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Age and sex affect deep learning 
prediction of cardiometabolic risk 
factors from retinal images
Nele Gerrits  1 ✉, Bart Elen  1, Toon Van Craenendonck1, Danai Triantafyllidou1, 
Ioannis N. Petropoulos2, Rayaz A. Malik  2 & Patrick De Boever1,3,4

Deep neural networks can extract clinical information, such as diabetic retinopathy status and 
individual characteristics (e.g. age and sex), from retinal images. Here, we report the first study to 
train deep learning models with retinal images from 3,000 Qatari citizens participating in the Qatar 
Biobank study. We investigated whether fundus images can predict cardiometabolic risk factors, such 
as age, sex, blood pressure, smoking status, glycaemic status, total lipid panel, sex steroid hormones 
and bioimpedance measurements. Additionally, the role of age and sex as mediating factors when 
predicting cardiometabolic risk factors from fundus images was studied. Predictions at person-level 
were made by combining information of an optic disc centred and a macula centred image of both 
eyes with deep learning models using the MobileNet-V2 architecture. An accurate prediction was 
obtained for age (mean absolute error (MAE): 2.78 years) and sex (area under the curve: 0.97), while an 
acceptable performance was achieved for systolic blood pressure (MAE: 8.96 mmHg), diastolic blood 
pressure (MAE: 6.84 mmHg), Haemoglobin A1c (MAE: 0.61%), relative fat mass (MAE: 5.68 units) 
and testosterone (MAE: 3.76 nmol/L). We discovered that age and sex were mediating factors when 
predicting cardiometabolic risk factors from fundus images. We have found that deep learning models 
indirectly predict sex when trained for testosterone. For blood pressure, Haemoglobin A1c and relative 
fat mass an influence of age and sex was observed. However, achieved performance cannot be fully 
explained by the influence of age and sex. In conclusion we confirm that age and sex can be predicted 
reliably from a fundus image and that unique information is stored in the retina that relates to blood 
pressure, Haemoglobin A1c and relative fat mass. Future research should focus on stratification when 
predicting person characteristics from a fundus image.

Mortality from cardiovascular disease (CVD) remains the leading cause of death worldwide today1,2 and is an 
increasing burden of CVD in the Middle East3–8, with premature myocardial infarction and stroke. This CVD 
burden may be reduced by the early identification of individuals on a trajectory to develop the disease by pro-
viding a program of lifestyle changes and medication to alter the course of the disease. Therefore, tools for CVD 
risk stratification are crucial in identifying at-risk individuals. The Framingham score was one of the first tools to 
estimate individual CVD risk in the US using low-cost variables such as age, sex, smoking status, cholesterol and 
blood pressure9. This allows targeting of healthcare resources to those likely to benefit from preventive medical 
care and avoid possible adverse outcomes and costs of unnecessary care in those at low risk10. Scores such as the 
Framingham score, SCORE charts11, the QRISK models12 and U-prevent tool13, have reduced prediction accuracy 
in individuals with different ethnicity than the ones that were used to develop the score14–17. Indeed, there are no 
risk scores developed in populations from the Middle East18. Additionally, the limited number of risk indices 
used as input parameters oversimplify the complex pathogenesis of CVD development19 and at best predict 30% 
of the risk.

In the search for identifying new methodologies to optimize the performance of risk prediction, Weng et al. 
trained machine learning classifiers on data from 30 variables associated with CVD from 378,256 UK citizens 
to predict a first cardiovascular event over 10 years and demonstrated a marked improvement in cardiovascular 
risk prediction when compared to established risk factors19. Similarly, Ambale-Venkatesh et al. trained random 
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forests and showed enhanced prediction of six cardiovascular outcomes, including stroke and heart failure using 
735 variables from imaging and noninvasive tests, questionnaires and biomarker panels. Interestingly, imaging, 
electrocardiography and serum biomarkers featured heavily in the top-20 of the random forests, as opposed to 
traditional cardiovascular risk factors20.

