hg Ni Pb Zn

Forestland 6.98 0.18 62.64 36.63 0.10 33.19 26.16 77.10

Grassland 7.20 0.21 64.25 37.00 0.10 28.55 28.56 77.39

Built-up area 7.52 0.21 67.73 45.33 0.12 28.25 30.35 89.95

Paddy 7.62 0.24 69.10 43.07 0.11 28.49 34.54 78.20

Dry farmland 7.43 0.35 64.27 41.14 0.12 29.13 31.29 79.37

Table 6. Mean concentrations of heavy metal pollutants in different land use categories.
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The results of the PCA were valid, as indicated by KMO = 0.792 and Bartlett’s test < 0.001. The results of the 
PCA showed that the first principal component (PC1), second principal component (PC2) and third principal 
component (PC3) explained 76.34% of the total variance. PC1 was correlated with Cr and Ni and explained 
26.60% of the total variance. PC2 was correlated with Pb, Zn and Cd and explained 21.50% of the total variance. 
PC3 was correlated with Hg and Cu and explained 15.09% of the total variance. According to the PCA results 
(Fig. 4) and Pearson’s correlation analysis (Table 6), three groups were identified: Hg and Cu; Pb, Zn and Cd; and 
Ni and Cr. The pollutants in the same group shared similar potential sources, mainly anthropogenic activities, 
especially industrial production.

Ten environmental variables (Fig. 5) were chosen to analyze the effect factors and identify the sources of the 
eight heavy metals with CCA. The CCA presented an evident and graphic representation of the correlations 
between pollution contaminants and environmental effect factors26. As shown in Figs. 4 and 6, heavy metals were 
mainly divided into three groups according to the results of the PCA. The results showed roughly three directions 
for these environmental variables. Distance to mines was the strongest factor influencing the spatial distribution 
of As, Cd, Ni, Pb, and Zn. The high-value area for Cd and the RI was the area adjacent to Fushun and Bexin cities, 
which is the main iron mining area.

The spatial distribution of Cu was strongly influenced by the environmental factor of distance to the river. The 
pollution area for Cu was probably caused by factory emissions and the livestock industry. As Fig. 2 (Cu) shows, 
the high concentration area for Cu was along the Hun River. The cities of Fushun and Shenyang along the Hun 
River have been heavy industrial cities for the past several decades and are also the location of intensive livestock 
and poultry breeding activity. The average Cr concentration in the study area was only 1.26 times the local back-
ground value; meanwhile, no high pollution areas located in the study area. The spatial distribution of Pb was 
affected by slope, DEM, roads, villages, and the distribution of the main polluting factories, which means that 
multiple sources and roads were the most important factors influencing the distribution of Pb.

The heavy metals concentration in surface sediments (0–15 cm) were carried out in Liaohe River watershed, 
which contains Hun-Taizi River watershed35,36. The average background levels of Cr, Cu, Ni, Pb, and Zn were 32.6, 
11.1, 13.1, 16.3, and 37.8 mg/kg, which were all lower than the values in 1986. The Liaoning central urban agglom-
eration is one of the historical Chinese industrial regions where industrialization began in the 1930s due to the 
coal, iron, and magnesium ore mines distributed in this area37. Industrialization developed over 80 years in the 
study area, and surface soil accumulation can only be used to estimate the present heavy metal pollution situation. 
More attention should be focused on the trajectory of historical soil pollution processes in future studies. For this 
purpose, future work should focus on undisturbed river or lake sediments for soil profile analysis.

Figure 4. Loadings of the first components obtained from PCA.

As Cd Cr Cu Hg Ni Pb Zn

As 1

Cd 0.058 1

Cr 0.082 0.027 1

Cu 0.029 0.060 0.089 1

Hg −0.117 0.028 0.057 0.367** 1

Ni 0.082 0.036 0.999** 0.093 0.061 1

Pb −0.143* 0.253** 0.059 0.044 0.178** 0.056 1

Zn −0.163** 0.236** 0.086 0.183** 0.132* 0.094 0.407** 1

Table 7. Correlation coefficients between heavy metal pollutants (N = 272). Levels of significance: *p < 0.05. 
**p < 0.01.
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Figure 5. Maps of effect factors.

Figure 6. Canonical correspondence analysis between eight heavy metal concentrations and effect factors. 
Abbreviations: D2STP – Distance to sewage treatment plants, D2Re – Distance to reservoirs, D2City – Distance 
to cities, D2Mi – Distance to mines, D2MPF – Distance to main pollution factories, D2Vi – Distance to villages, 
D2Ro – Distance to roads, D2Ri – Distance to rivers.
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conclusions
Based on these sampling sites and the national standard GB 15618–2018, there was only a contamination area for 
Cd in the study area. The average concentrations of heavy metals were higher than the local natural background 
values, except the average As concentration. Two high-value RI regions accounted for 4.33% of the study area and 
were mainly determined by the Cd distribution. Cd was the main pollutant in the study area due to its high con-
centration area and potential ecological risk contribution. Compared with surveys in other basins, Cd was present 
in higher concentrations. The percentages of the study area considered to be at low, moderate and considerable 
potential ecological risk were 0.11%, 20.84% and 74.73%, respectively. The pollutants were clustered into three 
groups based on correlation analyses and possible sources: Hg and Cu; Pb, Zn and Cd; and Ni and Cr. Based on 
spatial analysis and the CCA method, the mine distribution was the strongest effect factor influencing the spatial 
distributions of As, Cd, Ni, Pb and Zn. The spatial distribution of Cu was strongly influenced by the distance to 
the river. Watersheds are the best study boundaries for surveying and understanding the distribution processes 
of heavy metals. The trajectory of the historic soil pollution mechanisms in the study area should be studied and 
identified in the future. The methods in this study are useful for the estimation of potential sources of soil heavy 
metal pollutants with spatial effect factors using GIS and statistical methods.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.
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