Retinal image analysis quantifying retinal vessel metrics may provide additional information for CVD risk 
stratification. Typically, investigators report links between hand-crafted features, such as vessel widths, derived 
from a fundus picture and a variety of cardiometabolic risk factors and diseases21. Ding and coworkers have 
shown that narrower retinal arterioles and wider venules are associated with an increased 10-year risk of hyper-
tension22. Furthermore, in a recent study by Owen et al. atherosclerotic risk factors were correlated with arte-
riolar width23. Seidelmann et al. have shown that narrower retinal arterioles and wider venules are associated 
with increased mortality and ischemic stroke in both sexes and coronary heart disease in women24. Even though 
retinal imaging has been accepted as a promising imaging modality to assess the development of cardiovascular 
diseases, its ability to be applied in CVD risk score estimators has yet to be evaluated.

Recently, deep learning, a form of artificial intelligence, has been introduced for extracting more information 
from retinal images. The landmark paper of Gulshan and coworkers has been transformative because it showed 
that a deep learning algorithm can detect referable diabetic retinopathy with high sensitivity and specificity25. 
Along the same lines, Poplin et al. found that several risk factors, such as age, sex, smoking status and blood 
pressure, can be predicted directly from fundus images using deep neural networks26. More recently, Vaghefi et 
al. trained a convolutional neural network for the prediction of smoking status using fundus images only27. These 
two recent studies suggest that deep learning can rapidly extract more detailed information from fundus images 
to aid in CVD risk determination. However, both studies have not included relevant clinical measurements for 
CVD risk estimation such as the total lipid panel28.

Our study builds on the work of Poplin et al. and Vaghefi et al. and contributes in two key ways. We include 
a wider set of cardiometabolic and clinical measurements to obtain a more complete picture of the confounders 
and predictors of retinal image parameters extracted using deep learning, especially in relation to age and sex. 
Furthermore, this is the first study to study a Middle-Eastern population by utilizing retinal images from the 
Qatar Biobank.

Results
Study population. Demographics of the individuals included in the study, which comprise a subset from the 
Qatar Biobank initiative29, are summarized in Table 1. The mean age was 40.6 ± 13.0 years. 20% of all participants 
(26% of men; 16% of women) had hypertension based on a systolic blood pressure (SBP) higher than 130 mmHg 
or a diastolic blood pressure (DBP) higher than 80 mmHg, according to the guidelines of the American Heart 
Association30. The incidence of overweight and obese persons in the study population was 72% in men and 71% 
in women.

Prediction of cardiometabolic risk factors. First, we predicted age and sex from available fundus images 
using deep learning. Performance results achieved on the test set include a mean absolute error (MAE) of 3.21 

Characteristics Qatar Biobank subset

Number of participants 3,000

Number of images 12,000

Age (years) 40.6 (13.0)

Sex (% male) 41%

Ethnicity 86% Qatari, 14% mix of 25 other countries

Current smoker (%) 18%

Body Mass Index (kg/m2) 29.7 (6.4)

Relative fat mass (%) 38.4 (9.9)

Systolic blood pressure (mmHg) 114.4 (15.6)

Diastolic blood pressure (mmHg) 66.4 (10.0)

Haemoglobin A1c (%) 5.8 (1.4)

Insulin (mcunit/ml) 13.3 (16.6)

Glucose (mmol/L) 6.0 (2.5)

Sex hormone binding globulin (nmol/L) 52.4 (43.4)

Estradiol (pmol/L) 254.6 (314.4)

Testosterone (nmol/L) 7.9 (9.3)

Total cholesterol (mmol/L) 5.0 (1.0)

HDL cholesterol (mmol/L) 1.4 (0.4)

LDL cholesterol (mmol/L) 3.0 (0.9)

Triglyceride (mmol/L) 1.3 (0.9)

Table 1. Descriptive statistics of individuals in this subset of the Qatar Biobank data. For numerical variables 
the mean and standard deviation are shown.
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years (95% confidence interval (CI): 3.07 to 3.36) and a coefficient of determination (R2) of 0.85 (95% CI: 0.83 to 
0.87) for predicting age; and an area under the curve (AUC) of 0.96 (95% CI: 0.95 to 0.97) with an accuracy of 0.90 
(95% CI: 0.89 to 0.91) for predicting sex. A boost in the model’s performance was observed when carrying out the 
evaluation on person level by taking into account the information from the four fundus images that were avail-
able per person. Practically, this was obtained by averaging the output of the model for the four different input 
images. This was confirmed by a R2 and MAE on the test set of 0.89 (95% CI: 0.86 to 0.92) and 2.78 years (95% 
CI: 2.55 to 3.05) on person level for age prediction. The same observation was made for sex prediction, where an 
evaluation on person level reached an accuracy of 0.93 (95% CI: 0.91 to 0.95) and an AUC of 0.97 (95% CI: 0.96 to 
0.98). Since performance increased by evaluating on person level instead of image level, all further experiments 
are reported on person level.

In a second series of experiments we developed deep learning models to predict a series of cardiometabolic 
risk factors, namely blood pressure, smoking status, diabetes-related tests, lipid panel, and bioimpedance meas-
urements. For the purpose of investigating the impact of sex on the model’s performance, sex steroid hormones 
are added to the list as well.

Figure 1 shows an overview of the obtained performance metrics for predicting the cardiometabolic risk fac-
tors on person level for the regression task. Several metrics reached relatively good performance, including SBP 
( = .R 0 402 , MAE 8 96= .  mmHg), DBP ( = .R 0 242 , = .MAE 6 84 mmHg), Haemoglobin A1c (HbA1c) 
(R 0 342 = . , = .MAE 0 61%), relative fat mass (R 0 432 = . , MAE 5 68= .  units) and testosterone (R 0 542 = . , 
MAE 3 76= .  nmol/L), whilst others obtained poor performance, including the total lipid panel (R 0 052 ≤ . ). In 
addition, a prediction model for smoking status achieved an accuracy of 0.81 and an AUC of 0.78 on person level. 
Detailed results, including 95% confidence intervals, are listed in Table 1 in the Supplementary Information.

Impact of age and sex on prediction performance. Our initial results showed that age and sex could be 
predicted from fundus images with high precision. For this reason, the possibility that the trained deep learning 
architecture was reporting inherent correlations among age, sex and the target variable was examined. This is 
specifically done for variables that could be predicted with a R2 higher than 0.20 (regression task) and an AUC 
higher than 0.80 (classification task).

First, the predictive value of variables age and sex to predict the clinical variable was investigated by construct-
ing simple linear regression models with age and sex as independent variables (Table 1 in the Supplementary 
Information, Fig. 1). Relatively good performance metrics were achieved with a linear regression model for clin-
ical variables such as blood pressure, HbA1c, relative fat mass and testosterone. For blood pressure, HbA1c, BMI 
and total cholesterol the deep learning model based on fundus images reached a higher R2 than the linear regres-
sion. All other variables obtained a lower R2 than the linear model.

To investigate this further, the test set was split according to sex and age, such that an approximately equal 
number of participants were found in each age group (155 persons < 30 years, 163 persons ≥ 30 years and <39 
years, 130 persons ≥ 39 years and <50 years, 152 persons ≥ 50 years). Differences in these subpopulations were 

Figure 1. Model performance on predicting continuous cardiometabolic risk factors in the test set on person 
level for the regression task. The coefficient of determination is plotted for every risk factor, along with the 95% 
confidence interval obtained via a bootstrapping methodology. Results for a linear regression using age and 
sex on person level on the test set is added for every cardiometabolic risk factor, except age, with a red dot. Risk 
factors included in the exploration of the impact of age and sex on prediction performance have a coefficient of 
determination higher than 0.20 and are indicated in dark green.
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Figure 2. Predicted and actual value for the test set for an evaluation on person level for several 
cardiometabolic risk factors, stratified as per sex (female is coloured blue and male is coloured red). Units for 
age are years (left upper), for SBP are mmHg (right upper), for DBP are mmHg (middle left), for HbA1c are % 
(middle right), for relative fat mass are units (lower left) and for testosterone are nmol/L (lower right). The lines 
represent y = x values.

<=30 
years

>30 and 
<=39 years

>39 and 
<=50 years

>50 
years Total

Sex (% male) 0.99 0.96 0.98 0.97 0.97

Systolic blood pressure (mmHg) 0.24 0.23 0.30 0.04 0.40

Diastolic blood pressure (mmHg) 0.16 0.16 0.21 0.21 0.24

Haemoglobin A1c (%) −0.14 0.28 0.24 0.06 0.34

Relative fat mass value 0.29 0.33 0.33 0.47 0.43

Testosterone (nmol/L) 0.61 0.57 0.45 0.50 0.54

Table 2. Performance of the algorithm stratified per age category on person level. Performance is given by 
showing R2 (regression task) or the AUC (classification task) on the test set.
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examined for the impact of age and sex. First, the model’s performance on the test set was stratified by age and sex 
and the differences among groups were compared. The training and validation set, as well as the trained model, 
were kept unchanged for this experiment. Results for this analysis are presented in Fig. 2 for sex and in Table 2 for 
age. For sex, all results are also listed in Table 2 in the Supplementary Information.

As can be seen (Fig. 2 and Table 2 in the Supplementary Information) considerable differences in model 
performance were found between females and males for testosterone and relative fat mass. This may imply that 
the same visual characteristics on the fundus image that are important for sex prediction are now also employed 
by the model, indicating that the model may be indirectly predicting sex. Furthermore, there were no differ-
ences in model performance between females and males for age and HbA1c, indicating that visual characteristics 
other than those important for explaining sex are now expected to be employed by the deep learning model. In 
Subfigure 2a the data points for the prediction of age of females and males are equally distributed around the 
diagonal and no clear trend can be seen. For testosterone, however, it can be seen in Subfigure 2f that the majority 
of the female data points lie in the left lower corner, which can be explained by the lower female testosterone 
values, and that the majority of the male data points are situated in the upper right corner. To a lesser extent than 
for testosterone two clusters are noticed on Subfigures 2b, 2c and 2e representing the predictions for females and 
males, indicating some influence of sex on performance. For HbA1c no clear tendency is noticed in the model 
performance for the female and male groups in Subfigure 2d.

A similar analysis can be made on the results displayed in Table 2, where differences in model performance 
between the age groups stand out for HbA1c and SBP. No differences in model performance were found for sex 
and diastolic blood pressure. Age seemed to influence the model’s performance for testosterone and relative fat 
mass.

Overall, these results suggest that the models predicting certain cardiovascular risk factors other than age and 
sex pay attention to the same visual characteristics already explaining age and/or sex. Although the results of the 
latter experiment allow us to observe trends, it is difficult to draw strong conclusions. To illustrate (Subfigure 2f), 
testosterone is linked to sex, but the directionality of this relationship is not straightforward. The deep learning 
model for sex relies on visual characteristics on the fundus explaining the testosterone value, or the opposite 
could be true. Since the performance for the sex prediction was markedly higher than the prediction for testoster-
one based on the fundus images, it suggests that the model inherently predicts sex when trained for testosterone.

To further examine the impact of sex on the prediction of cardiometabolic risk factors, a final experiment was 
conducted. Deep learning models were trained on fundus images of females (7,080 images in total) and males 
only (4,920 images in total) for the prediction of the six clinical variables in the previous experiment. This was 
done for sex since it is a binary variable and groups are easily made, whilst for age this is not feasible. As sample 
size decreases considerably, it is not fair to compare the obtained performances with the one on the total dataset. 
To have a fair baseline, a deep learning model was trained on a random sample containing half of the total dataset 
(Table 3). For testosterone, R2 decreased from 0.54 to 0.48 on person level due to the smaller sample size. For age, 
R2 slightly decreased from 0.89 to 0.86 on person level. When training on the female subset, an R2 of 0.03 and 0.89 
was achieved for testosterone and age, respectively. When training on the male subset, an R2 of 0.04 and 0.86 was 
achieved on the test set for testosterone and age, respectively. This result supports the hypothesis that the deep 
learning model indirectly predicts sex when it is trained for testosterone prediction, as performance breaks down 
when trained only for females and males. It also shows that the deep learning model for age prediction does not 
rely on the sex prediction since performance remained almost constant over all different groups. For SBP, DBP, 
HbA1c and relative fat mass an influence of sex was observed.

Discussion
This paper reports on deep learning applied to fundus images in order to predict cardiometabolic risk factors such 
as age, sex and blood pressure, HbA1c, lipid panel, sex steroid hormones and bioimpedance measurements. We 
show that high performance results are achieved for age and sex, both important cardiovascular risk factors, and 
to a lesser extent for other cardiometabolic risk factors, such as blood pressure, HbA1c and relative fat mass. Our 
experiments suggest that age and sex are mediating factors in the prediction of the latter risk factors, meaning that 
the deep learning models to some extent indirectly predict age and/or sex. However, unique information can be 
found in the retinal image that relates to blood pressure, HbA1c and relative fat mass.

We obtained an R2 of 0.89 for predicting age on person level vs. 0.74 on the UK BioBank and 0.82 on the 
EyePACS data for image level by Poplin et al. and an AUC of 0.97 for predicting sex on person level vs. 0.97 on 

Females Males
On 1/2 
training set

On total 
training set

Age (years) 0.89 0.86 0.86 0.89

Systolic blood pressure (mmHg) 0.44 0.19 0.29 0.40

Diastolic blood pressure (mmHg) 0.14 0.21 0.14 0.24

Haemoglobin A1c (%) 0.28 0.16 0.25 0.34

Relative fat mass 0.23 0.07 0.40 0.43

Testosterone (nmol/L) 0.03 0.04 0.48 0.54

Table 3. Performance results for training on subsets of the data, on females, on males and on a random half 
subset of the Qatar Biobank data. For completeness the performance results on the test set when trained on the 
total training set are included in the table as well. Obtained R2 values on the respective test sets on person level 
are shown.
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image level by Poplin et al. Performance increase was observed in our study when multiple fundus images of both 
eyes and multiple centre modes were employed for a single prediction, indicating that the use of more sophis-
ticated methods of combining different fundus images could improve performance significantly. Additionally, 
when comparing performance results for other clinical biomarkers to Poplin et al. SBP and BMI achieved a simi-
lar performance, whilst DBP and smoking status achieved a somewhat lower performance.

For HbA1c we report a significantly higher performance than Poplin et al. with an R2 of 0.34 on person level 
vs. 0.09 on image level on the EyePACS data26. A possible explanation is a difference in the population examined 
as we used a Middle-Eastern population, whereas Poplin et al. examined a population of diabetic patients who 
were primarily white and middle-class with a higher mean HbA1c value and a wider distribution for their study 
population (8.2% ± 2.1 vs. 5.8% ± 1.4). Another difference is the higher mean age in Poplin’s population 
( yrs53 6 11 6. ± .  vs. . ± .yrs40 6 13 0) while we have shown that the performance of the HbA1c prediction is influ-
enced considerably by a person’s age (see Table 2).

For the first time deep learning models were trained for the prediction of the lipid panel (total cholesterol, 
HDL- and LDLcholesterol, and triglyceride) and glycaemic markers (glucose and insulin) on fundus images. 
Performance was found to be poor, however the samples from the Qatar Biobank were non-fasting glucose and 
the participants were taking various glucose and lipid lowering medications.

For smoking status Vaghefi et al. achieved (AUC 0.86) a significantly higher performance compared to Poplin 
et al. (AUC 0.71 on UK Biobank) and our data (AUC 0.78). A possible explanation is the considerably higher 
number of smokers in our dataset (18% versus 10% in Poplin et al. and 9% in Vaghefi et al.). Also, smoking habits 
in the Qatar Biobank population were established from four questions about a person’s smoking habit as opposed 
to a single question in other studies.

Despite the notorious data-hunger of deep learning, we obtained comparable predictive performances for 
most risk factors in a smaller dataset (3,000 participants) compared to the EyePACS and UK Biobank datasets 
(284,335 participants)26 and the Australian diabetic screening program (81,711 participants)27. Reasons for 
this include the application of transfer learning and data augmentation and by aggregating information from 
multiple retinal images per person. Furthermore, fundus images were taken with one type of fundus camera 
at the same physical location, namely the Qatar Biobank facility, in a relatively homogeneous population of 
Qatari citizens. Additionally, the clinical investigations were undertaken by a limited number of trained inves-
tigators, leading to a low operator bias. The database of the Qatar Biobank is considered more standardized 
and homogeneous than the UK Biobank or EyePACS datasets. These have been collected from multiple meas-
urement centres or with different types of fundus cameras, and with a larger pool of operators. Therefore, it 
is anticipated that the generalization to other populations is more limited than in the case of Poplin et al.28. 
Yet, generalisation is a necessary key challenge in deep learning31,32. It is important to note that the goal of the 
current study was to investigate the proof-of-principle of deep learning for the prediction of cardiometabolic 
factors from fundus images and to identify confounders when predicting these factors. However, future work 
is needed on generalisation of our findings.

Since age and sex can be predicted with high precision from fundus images, we analysed whether the model 
is indirectly predicting sex and/or age instead of the target variable. For the clinical variables showing no con-
siderable differences in performance when stratifying for age and sex, the models are expected to be not indi-
rectly predicting age and/or sex and instead looking for unique signs in the retina explaining the target variable. 
For the variables with divergent R2 for the different categories (sex and age groups) it is hypothesized that the 
model may be indirectly predicting age and/or sex and thus looking for similar signs in the retina. This raises the 
question as to whether the fundus image captures additional information regarding the clinical biomarkers, or 
whether it is simply basing its prediction on age and sex. This allowed us to assess hidden stratification, similar 
to Oakden-Rayner et al.33, especially as we observed a lower performance in other biomarker subclasses when 
stratifying for age and sex. Models were trained on females and males only to assess whether sex is a mediating 
factor in the prediction of certain clinical variables. The model predicting testosterone was inherently predicting 
sex, but the model predicting age was not based on the prediction of sex. For other cardiometabolic risk factors 
this relationship was not as clear as for age and testosterone.

This paper is the first to apply deep learning for predicting cardiometabolic risk factors in a Middle-Eastern 
population that typically remain understudied. Detailed phenotyping was undertaken for each study partici-
pant in a consistent manner following standard protocols. Our dataset includes the lipid panel which is highly 
relevant for CVD risk prediction, noted as a major limitation of the study by Poplin et al.28. In addition, we 
utilized a light-weight architecture requiring much less computer power when compared with the Inception-v3 
model used by Poplin et al.34. To the best of our knowledge, this study is the first comprehensive investigation 
assessing the effect of age and sex on the performance of prediction models for cardiometabolic risk factors 
based on fundus images. The data is from a Middle-Eastern population, which limits the generalizability of 
our findings.

Conclusion
To summarize, this is the first proof-of-concept study from the Middle East which demonstrates that deep 
learning models predicting cardiometabolic risk factors on fundus images reveal outstanding performance 
for age and sex, and an acceptable performance for blood pressure, HbA1c, relative fat mass and testosterone. 
Since age and sex appear to be strong mediating factors when predicting certain cardiometabolic risk factors 
from retinal images, further studies should focus on understanding the mechanism behind age and sex pre-
diction on fundus images.
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Methods
Study population. The study population is a subset taken from the Qatar Biobank initiative, a cohort aiming 
to prospectively examine 60,000 Qataris and long term Qatar residents. Study participants underwent extensive 
questionnaires (concerning lifestyle, health behaviours, etc.), as well as anthropometric and clinical evaluation 
(blood pressure, electrocardiogram, etc.). The current study had access to clinical features and questionnaires 
taken on 3,000 Qatari citizens, summarizing physical, clinical and biochemical measurements. As smoking shisha 
(waterpipe) is as harmful as smoking cigarettes35, it was added to the definition of smoker. Since WHO/ISH have 
defined smokers as current smokers and people who have stopped smoking less than one year ago36, the age 
when stopped smoking is also taken into account. Details on the smoking definition can be seen in Fig. 1 in the 
Supplementary Information.

For a detailed description concerning the clinical measurements and protocols used the reader is referred to 
Kuwari et al.29. The Qatar Biobank study is conducted according to the regulations and guidelines for Research 
Involving Humans of the Qatar Ministry of Public Health. Written informed consent was obtained from all par-
ticipants and approval was received from the Ethics Committee of the Institutional Review Board Hamad Medical 
Corporation in Doha, Qatar.

Fundus photography. 45° macula- and optic disc centred retinal photographs of the left and right eye were 
taken using a Topcon TRC-NW6S non-mydriatic retinal camera29. The fundus image resolution was 1600 × 1059.

Model development. Since four fundus images were available per person, a total of 12,000 fundus images 
were accessible and were randomly divided into a training (60%), validation (20%) and test set (20%), ensuring 
that fundus images of the same person were present in the same split. In total, 7,200 images were used for training 
and the models were validated and tested on two sets each containing 2,400 images. Missing values were observed 
for BMI (n = 265), RFM (n = 265), HbA1c (n = 2), insulin (n = 9), Sexhormone binding globulin (n = 134), estra-
diol (n = 266), testosterone (n = 15), HDL-cholesterol (n = 3) and LDL-cholesterol (n = 33). Whenever an image 
had a missing value for the variable we were training for, it was not used in the training process. For the prediction 
of smoking status oversampling of the minority class has been used during the training process to mitigate the 
class imbalance of 529 smokers, versus 2,471 non-smokers. Oversampling was applied only on the training set 
where smokers were sampled three times resulting in a balanced training set that contained 1,244 smokers and 
1,489 non-smokers. The observed imbalance remained unchanged in the validation and test set.

After empirically testing different image sizes and preprocessing functions, a pipeline was selected based on 
the achieved performance. All images were rescaled to 400 × 400 pixels and were pre-processed following a pipe-
line that was used successfully before for deep learning applied on retinal images37. With a Gaussian filter the 
local average colour was subtracted and mapped to 50% grey and the images were clipped to 90% of their size to 
remove the boundary effect. Several data augmentation techniques were also applied. In particular, the training 
images were horizontally flipped, randomly rotated from 0 to 360 degrees and randomly shifted by 10% in height 
and width. No data augmentation was applied to the test set. Batch size was 32.

We empirically found that the MobileNet-V2 architecture was well fitted for our study. We tried other popular 
network architectures for which pretrained weights are available in the Keras library such as ResNet and VGG16, 
but did not get better results and they were slower to train38,39. The MobileNet architectures are based on depth 
wise separable convolutions to maintain a light weight and efficient deep learning model39,40. A MobileNet-V2 
architecture pretrained for the ImageNet competition without top layers with input size 400 × 400 × 3 represents 
the baseline model in this paper. The prediction of continuous variables such as age was handled as a regression 
task for which a global average pooling layer and two fully connected layers were added to the baseline. The first 
fully connected layer had 512 neurons and a Rectified Linear Unit (ReLU) activation and the last layer had one 
output and a linear activation. For the prediction of the categorical variables such as sex a second model was 
trained, which adds a global average pooling layer and two fully connected layers to the baseline. The first fully 
connected layer had 512 neurons and a ReLU activation and the last layer had one output and a sigmoid acti-
vation. No layers were frozen during the training process and the training process was identical for all different 
cardiometabolic risk factors. Information from the four available fundus images per person was aggregated by 
averaging the output of the deep learning model for these four images.

Regression models were optimized by minimizing the MAE between the predicted and the actual values of 
the predicted variable. Classification models were optimized by minimizing the binary cross-entropy loss. The 
models were trained for 150 epochs using the Adam optimization algorithm using the default parameters pro-
vided in the original paper41. Early stopping was applied by interrupting training of the model when validation 
loss did not improve in the last 50 epochs. The model with the best validation performance during all runs was 
saved and used. TensorFlow 1.4.0 and Keras 2.2.4 open-source software libraries were used for the creation of the 
deep learning models.

To evaluate model performance for continuous variables (regression task) the MAE and R2 were computed. 
For classification tasks such as sex prediction the accuracy and AUC were computed.

Statistical analysis. To assess robustness of performance metrics, a bootstrap approach is applied. First, 
performance is computed on 2000 random samples with replacements obtained from the test set containing as 
much samples as the test set. Secondly, a mean value and 95% confidence interval is computed on the resulting 
distribution.

In order to have a baseline for the predictive power of age and sex for the clinical variables, multiple linear 
regression models with age and sex as independent variables were trained to predict these variables. All statistical 
analyses were performed in python using the Statsmodels 0.10.1, Pandas 0.21.0 and Scikit learn 0.19.1.
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